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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifol is a complex mani-

fold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called of maximal holonomy

(also: simple, or IHS) if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite

covering which is a product of a torus and several hyperkähler manifolds of

maximal holonomy.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Extremal curves

DEFINITION: A rational curve on a complex variety is called minimal if for

any two distinct points x, y on C, the space of deformations Zx,y of C passing

through x, y is 0-dimensional.

REMARK: If dimZx,y > 0, C can be deformed to a union of two curves,

with one of them still passing through x, y. Then it is not “minimal” (in

the usual sense: minimal curve is the one which cannot be deformed to a

non-irreducible curve).

REMARK: Let C be a curve which can be deformed to a non-irreducible

curve C′. On a compact Kähler manifold, degree of each components of C′ is

strictly smaller than degree of C, hence any rational curve is cohomologous

to a sum of minimal curves.

REMARK: Using the BBF form, we shall identify H2(M,Q) and H2(M,Q).

This allows us to consider the BBF form on H2(M,Q).

DEFINITION: A rational curve is called extremal if it is minimal, and its

homology class has negative self-intersection.
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Characterization of the Kähler cone

DEFINITION: The BBF form on H1,1(M,R) has signature (1, b2− 2). This

means that the set {η ∈ H1,1(M,R) | (η, η) > 0} has two connected compo-

nents. The component which contains the Kähler cone Kah(M) is called the

positive cone, denoted Pos(M).

THEOREM: (Huybrechts, Boucksom)

The Kähler cone of M is the set of all η ∈ Pos(M) such that (η, C) > 0

for all extremal curves C.

In other words, the Kähler cone is locally polyhedral (with some round

pieces in the boundary), and its faces are orthogonal complements to the

extremal curves.
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MBM classes

REMARK: Suppose that M and M ′ are two birational Calabi-Yau manifolds
(e. g. holomorphically symplectic manifolds). Then H2(M) is naturally
identified with H2(M ′). Indeed, M ′ is obtained from M by a sequence of
blow-ups and blow-downs, but since their canonical bundles are trivial, all
blown up divisors are blown down in the end, and M is identified with M ′

outside of real codimension 4.

THEOREM: (Ekaterina Amerik, V.) Let η be a cohomology class of an
extremal curve on a hyperkähler manifold, and (M1, η) be obtained as a de-
formation of (M,η) in a continuous family such that η remains of type (1,1)
for all fibers of this family. Then M1 is birational to a hyperkähler mani-
fold M ′1 such that η is a class of an extremal curve on M ′1.

DEFINITION: A class η ∈ H2(M,Z) which can be represented by an extremal
curve for some complex holomorphically symplectic structure on M is called
an MBM class.

REMARK: Equivalent definition: An MBM class η ∈ H2(M) is a class
which can be represented by a rational curve in (M, I) when (M, I) is a
non-algebraic deformation of M with Pic(M, I)Q = 〈η〉.
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Kawamata bpf

DEFINITION: Base point set of a holomorphic line bundle is an intersection

of all zero divisors of all sections of its tensor powers. A line bundle with trivial

base point set is called base point free (bpf). A line bundle L with nL bpf

is called semiample.

CLAIM: Let L be a semiample line bundle on a compact complex variety M .

Then M is equipped with a holomorphic map ϕ : M −→X such that

L = ϕ∗L0, where L0 is an ample bundle on X.

DEFINITION: A line bundle L is nef if c1(L) lies in the closure of the Kähler

cone, and big if H0(M,LN) = O(dimMN).

THEOREM: (Kawamata bpf theorem; very weak form)

Let L be a nef line bundle on M such that nL − KM is big. Then L is

semiample.

For Calabi-Yau manifolds this means just that big and nef bundles are

semiample.
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Birational contractions

DEFINITION: Birational contraction of a complex manifold is a holomor-
phic birational map M −→X to a complex variety X.

REMARK: From Kawamata bpf it follows that any big and nef bundle L

on Calabi-Yau is obtained as L = ϕ∗L0, where ϕ : M −→X is a birational
contraction and L0 an ample bundle on X.

DEFINITION: A variety is called rationally connected if any two of its
points can be connected by a sequence of rational curves

THEOREM: Let ϕ : M −→X be a birational contraction of a Calabi-Yau
manifold. Then any fiber ϕ−1(x) is rationally connected.
Proof: Highly non-trivial (Kawamata, Shokurov, Hacon-McKernan).

REMARK: Let M be a projective hyperkähler manifold, η the cohomology
class of an extremal curve, ω0 an integer point on the corresponding face of
the Kähler cone, and L the holomorphic line bundle with c1(L) = ω0. Then L

is big (by Grauert-Riemenschneider conjecture, proven by Siu and Demailly)
and nef. The corresponding birational contraction contracts all curves C

with [C] = λη. Indeed, 〈L1, C〉 = 0.
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Faces of the Kähler cone

DEFINITION: Let M be a hyperkähler manifold. A codimension 1 face,

or a face of the Kähler cone is a subset of its boundary obtained as an

intersection of this boundary and a hyperplane which has dimension h1,1− 1.

THEOREM: Codimension 1 faces of a Kähler cone are in bijective cor-

respondence with cohomology classes η of extremal curves. Each such

face is obtained as an intersection of the boundary and η⊥.

THEOREM: Let (M, I) be a hyperkähler manifold and S the set of all MBM

classes of type (1,1) on (M, I). Let S⊥ the union of all orthogonal complement

to all s ∈ S. Then Kah(M, I) is a connected component of Pos(M)\S⊥, and

each connected component of Pos(M)\S⊥ can be realized as a Kähler

cone of some birational model of (M, I).

