Contraction loci in hyperkähler manifolds

Misha Verbitsky

Automorphic Forms and Algebraic Geometry, May 17, 2018 POMI, SpB

Joint work with Ekaterina Amerik

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifol is a complex manifol equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **of maximal holonomy** (also: simple, or IHS) if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several hyperkähler manifolds of maximal holonomy.

Further on, all hyperkähler manifolds are assumed to be of maximal holonomy.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

M. Verbitsky

Extremal curves

DEFINITION: A rational curve on a complex variety is called **minimal** if for any two distinct points x, y on C, the space of deformations $Z_{x,y}$ of C passing through x, y is 0-dimensional.

REMARK: If dim $Z_{x,y} > 0$, *C* can be deformed to a union of two curves, with one of them still passing through x, y. Then it is not "minimal" (in the usual sense: minimal curve is the one which cannot be deformed to a non-irreducible curve).

REMARK: Let C be a curve which can be deformed to a non-irreducible curve C'. On a compact Kähler manifold, degree of each components of C' is strictly smaller than degree of C, hence **any rational curve is cohomologous to a sum of minimal curves.**

REMARK: Using the BBF form, we shall identify $H_2(M, \mathbb{Q})$ and $H^2(M, \mathbb{Q})$. This allows us to consider the BBF form on $H_2(M, \mathbb{Q})$.

DEFINITION: A rational curve is called **extremal** if it is minimal, and its homology class has negative self-intersection.

Characterization of the Kähler cone

DEFINITION: The BBF form on $H^{1,1}(M, \mathbb{R})$ has signature $(1, b_2 - 2)$. This means that the set $\{\eta \in H^{1,1}(M, \mathbb{R}) \mid (\eta, \eta) > 0\}$ has two connected components. The component which contains the Kähler cone Kah(M) is called **the positive cone**, denoted Pos(M).

THEOREM: (Huybrechts, Boucksom) **The Kähler cone of** M **is the set of all** $\eta \in Pos(M)$ **such that** $(\eta, C) > 0$ **for all extremal curves** C.

In other words, the Kähler cone is locally polyhedral (with some round pieces in the boundary), and its faces are orthogonal complements to the extremal curves.

MBM classes

REMARK: Suppose that M and M' are two birational Calabi-Yau manifolds (e. g. holomorphically symplectic manifolds). Then $H^2(M)$ is naturally identified with $H^2(M')$. Indeed, M' is obtained from M by a sequence of blow-ups and blow-downs, but since their canonical bundles are trivial, all blown up divisors are blown down in the end, and M is identified with M' outside of real codimension 4.

THEOREM: (Ekaterina Amerik, V.) Let η be a cohomology class of an extremal curve on a hyperkähler manifold, and (M_1, η) be obtained as a deformation of (M, η) in a continuous family such that η remains of type (1, 1) for all fibers of this family. Then M_1 is birational to a hyperkähler manifold M'_1 such that η is a class of an extremal curve on M'_1 .

DEFINITION: A class $\eta \in H^2(M, \mathbb{Z})$ which can be represented by an extremal curve for some complex holomorphically symplectic structure on M is called **an MBM class**.

REMARK: Equivalent definition: An MBM class $\eta \in H^2(M)$ is a class which can be represented by a rational curve in (M, I) when (M, I) is a non-algebraic deformation of M with $Pic(M, I)_{\mathbb{Q}} = \langle \eta \rangle$.

Kawamata bpf

DEFINITION: Base point set of a holomorphic line bundle is an intersection of all zero divisors of all sections of its tensor powers. A line bundle with trivial base point set is called **base point free** (bpf). A line bundle L with nL bpf is called **semiample**.

CLAIM: Let *L* be a semiample line bundle on a compact complex variety *M*. **Then** *M* **is equipped with a holomorphic map** $\varphi : M \longrightarrow X$ **such that** $L = \varphi^* L_0$, where L_0 is an ample bundle on *X*.

DEFINITION: A line bundle L is **nef** if $c_1(L)$ lies in the closure of the Kähler cone, and **big** if $H^0(M, L^N) = O(\dim M^N)$.

THEOREM: (Kawamata bpf theorem; very weak form) Let *L* be a nef line bundle on *M* such that $nL - K_M$ is big. Then *L* is semiample.

For Calabi-Yau manifolds this means just that **big and nef bundles are** semiample.

Birational contractions

DEFINITION: Birational contraction of a complex manifold is a holomorphic birational map $M \longrightarrow X$ to a complex variety X.

