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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Extremal curves

DEFINITION: A rational curve on a complex variety is called minimal if for

any two distinct points x, y on C, the space of deformations Zx,y of C passing

through x, y is 0-dimensional.

REMARK: If dimZx,y > 0, C can be deformed to a union of two curves, with

one of them still passing through x, y. Then it is not “minimal” (in the usual

sense: minimal curve is one which cannot be deformed to a non-irreducible

curve).

REMARK: Let C be a curve which can be deformed to a non-irreducible

curve C′. On a compact Kähler manifold, degree of each components of C′

is strictly smaller than degree of C, hence any curve is cohomologous to

a sum of minimal curves.

REMARK: Using the BBF form, we shall identify H2(M,Q) and H2(M,Q).

This allows us to consider the BBF form on H2(M,Q).

DEFINITION: A rational curve is called extremal if it is minimal, and its

homology class has negative self-intersection.
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Characterization of the Kähler cone

DEFINITION: The BBF form on H1,1(M,R) has signature (1, b2− 2). This

means that the set {η ∈ H1,1(M,R) | (η, η) > 0} has two connected compo-

nents. The component which contains the Kähler cone Kah(M) is called the

positive cone, denoted Pos(M).

THEOREM: (Huybrechts, Boucksom)

The Kähler cone of M is the set of all η ∈ Pos(M) such that (η, C) > 0

for all extremal curves C.

In other words, Kähler cone is locally polyhedral (with some round pieces

in the boundary), and its faces are orthogonal complements to the extremal

curves.

This result follows from Kawamata base point free theorem (see below).
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Birational contractions and Kawamata bpf

DEFINITION: Base point set of a holomorphic line bundle is an intersection

of all zero divisors of its sections. A line bundle with trivial base point set is

called base point free (bpf). A line bundle L with nL bpf is called semiample

CLAIM: Let L be a semiample line bundle on a compact complex variety M .

Then M is equipped with a holomorphic map ϕ : M −→X such that

L = ϕ∗L0, where L0 is an ample bundle on X.

DEFINITION: A line bundle L is nef if c1(L) lies in the closure of the Kähler

cone, and big if
∫
M c1(L)dimCM > 0.

THEOREM: (Kawamata bpf theorem; very weak form)

Let L be a nef line bundle on M such that nL − KM is big. Then L is

semiample.

For Calabi-Yau manifolds this means just that big and nef bundles are

semiample.
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Birational contractions

DEFINITION: Birational contraction of a complex manifold is a holomor-
phic birational map M −→X to a complex variety X.

REMARK: From Kawamata bpf it follows that any big and nef bundle L
on Calabi-Yau is obtained as L = ϕ∗L0, where ϕ : M −→X is a birational
contraction and L0 an ample bundle on X.

DEFINITION: A variety is called rationally connected if any two of its
points can be connected by a sequence of rational curves

DEFINITION: A Calabi-Yau manifold is a compact, Kähler manifold M
with c1(M) = 0.

Theorem 1: Let ϕ : M −→X be a birational contraction of a Calabi-yau
manifold. Then any fiber ϕ−1(x) is rationally connected.
Proof: Highly non-trivial (Shokurov and others).

REMARK: Let M be a hyperkähler manifold, η the cohomology class of an
extremal curve, ω0 an integer point on the corresponding face of the Kähler
cone, and L the holomorphic line bundle with cq(L) = ω0. Then L is big and
nef. Then the corresponding birational contraction contracts all curves C
with [C] = λη. Indeed, 〈L1, C〉 = 0.
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MBM classes

REMARK: Suppose that M and M ′ are two birational Calabi-Yau manifolds

(e. g. holomorphically symplectic manifolds). Then H2(M) is naturally

identified with H2(M ′). Indeed, M ′ is obtained from M by a sequence of

blow-ups and blow-downs, but since their canonical bundles are trivial, all

blown up divisors are blown down in the end, and M is identified with M ′

outside of real codimension 4.