Proof: Follows from the deformational stability of MBM curves and the global

Torelli theorem.
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Centers of birational contraction are homeomorphic

REMARK: Clearly, H1,1(M) is obtained as orthogonal complement to the 2-
dimensional space 〈Re Ω, Im Ω〉, where Ω is the cohomology class of the holo-
morphic symplectic form. Then Pic(M) = H1,1(M) ∩H2(M,Z) has maximal
rank only if the plane 〈Re Ω, Im Ω〉 is rational. There is at most countable
number of such M .

THEOREM: (Ekaterina Amerik, V.) Let F be a face of a Kähler cone of
a hyperkähler manifold, C the corresponding rational curve, and (M1, F1) be
obtained as a deformation of (M,F ) in a continuous family such that the co-
homology class [C] remains of type (1,1). Assume that neither M nor M1 has
maximal Picard rank, and b2(M)− k > 3. Then there exists a homeomor-
phism Ψ : M −→M1 identifying the corresponding contraction centers
and the contracted extremal curves.

REMARK: Existence of a homeomorphism follows from ergodicity of map-
ping group action, global Torelli theorem, and Thom-Mathers stratification
of proper real analytic maps.

REMARK: Stability of minimal rational curves under deformations of hy-
perkähler manifolds is in essentially due to Ziv Ran and Claire Voisin: if you
deform a hyperkähler manifold with a minimal rational curve, and its
cohomology class remains of type (1,1), the curve also deforms.
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Centers of birational contraction for K3[2]

The homeomorphism theorem allows one to give a classification of birational

contraction centers in terms of the period spaces and lattices.

THEOREM: Let M be a deformation of K3[2], and Z a birational contraction

center associated with a face of a Kähler cone. Then one of the following

three cases occurs:

(a) Z is Lagrangian CP2 obtained as a deformation of C[2] ⊂ M [2], where

C ⊂M is a smooth −2-curve on a K3 surface M .

(b) Z is a deformation of the exceptional divisor on M [2].

(c) Z is a singular divisor obtained as a deformation of ZC ⊂M [2], where ZC
is the set of all length 2 ideals on M with support intersecting C.

In all three cases Z is homeomorphic to its model in M [2].
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Centers of birational contraction for K3[2] and lattices

This result is implied by the following lattice-theoretic result.

THEOREM 1: Let M be a K3 and Λ be the lattice H2(M [2],Z) with its

BBF form. Denote by Γ the group of isometries of Λ generated by reflections

x−→ x−2(x,z)
(z,z)z with negative z (“negative reflections”) and let E ∈ Λ be the

exceptional divisor of E. Then for any x ∈ Λ with (x, x) < 0, there exists

γ ∈ Γ such that the rank 2 lattice 〈γ(x), E〉 has no positive vectors.

Proof: Follows from the classification of orbits of Γ on Λ, due to Gritsenko,

Hulek, Sankaran: they prove that there are at most 2 orbits of Γ action on

the set {x ∈ Λ | (x, x) = w} for any given w. One of these orbits intersects

H2(M) ⊂ Λ and for such an orbit Theorem is obvious. Another orbit is E and

then it starts from w 6 −8. The later contains a vector γ(x) = E + y where

y ∈ H2(M), and 〈γ(x), E〉 is negative definite.

CONJECTURE: This result is true for M [n] for all n.

REMARK: If this is true, we have a similar simple classification of contraction

centers for all deformations of Hilbert schemes on K3.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space

(Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold

when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M . We call

Γ := Diff(M)/Diff0(M) the mapping class group.

REMARK: The quotient Teich /Γ is identified with the set of equivalence

classes of complex structures.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) = Gr++(H2(M,R).

Indeed, the group SO(H2(M,R), q) = SO(b2 − 3,3) acts transitively on Per,
and SO(2)× SO(b2 − 3,1) is a stabilizer of a point.
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Global Torelli theorem

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have curves

belong to a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M . Since Teichb is obtained by gluing together all non-

separable points, it is also called Hausdorff reduction of Teich.

THEOREM: (Torelli theorem for hyperkähler manifolds)

The period map Teichb
Per−→ Per is a diffeomorphism, for each connected

component of Teichb.
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Mapping class group for Hilbert scheme of a K3

THEOREM: (E. Markman) Let X be a deformation of the Hilbert scheme
M [n] of K3, Γ a subgroup of its mapping class group fixing a connected
component of Teichb, and Λ = H2(X,Z) with its BBF form. Then Γ is the
subgroup of O(Λ) generated by negative reflections.

THEOREM: Let Z ⊂ X be a birational contraction center on a deformation
X of a Hilbert scheme M [n] of K3. Suppose that Theorem 1 is true for M [n].
Then the pair (X,Z) can be smoothly deformed to (M [n], Z′), where M

is a non-algebraic K3.

Proof: Let η be the MBM class associated with Z and Teichη the Teichmüller
space of deformations of X such that η remains of type (1,1). Then any lattice
Λ1 ⊂ Λ with Λ⊥1 containing a positive 2-plane and Λ1 3 η can be realized as a
Picard lattice of I ∈ Teichη. Applying this to 〈γ(η), E〉 from Theorem 1, we
obtain a deformation of (X,Z) with a Picard lattice 〈γ(η), E〉, and this is a
Hilbert scheme for a non-algebraic K3.

REMARK: All curves on a Hilbert scheme M [n] of a non-algebraic K3
M can be contracted. This contraction gives a symmetric power of a
singular K3 which has no curves at all. This gives an explicit description of
aqll contraction centers on M [n].
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