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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic
form on M × R>0. Suppose that ω is automorphic: Ψ∗qω = q2ω, where
Ψq(m, t) = (m, qt). Then M is called contact.

DEFINITION: The contact form on M is defined as θ = ivω, where v = t ddt.
Then dθ = {d, iv}ω = Liev ω = ω. Therefore, the form (dθ)n−1 ∧ θ = 1

n Liev ωn

is non-degenerate on M × {t0} ⊂M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with
1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone
S2n−1 × R>0 = R2n\0 has the standard symplectic form

∑n
i=1 dx2i−1 ∧ dx2i

which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: The Reeb field on a contact manifold (M, θ) is a field R ∈
TM such that dθ(R, ·) = 0 and 〈θ,R〉 = 1.
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Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimCM = n, and g is Rieman-

nian form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.
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Sasakian manifolds.

Definition: Let (M, gM) be a Riemannian manifold, dimM = 2n − 1, and

(g, ω, I) a Kaehler structure on M × R>0 with g = gM + t2dt ⊗ dt. Suppose

that ω is automorphic: Ψ∗qω = q2g, where Ψq(m, t) = (m, qt), and I is Ψq-

invariant. Then M is called Sasakian, and M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geom-

etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-

ifold is a contact manifold equipped with a compatible Riemannian

metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone

S2n−1 × R>0 = Cn\0 has the standard Kähler form
√
−1

∑n
i=1 dzi ∧ dzi which

is obviously automorphic.

S. Sasaki, ”On differentiable manifolds with certain structures which are

closely related to almost contact structure”, Tohoku Math. J. 2 (1960),

459-476.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, θ) is normal if it is equipped with an
S1-action preserving θ and tangent to the Reeb field.

REMARK: Let (M, θ) be a contact manifold. Then the form dθ is non-
degenerate the bundle ker θ ⊂ TM.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection π : M −→X induces a symplectic
isomorphism dπ : ker θ|x −→ Tπ(x)X.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold, and (X,ω) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of ω is
integral. Conversely, for any symplectic manifold (X,ω) with [ω] ∈ H2(X,Z),
there exists a principal S1-bundle L with c1(L) = [ω] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M −→X.
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Boothby-Wang theorem for Sasakian manifolds

REMARK: Suppose that M is a Sasakian manifold with all Reeb orbits

closed. Then its space X or Reeb orbits is a projective orbifold, and the

Kähler cone C(M) is the affine cone over X ⊂ CPn. The converse is also

true: whenever X is Kähler, the corresponding Boothby-Wang contact

manifold is Sasakian.
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Hypersurfaces of contact type

DEFINITION: A vector field v on a symplectic manifold (M,ω) is called
Liouville if Liev ω = ω. We say that a smooth hypersurface S ⊂ M is a
hypersurface of contact type if there exists a Liouville vector field v ∈ TM
defined in a neighbourhood U ⊃ S and transversal to S.

CLAIM: A hypersurface of contact type is contact, with the contact
form given by α := ivω|S .

Proof. Step 1: Since v is transversal to S, its orbit space is S. This can be
used to identify its tubular neighbourhood U with S×I, where I is an interval,
in such a way that the shift in I multiplies the symplectic form ω by a scalar.

Step 2: We write ω = tdt ∧ α + t2ω0, where ω0 is a 2-form on S and t the
coordinate on I. In these notations, v = t ddt. Then t2α = ivω. Therefore,
dω = 0 implies that dα = −ω0, hence ivωn = α ∧ (ω0)n = α ∧ (dα)n is non-
degenerate on S.

REMARK: Gray stability theorem claims that a smooth deformation of
a compact contact manifold S is contactomorphic to S. The space
of Liouville vector fields in a neighbourhood of S ⊂ M is convex, hence
contractible. This implies that the contact structure on a hypersurface
of contact type is unique up to a contact diffeomorphism.
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Reeb field and almost complex structures

DEFINITION: An almost complex structure I is compatible with a sym-

plectic structure ω if ω(Ix, Iy) = ω(x, y) and ω(x, Ix) > 0 for any x 6= 0. In

this case, g(x, y) := ω(x, Iy) is a positive definite scalar product.