REMARK: From Kawamata bpf it follows that any big and nef bundle Lon Calabi-Yau is obtained as $L = \varphi^* L_0$, where $\varphi : M \longrightarrow X$ is a birational contraction and L_0 an ample bundle on X.

DEFINITION: A variety is called **rationally connected** if any two of its points can be connected by a sequence of rational curves

THEOREM: Let φ : $M \longrightarrow X$ be a birational contraction of a Calabi-Yau manifold. Then any fiber $\varphi^{-1}(x)$ is rationally connected. **Proof:** Highly non-trivial (Kawamata, Shokurov, Hacon-McKernan).

REMARK: Let *M* be a projective hyperkähler manifold, η the cohomology class of an extremal curve, ω_0 an integer point on the corresponding face of the Kähler cone, and *L* the holomorphic line bundle with $c_1(L) = \omega_0$. Then *L* is big (by Grauert-Riemenschneider conjecture, proven by Siu and Demailly) and nef. The corresponding birational contraction **contracts all curves** *C* with $[C] = \lambda \eta$. Indeed, $\langle L_1, C \rangle = 0$.

Faces of the Kähler cone

DEFINITION: Let *M* be a hyperkähler manifold. A codimension 1 face, or a face of the Kähler cone is a subset of its boundary obtained as an intersection of this boundary and a hyperplane which has dimension $h^{1,1} - 1$.

THEOREM: Codimension 1 faces of a Kähler cone **are in bijective correspondence with cohomology classes** η **of extremal curves.** Each such face is obtained as an intersection of the boundary and η^{\perp} .

THEOREM: Let (M, I) be a hyperkähler manifold and S the set of all MBM classes of type (1,1) on (M, I). Let S^{\perp} the union of all orthogonal complement to all $s \in S$. Then Kah(M, I) is a connected component of Pos $(M) \setminus S^{\perp}$, and each connected component of Pos $(M) \setminus S^{\perp}$ can be realized as a Kähler cone of some birational model of (M, I).

Proof: Follows from the deformational stability of MBM curves and the global Torelli theorem. ■

Centers of birational contraction are homeomorphic

REMARK: Clearly, $H^{1,1}(M)$ is obtained as orthogonal complement to the 2dimensional space $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega \rangle$, where Ω is the cohomology class of the holomorphic symplectic form. Then $\operatorname{Pic}(M) = H^{1,1}(M) \cap H^2(M,\mathbb{Z})$ has maximal rank only if the plane $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega \rangle$ is rational. There is at most countable number of such M.

THEOREM: (Ekaterina Amerik, V.) Let F be a face of a Kähler cone of a hyperkähler manifold, C the corresponding rational curve, and (M_1, F_1) be obtained as a deformation of (M, F) in a continuous family such that the cohomology class [C] remains of type (1,1). Assume that neither M nor M_1 has maximal Picard rank, and $b_2(M) - k > 3$. Then there exists a homeomorphism $\Psi : M \longrightarrow M_1$ identifying the corresponding contraction centers and the contracted extremal curves.

REMARK: Existence of a homeomorphism follows from ergodicity of mapping group action, global Torelli theorem, and Thom-Mathers stratification of proper real analytic maps.

REMARK: Stability of minimal rational curves under deformations of hyperkähler manifolds is in essentially due to Ziv Ran and Claire Voisin: **if you deform a hyperkähler manifold with a minimal rational curve, and its cohomology class remains of type (1,1), the curve also deforms.**

Centers of birational contraction for $K3^{[2]}$

The homeomorphism theorem allows one to give a classification of birational contraction centers in terms of the period spaces and lattices.

THEOREM: Let M be a deformation of K3^[2], and Z a birational contraction center associated with a face of a Kähler cone. Then one of the following three cases occurs:

(a) Z is Lagrangian $\mathbb{C}P^2$ obtained as a deformation of $C^{[2]} \subset M^{[2]}$, where $C \subset M$ is a smooth -2-curve on a K3 surface M.

(b) Z is a deformation of the exceptional divisor on $M^{[2]}$.

(c) Z is a singular divisor obtained as a deformation of $Z_C \subset M^{[2]}$, where Z_C is the set of all length 2 ideals on M with support intersecting C.

In all three cases Z is homeomorphic to its model in $M^{[2]}$.

Centers of birational contraction for $K3^{[2]}$ and lattices

This result is implied by the following lattice-theoretic result.