THEOREM: (Ekaterina Amerik, V.) Let η be a cohomology class of an

extremal curve on a hyperkähler manifold, and (M1, η) be obtained as a de-

formation of (M,η) in a continuous family such that η remains of type (1,1)

for all fibers of this family. Then M1 is birational to a hyperkähler mani-

fold M ′1 such that η is a class of extremal curve on M ′1.

DEFINITION: A class η ∈ H2(M,Z) which can be represented by an extremal

curve for some complex holomorphically symplectic structure on M is called

an MBM class.
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Faces of the Kähler cone

DEFINITION: Let M be a hyperkähler manifold. A codimension 1 face,

or (sometimes) just a face of the Kähler cone is a subset of its boundary

obtained as an intersection of this boundary and a hyperplane which has

dimension h1,1 − 1. A face of codimension k of the Kähler cone is an

intersection of k adjacent codimension 1 faces.

THEOREM: (Huybrechts, Boucksom) Codimension 1 faces of a Kähler cone

are in bijective correspondence with cohomology classes η of extremal

curves. Each such face is obtained as in intersection of the boundary and

η⊥.
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Faces of the Kähler cone and birational contractions

THEOREM: Let M be a projective hyperkähler manifold, and π : M −→M1

a birational contraction. Consider the set [C1], ..., [Ck] of cohomology classes

of all extremal curves which are contracted by π. Then
⋂
i[Ci]

⊥ ∩ ∂ Kah is a

codimension k face of the Kähler cone. Moreover, faces are in bijective

correspondence with birational contractions.

Proof: Let L1 be an ample bundle on M1. Then L := π∗L1 is a big, nef bundle

with c1(L) ∈
⋂
i[Ci]

⊥, hence the set
⋂
i[Ci]

⊥ is a non-empty face. Conversely,

for any face F :=
⋂
i[Ci]

⊥ ∩ ∂ Kah, and any line bundle with c1(L) in interior of

F , the bundle L is big and nef and the corresponding contraction contracts

curves in [Ci] and only them.

REMARK: Define nef cone of a projective variety as the set of all (1,1)-

classes which are non-negative on curves. Then the nef cone of M1 is

identified with the interior of the face F .
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Centers of birational contraction are diffeomorphic

REMARK: Clearly, H1,1(M) is obtained as orthogonal complement to the 2-
dimensional space 〈Re Ω, Im Ω〉, where Ω is the cohomology class of the holo-
morphic symplectic form. Then Pic(M) = H1,1(M) ∩H2(M,Z) has maximal
rank only if the plane 〈Re Ω, Im Ω〉 is rational. There is at most countable
number of such M .

The main result of this talk:

THEOREM: (Ekaterina Amerik, V.) Let F be a codimension k face of a
Kähler cone of a hyperkähler manifold, F =

⋂
[Ci]

⊥ ∩ ∂ Kah, and (M1, F1) be
obtained as a deformation of (M,F ) in a continuous family such that all [Ci]
remain of type (1,1). Assume that neither M nor M1 has maximal Picard rank,
and b2(M) − k > 3. Then there exists a diffeomorphism Ψ : M −→M1
identifying the corresponding contraction centers and the contracted
extremal curves.

REMARK: Stability of minimal rational curves under deformations of hy-
perkähler manifolds is in essentially due to Ziv Ran and Claire Voisin: if you
deform a hyperkähler manifold with a minimal rational curve, and its
cohomology class remains of type (1,1), the curve also deforms.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space

(Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold

when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M . We call

Γ := Diff(M)/Diff0(M) the mapping class group.

REMARK: The quotient Teich /Γ is identified with the set of equivalence

classes of complex structures.
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Computation of the mapping class group

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler man-

ifold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

THEOREM: Let M be a simple hyperkähler manifold, and Γ0 as above.

Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for

dimCM > 3, π1(M) = 0, is an arithmetic lattice. Very much unlike the

mapping class group for curves!
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) = Gr++(H2(M,R).

Indeed, the group SO(H2(M,R), q) = SO(b2 − 3,3) acts transitively on Per,
and SO(2) × SO(b2 − 3,1) is a stabilizer of a point (see below for a more

detailed argument).

THEOREM: (Bogomolov) For any hyperkähler manifold, period map is

locally a diffeomorphism.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian

of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) =

q(l + l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R),

the quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a

line is determined by orientation.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have curves

belong to a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M . Since Teichb is obtained by gluing together all non-

separable points, it is also called Hausdorff reduction of Teich,

THEOREM: (Torelli theorem for hyperkähler manifolds)

The period map Teichb
Per−→ Per is a diffeomorphism, for each connected

component of Teichb.
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Ergodic complex structures

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,

and Γ the mapping group acting on Teich. An ergodic complex structure

is a complex structure with dense Γ-orbit.

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence

M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,

x ∈M\M ′. Therefore, the set ZU of such orbits has measure 0.

Step 2: Choose a countable base {Ui} of topology on M . Then the set of

points in dense orbits is M\
⋃
iZUi.
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Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such
that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact
simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the
orbit Γ · L is dense. Then Z := Per \Pere has measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic
orbits has measure 0.

THEOREM: Let (M, I) be a hyperkähler manifold with b2 > 3 or a compact
torus of dimension > 1. Then I ergodic (has dense Γ-orbit in Teich) if
and only if rk Pic(M, I) is not maximal.

Proof: Follows from M. Ratner’s theorems.
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The space TeichF

DEFINITION: Let M be a hyperkähler manifold, F :=
⋂
i[Ci]

⊥ ∩ ∂ Kah a

face of the Kähler cone, and TeichF denote the Teichmüller space of all

deformations of M such that all Ci remain extremal. Denote by PerF the

corresponding period space,

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0, q(l, [Ci]) = 0}.

Clearly, PerF = Gr++(
⋂
i[Ci]

⊥).

REMARK: Global Torelli theorem and stability of extremal curves under

deformations imply that Per : TeichF −→ PerF is the Hausdorff reduction

map (gluing together all non-separable points).

Then the same Ratner theorem argument as above gives the following result.

THEOREM: Let F be a face of the Kähler cone, and ΓF be a subgroup of the

mapping class group Γ preserving the connected component of TeichF . Then

an orbit ΓF · I of ΓF on TeichF is dense if and only if b2(M)−codimF > 3

and (M, I) has non-maximal Picard lattice.
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The main result deduced from ergodicity

THEOREM: (Whitney)

Let X ⊃ M Ψ−→ B be a holomorphic family of pairs X ⊂ M of compact

complex varieties, with M smooth. Consider the set B0 ⊂ B of all points b ∈ B
such that the family Ψ admits a smooth trivialization in a neighbourhood of

b, in such a way that all fibers of Ψ|X are identified. Then B0 is open in B.

THEOREM: Let F =
⋂

[Ci]
⊥ ∩ ∂ Kah be a face of the Kähler cone of a

hyperkähler manifold, and (M1, F ) be obtained as a deformation of (M,F )

in a continuous family such that all Ci remain of type (1,1) for all fibers

of this family, and F is a face on M1. Assume that neither M nor M1 has

maximal Picard rank. Then there exists a diffeomorphism Ψ : M −→M1

identifying the centers of corresponding birational contractions, and

minimal curves in the cogomology classes [Ci].

Proof: Let U −→ TeichF be the corresponding universal family over the Te-

ichmüller space, and Teich0
F ⊂ TeichF the subset consisting of all points I

such that the universal family admits a smooth trivialization in a neighbour-

hood of I compatible with centers of contraction as in Whitley theorem. Since

Teich0
F is non-empty, open and ΓF -invariant, it contains all dense orbits.
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