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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) the con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: In almost all known cases Teich is a finite-dimensional complex

space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff(M) be the group of diffeomorphisms of M . We call

Γ := Diff(M)/Diff0(M) the mapping class group.

REMARK: The quotient Teich /Γ is identified with the set of equivalence

classes of complex structures.

THEOREM: For hyperkähler manifolds and complex tori T , dimC T > 1, the

mapping class group Γ acts on Teich with dense orbits.
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Families with a discrete group acting with dense orbits

THEOREM: Let π : X −→B be a family of complex varietiees, and Γ a

group which acts on B with all orbits dense. Then the fibers of π are

Lipschitz homeomorphic, and these homeomorphisms are smooth in

the strata of Whitney stratification.

Proof: Follows from Thom-Mather theory (see the lectures on equisingularity

by Terence Gaffney in this meeting). Indeed, any such family is equisingular

in a Zariski open subset B0 ⊂ B, and since B0 is Γ-invariant, we have B = B0.

QUESTION: Can we do better?

REMARK: In complex geometry - no, we cannot. Indeed, there is a dense

subset in the “marked moduli” (Teichmüller space) of hyperkähler manifolds

or complex tori T , dimC T > 1, where the mapping class group acts with dense

orbits.

For “local triviality” to work, we need to find a category without con-

tinuous moduli of deformations.
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Continuous moduli of deformations in real analytic category

Real analytic manifolds do not have continuous moduli: indeed, their

deformations are controlled by the first cohomology of the tangent bundle,

and higher cohomologies of a coherent sheaf over a real analytic manifold

always vanish.

However, real analytic varieties have continuous moduli of deformations.

The “four lines in RP2” example was already mentioned in lectures by Terence

Gaffney:

Let C be a configuration of 4 real lines in RP2. If these lines intersect in

one point, the corresponding tangent cone (which is determined intrinsically

by the real analytic geometry of the pair (RP2, C)) is 4 lines in a vector

space. The cross-ratio of these 4 lines gives a continuous real analytic

invariant of this pair.
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Locally trivial deformations (Flenner, Kosarew)

DEFINITION: (Flenner, Kosarew)

Let π : X −→B be a family of complex varieties. Assume that any point x ∈ X
has a neighbourhood W which is biholomorphic to a product F ×U such that

π
∣∣
F×U is a projection to U . Then π is called a locally trivial deformation.

In real analytic category, such deformations have no continuous moduli,

see below.

THEOREM: (Namikawa)

Every flat deformation of a projective holomorphically symplectic variety with

Q-factorial terminal holomorphically symplectic singularities is locally trivial.

REMARK: A similar result by Namikawa holds for canonical singularities

(see Bakker-Lehn theorem below).
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.
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Bogomolov decomposition

DEFINITION: A hyperkähler manifold M is called of maximal holonomy

(also: simple, or IHS) if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite

covering which is a product of a torus and several hyperkähler manifolds of

maximal holonomy.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.

7



Birational contractions of hk manifolds M. Verbitsky

Birational contractions and locally trivial deformations

DEFINITION: Birational contraction of a complex manifold is a holomor-

phic birational map M −→X to a complex variety X.

THEOREM: (Bakker-Lehn)

Let f : M −→M1 be a birational contraction of a projective hyperkähler mani-

fold, with b2(M1) > 5. Let Def lt(M1) ⊂ Def(M1) be the subspace parametriz-

ing locally trivial deformations of M1 and Def(M, f) ⊂ Def(M) be the sub-

space of deformations of the pair (M, f). Assume that dim Def(M1) > 2.

Then the contraction induces an isomorphism between Def(M, f) and

Def lt(M1), so that the small deformations of (M, f) map isomorphically

onto “locally trivial” small deformations of M1.

Proof: The proof is based on ergodic properties of the mapping class group

action and results of Y. Namikawa on local triviality of holomorphic symplectic

deformations.
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Birational contractions are real analytically identified

THEOREM: (Amerik-V.)