THEOREM 1: Let M be a K3 and Λ be the lattice $H^2(M^{[2]}, \mathbb{Z})$ with its BBF form. Denote by Γ the group of isometries of Λ generated by reflections $x \longrightarrow x - 2\frac{(x,z)}{(z,z)}z$ with negative z ("negative reflections") and let $E \in \Lambda$ be the exceptional divisor of E. Then for any $x \in \Lambda$ with (x,x) < 0, there exists $\gamma \in \Gamma$ such that the rank 2 lattice $\langle \gamma(x), E \rangle$ has no positive vectors.

Proof: Follows from the classification of orbits of Γ on Λ , due to Gritsenko, Hulek, Sankaran: they prove that there are at most 2 orbits of Γ action on the set $\{x \in \Lambda \mid (x, x) = w\}$ for any given w. One of these orbits intersects $H^2(M) \subset \Lambda$ and for such an orbit Theorem is obvious. Another orbit is E and then it starts from $w \leq -8$. The later contains a vector $\gamma(x) = E + y$ where $y \in H^2(M)$, and $\langle \gamma(x), E \rangle$ is negative definite.

CONJECTURE: This result is true for $M^{[n]}$ for all n.

REMARK: If this is true, we have a similar simple classification of contraction centers for all deformations of Hilbert schemes on K3.

Teichmüller spaces

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often **non-Hausdorff**.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M. We call $\Gamma := Diff(M) / Diff_0(M)$ the mapping class group.

REMARK: The quotient Teich $/\Gamma$ is identified with the set of equivalence classes of complex structures.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let Per : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ map J to a line $H^{2,0}(M, J) \in \mathbb{P}H^2(M, \mathbb{C})$. The map Per : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ is called **the period map**.

REMARK: Per maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}.$$

It is called **the period space** of M.

REMARK: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1) = Gr_{++}(H^2(M, \mathbb{R}))$. Indeed, the group $SO(H^2(M, \mathbb{R}), q) = SO(b_2 - 3, 3)$ acts transitively on $\mathbb{P}er$, and $SO(2) \times SO(b_2 - 3, 1)$ is a stabilizer of a point.

Global Torelli theorem

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (Huybrechts) Two points $I, I' \in$ Teich are non-separable if and only if there exists a bimeromorphism $(M, I) \longrightarrow (M, I')$ which is non-singular in codimension 2 and acts as identity on $H^2(M)$.

REMARK: This is possible only if (M, I) and (M, I') contain a rational curve. **General hyperkähler manifold has no curves;** ones which have curves belong to a countable union of divisors in Teich.

DEFINITION: The space $\operatorname{Teich}_b := \operatorname{Teich} / \sim$ is called **the birational Te**ichmüller space of M. Since Teich_b is obtained by gluing together all nonseparable points, it is also called **Hausdorff reduction** of Teich.

THEOREM: (Torelli theorem for hyperkähler manifolds) **The period map** Teich_b $\xrightarrow{\text{Per}}$ Per is a diffeomorphism, for each connected component of Teich_b.

Mapping class group for Hilbert scheme of a K3

THEOREM: (E. Markman) Let X be a deformation of the Hilbert scheme $M^{[n]}$ of K3, Γ a subgroup of its mapping class group fixing a connected component of Teich_b, and $\Lambda = H^2(X,\mathbb{Z})$ with its BBF form. Then Γ is the subgroup of $O(\Lambda)$ generated by negative reflections.

THEOREM: Let $Z \subset X$ be a birational contraction center on a deformation X of a Hilbert scheme $M^{[n]}$ of K3. Suppose that Theorem 1 is true for $M^{[n]}$. **Then the pair** (X, Z) **can be smoothly deformed to** $(M^{[n]}, Z')$, where M is a non-algebraic K3.

Proof: Let η be the MBM class associated with Z and Teich $_{\eta}$ the Teichmüller space of deformations of X such that η remains of type (1,1). Then any lattice $\Lambda_1 \subset \Lambda$ with Λ_1^{\perp} containing a positive 2-plane and $\Lambda_1 \ni \eta$ can be realized as a Picard lattice of $I \in \text{Teich}_{\eta}$. Applying this to $\langle \gamma(\eta), E \rangle$ from Theorem 1, we obtain a deformation of (X, Z) with a Picard lattice $\langle \gamma(\eta), E \rangle$, and this is a Hilbert scheme for a non-algebraic K3.

REMARK: All curves on a Hilbert scheme $M^{[n]}$ of a non-algebraic K3 M can be contracted. This contraction gives a symmetric power of a singular K3 which has no curves at all. This gives an explicit description of aqll contraction centers on $M^{[n]}$.