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The Kähler potential and the Hessian

DEFINITION: A (1,1)-form ω on an almost complex manifold M is called

a Hermitian form if ω(Ix, x) > 0 for each non-zero tangent vector x ∈ TmM .

The corresponding Riemannian form d(x, x) := ω(Ix, x) is called a Hermitian

metric.

DEFINITION: Let (M, I) be a complex manifold, and dc := IdI−1. The map

f→ddcf taking a function f to ddcf ∈ Λ1,1(M) is called the pluri-Laplacian. A

Hermitian form which can be locally represented as ddcf is called Kähler and f

its Kähler potential. In this situation f is called strictly plurisubharmonic.

REMARK: Plurisubharmonicity is a weaker form of convexity: every convex

function is plurisubharmonic.

DEFINITION: A Kähler class of a Kähler manifold is the cohomology class

of its Kähler form.
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The complex Monge-Ampère equation

QUESTION: What parametrizes Kähler forms in the same Kähler class?

ANSWER: A Kähler form is uniquely determined by its cohomology
class and its volume form.

THEOREM: (ddc-lemma)
Let ω1, ω2 be two cohomologous (1,1)-forms on a compact complex manifold.
Then ω1 − ω2 = ddcf for some function f ∈ C∞M.

DEFINITION: The equation (ω+ddcϕ)n = Aefωn, where A is a constant and
f ∈ C∞M is a given function is called the Monge-Ampere equation, and
(ϕ,A) its solution. Note that ω + ddcϕ is always a Kähler form, otherwise
(ω + ddcϕ)n is degenerate somewhere on M .

THEOREM: (Calabi-Yau)
Let (M,ω) be a compact Kaehler n-manifold, and f any smooth function.
Then there exists a unique up to a constant function ϕ such that (ω +
ddcϕ)n = Aefωn, where A is a positive constant obtained from the formula∫
M Aefωn =

∫
M ωn.

We are going to discuss a non-Kähler analogue of this result.
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LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called locally

conformally Kähler (LCK) if there exists a closed 1-form θ such that dω =

θ ∧ ω. The 1-form θ is called the Lee form and the g-dual vector field θ] is

called the Lee field.

REMARK: This definition is equivalent with the existence of a Kähler

cover (M̃, ω̃)→M such that the deck group Γ acts on (M, ω̃) by holo-

morphic homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω
is a Kähler form.

THEOREM: (Vaisman)

A compact LCK manifold with non-exact Lee form does not admit a Kähler

structure.

REMARK: Such manifold are called strict LCK. Further on, we shall con-

sider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a Vaisman manifold if the

Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only

if it admits a non-trivial action of a complex Lie group of positive

dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal

Hopf manifolds are LCK and not Vaisman.

EXAMPLE: Almost all non-Kähler compact complex surfaces are LCK.

Among those, only elliptic surfaces and some Hopf surfaces are Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if

and only if it admits a holomorphic embedding to a diagonal Hopf

manifold.
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Canonical foliation

REMARK: On a Vaisman manifold, the Lee and anti-Lee vector fields θ] and

Iθ] are Killing and holomorphic. Moreover, they commute: [θ], Iθ]] = 0.

Therefore, they define a holomorphic 1-dimensional foliation Σ. This

foliation is called the canonical foliation.

CLAIM: Let (M,ω, θ) be a Vaisman manifold, and θc := I(θ(. Then the form

ω0 = −dθc satisfies ω0 = ω − θ ∧ θc. Moreover, this form is pseudo-Hermitian,

invariant with respect to the action generated by θ], Iθ], vanishes on Σ and

is positive in the transversal direction.

COROLLARY: Clearly, a complex submanifold of an LCK manifold is LCK.

Moreover, a submanifold Z ⊂M of Vaisman manifold is Vaisman.

Proof: Since ω0 is exact, it satisfies
∫
Z ω

dimCZ
0 = 0. Therefore, Z is tangent

to Σ everywhere. This implies that Z is invariant under the Lie group action

generated by θ], Iθ]. A manifold admitting a holomorphic Killing action

by a complex Lie group is Vaisman.
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Lee classes

Let (M, I) be a complex manifold admitting an LCK structure. In LCK

geometry, the role of the Kähler cone is played by the “Lee cone”, i.e. the

set of classes in H1(M) which can be represented by Lee forms of an

LCK structure.

THEOREM: (Tsukada)

Let M be a compact Vaisman manifold. Then:

(i)

H1(M) = H
1,0
d (M)⊕H1,0

d (M)⊕ 〈θ〉,

where H
1,0
d (M) is the space of closed holomorphic 1-forms.

(ii) Consider a 1-form µ ∈ H1(M)∗ vanishing on H
1,0
d (M)⊕H1,0

d (M) ⊂ H1(M)

and satisfying µ([θ]) > 0. Then a class α ∈ H1(M,R) is a Lee class for

some LCK structure if and only if µ(x) > 0. Moreover, this LCK structure

cam be chosen Vaisman.
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Lee field is determined by the complex structure

REMARK: Unlike the Lee class, which can be chosen in a half-space, the
Lee field on a Vaisman manifold is unique up to a constant multiplier.

PROPOSITION: (Tsukada) Let M be a compact complex manifold of
Vaisman type, and θ] the Lee field of a Vaisman structure (ω, θ). Then θ]

is determined by the complex structure on M uniquely up to a real
multiplier.