Let M be a hyperkähler manifold, Pic(M) not maximal, and f : M −→M1 a

birational contraction. Assume that the space of deformations of the map

f : M −→M1 has dimension > 2. Then the corresponding contraction loci

are real analytically equivalent.

Proof: We use two ingredients: ergodic action of the mapping class group

on the corresponding Teichmüller space and real analytic triviality of locally

trivial deformations.
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Locally trivial deformations are real analytically trivial

THEOREM: Let π : X −→B be a deformation of complex varieties, which

is locally trivial. Then the real analytic map πR : XR −→BR underlying

π defines a family which is trivial over any sufficiently small open set

U ⊂ B.

Proof. Step 1: By Artin’s analytification theorem it would suffice to trivialize

the family πR in a formal neighbourhood F̂ of F := π−1(b), for all b ∈ B.

Locally in X , the complex family π is a product. The local-in-X trivialization

of π defines a Čech cocycle w ∈ H1(F,AutF (F̂ )) where AutF (F̂ )) is the group

sheaf of formal automorphisms of F̂ trivial on F ⊂ F̂ and commuting with the

projection to B.

Step 2: The sheaf AutF (F̂ )) can be obtained as a limit of sheaves of

automorphisms of infinitesimal neighbourhood Fk ⊂ F̂ of order k. There-

fore, w ∈ H1(F,Aut(F̂ )) vanishes whenever its finite order representatives

wk ∈ H1(F,AutF (Fk)) vanish.

10



Birational contractions of hk manifolds M. Verbitsky

Locally trivial deformations are real analytically trivial (2)

THEOREM: Let π : X −→B be a deformation of complex varieties, which
is locally trivial. Then the real analytic map πR : XR −→BR underlying
π defines a family which is trivial over any sufficiently small open set
U ⊂ B.

Step 2: The sheaf AutF (F̂ )) can be obtained as a limit of sheaves of au-
tomorphisms of infinitesimal neighbourhood Fk ⊂ F̂ of order k. Therefore,
w ∈ H1(F,Aut(F̂ )) vanishes whenever its

Step 3: The Lie groups AutF (Fk)) are nilpotent, and fit into exact sequences

0−→ Vk −→ AutF (Fk)−→ AutF (Fk−1)−→ 0

where Vk is a sheaf of abelian unipotent groups, that is, a coherent sheaf. In
the corresponding exact sequence of first cohomology

H1(Vk)−→H1(AutF (Fk))−→H1(AutF (Fk−1))−→H2(Vk)

all terms vanish, because higher cohomology of any coherent sheaf on a real
analytic variety vanishes (Cartan), hence H1(Vk) = H2(Vk) = 0.

Step 4: We obtain that the group sheaf AutF (Fk) is filtered by normal
subgroups with coherent subquotients, hence has vanishing cohomology.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It

has signature (3, b2 − 3).

THEOREM: (V., 1996, 2009) Let M be a maximal holonomy, compact

hyperkähler manifold, and Γ0 = Aut(H∗(M,Z), p1, ..., pn). Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

(iii) The tautological map Γ−→ Γ0 has finite kernel and its image has

finite index, where Γ is a mapping class group.
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-

perkähler manifolds, admitting only complex structures of Kähler type. Since

the Hodge numbers are constant in families of Kähler manifolds, for any

J ∈ Teich, (M,J) is also a simple hyperkähler manifold, hence H2,0(M,J)

is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-
separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts, 2001) Two points I, I ′ ∈ Teich are non-separable
if and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is
non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.
General hyperkähler manifold has no curves; ones which have belong to
a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-
ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

REMARK: The action of a lattice subgroup Γ ⊂ O(H2(M,Z)) on Per =
SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) is ergodic (Moore), and its orbits are
classified using Ratner’s theorem. This is the main tool in the arguments
used today.
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