Proof: Consider the transversely Kähler form ω0 = dθc. Its kernel is the
canonical foliation Σ = 〈θ], I(θ])〉. Let ω′0 be a form associated in the same
way with some other Vaisman structure (ω′, θ′) on M . Then η := ω0 + ω′0
is an exact, semi-positive (1,1)-form. This form cannot be strictly positive
because

∫
M ηdimCM = 0, hence it has a non-trivial kernel, which is contained in

kerω0 ∩ kerω′0. However, dimC kerω0 = dimC kerω′0 = 1, hence dimC(kerω0 ∩
kerω′0) = 1. This implies that the canonical foliation Σ′ associated with
(ω′, θ′) is equal to Σ.

Step 2: Recall that θ] is holomorphic and Killing. Since Σ has a non-
degenerate holomorphic section θ], it is trivial as a holomorphic line bundle.
Since θ] is a holomorphic section of a trivial line bundle, it is uniquely defined
up to a real multiplier and a complex rotation.
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The complex Monge-Ampère equation on LCK manifolds

DEFINITION: A form η on a Vaisman manifold is Lee-invariant if Lieθ] η =

0 and anti-Lee invariant if LieIθ] η = 0.

The main result of today’s talk.

THEOREM: Let (M,ω, θ) be a compact Vaisman manifold, and V ′ a Lee-

and anti-Lee-invariant volume form on M , satisfying
∫
M V ′ =

∫
M ωn. Then

there exists a unique Vaisman metric ω′ on M with the same Lee class

and the volume form (ω′)n = V ′.
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Basic forms

DEFINITION: Let Σ be a foliation on a manifold M . Basic forms on (M,Σ)

are differental forms on Σ which are locally obtained as pullbacks from the

leaf space of the foliation.

CLAIM: A form η is Σ-basic if and only if iX(η) = 0 and LieX η = 0 for

any vector field X ∈ Σ.

EXAMPLE: Let (M, I, ω, θ) be a Vaisman manifold. Then the transversely

Kähler form ω0 is Σ-basic.
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Basic cohomology

DEFINITION: Clearly, de Rham differential The basic cohomology of

(M,Σ) are de Rham cohomology of the complex of Σ-basic forms.

REMARK: Generally speaking, the basic cohomology of a compact manifold

are hard to manage; in some very bad cases, this space can be infinite-

dimensional. However, if Σ is transversely Riemannian, the basic coho-

mology are finitely-dimensional, and can be computed using the Lapla-

cian (P. Molino).

THEOREM: (El Kacimi-Alaoui)

Let (M, I, ω, θ) be a compact Vaisman manifold of complex dimension n, and

Σ its canonical foliation. Since Σ is transversely Kähler, the space of Σ-basic

forms on M admits the Hodge decomposition and the standard Kähler identi-

ties. Moreover, the basic cohomology can be represented by transversely

harmonic forms which admit the Hodge decomposition, the Poincare

duality and the Lefschetz sl(2)-action.
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Transversal Kähler form determines the Vaisman structure

LEMMA 1: Let M be a compact complex n-manifold of Vaisman type. Then

a Vaisman structure on M is uniquely determined by its transversal

Kähler form ω0 and the Lee class [θ] ∈ H1(M,R).

Proof: Since ω = dcθ+θ∧θc, it suffices to show that the Lee form θ is uniquely

determined by ω0 and the Lee class. Let θ and θ′ be two Lee forms of Vaisman

structures, with the same transversal Kähler form ω0. Denote by η the 1-form

θ − θ′. Since ω0 = dcθ = dcθ′ this would imply dcη = dη = 0. Such a 1-form

cannot be exact, because if η = df , one has ddcf = 0; however, pluriharmonic

functions are constant on any compact manifold by the maximum principle.

Therefore, θ cannot be cohomologous to θ′.

In other words, the transversely Kähler form and the Lee class uniquely

determine the Vaisman structure.
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Transversal Calabi-Yau theorem

THEOREM: (El Kacimi-Alaoui)
Let M be a compact Vaisman n-manifold, and Σ its canonical foliation. Then
for any Σ-basic volume form V0 which is basic cohomologous to an (n−1)-th
power of a transversely Kähler form η1, there exists a unique transversely
Kähler form η2 in the same basic cohomology class such that ηn−1

2 = V0.

Proof: “The proof is the same as for Kähler manifolds”.

THEOREM: Let (M,ω, θ) be a compact Vaisman manifold, and V ′ a Lee-
and anti-Lee-invariant volume form on M , satisfying

∫
M V ′ =

∫
M ωn. Then

there exists a unique Vaisman metric ω′ on M with the same Lee class
and the volume form (ω′)n = V ′.

Proof: Clearly, iI(θ])iθ]ω
n = nωn−1

0 , where θ] is the Lee field. Since the Lee
field is uniquely determined by the complex structure, the volume form is
uniquely determined by the transversal volume form, and vice versa. Apply-
ing the transversal Calabi-Yau theorem, we find a bijective correspondence
between the set of transversely Kähler structures on (M,Σ) and the set of
volume forms (up to a constant multiplier). Now, Lemma 1 gives a bijective
correspondence between the set of pairs [transversely Kähler structure, a Lee
class] and the set of Vaisman structures.
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