PROPOSITION 1: Let S be a contact manifold and (C(S), ω) its symplectic

cone, equipped with the symplectic homothety diffeomorphism Ψt. Consider

an Ψt-invariant almost complex structure I on C(S). Assume that the vector

field d/dt satisfies |d/dt| = 1 and is orthogonal to S ⊂ C(S) embedded as

S × {r}. Then the Reeb field can be expressed as R = I(d/dt), where t is

the coordinate on R>0, considered as a function on C(S) = S × R>0.

Proof: For any x ∈ TC(S), we have x ∈ TS if and only if x⊥ d
dt. Therefore, the

symplectic orthogonal to TS is I(d/dt); this vector field clearly has constant

length.
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Geodesic flow on a Riemannian manifold as a Hamiltonian flow

REMARK: Recall that a Hamiltonian vector field on a symplectic manifold

M is a vector field v which is symplectically dual to dH, where H is a smooth

function, called the Hamiltonian of v.

DEFINITION: Let M be a complete Riemannian manifold, (m, v) ∈ TM

a point in its tangent space, and γ(m,v)(t) the geodesic starting in m and

tangent to v. The geodesic flow is a diffeomorphism flow Ψt, t ∈ R on the

tangent bundle TM taking (m, v) ∈ TM to (γ(m,v)(t), γ̇(m,v)(t)) ∈ Tγ(m,v)(t)M .

CLAIM: Let M be a Riemannian manifold. We use the Riemannian metric

to identify TM and T ∗M . This identification gives a symplectic structure on

TM . Denote by H the function H(v) = |v|2. Then the geodesic flow on

TM is the Hamiltonian flow associated with the function H.

Proof: See V. I. Arnold, Mathematical Methods of Classical Mechanics.
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Contact manifold associated with the cotangent bundle

CLAIM: Let M be a smooth manifold, and ω the Hamilton symplectic form

on T ∗M . Then the set ST ∗M := {v ∈ T ∗M | |v| = 1} is a hypersurface of

contact type.

Proof: In coordinates the form ω can be written as
∑
dpi ∧ dqi, where pi

are coordinates on M and qi the corresponding coordinates on the fibers of

the bundle T ∗M −→M . The fiberwise homothety vector field
∑
qid/dqi is a

Liouville field, transversal to ST ∗M .
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Reeb orbits and the geodesic flow

PROPOSITION: In the above assumptions, the Reeb field of ST ∗M is equal
to the symplectic dual of dH, that is, it is the vector field generating the
geodesic flow.

Proof. Step 1: To use Proposition 1, we need to construct a compatible
almost complex structure which is invariant with respect to the homothety
map. Let π : T ∗M −→M be the projection. Using the Levi-Civita connection,
we obtain a decomposition TT ∗M = π∗T ∗M⊕π∗TM . The symplectic structure
on T ∗M is induced by the natural pairing of these two factors.

The metric on M induces a Riemannian metric on TT ∗M , called the Sasaki
metric. The corresponding almost complex structure uses the decompo-
sition TT ∗M = π∗T ∗M ⊕ π∗TM , with the first term TvertT

∗M consisting of
fiberwise tangent vector fields, and the second term ThorT

∗M the “hori-
zontal sub-bundle”, obtained using the connection. The almost complex
structure exchanges TvertT

∗M identified with π∗TM using the metric and
ThorT

∗M = π∗TM . Under this identification the radial vector field becomes
the vector field which is horizontal and equal to v in (m, v) ∈ TM = T ∗M ; this
is precisely the vector field tangent to the geodesic flow.

Step 2: By Proposition 1, the Reeb field is F (v), where v is the radial vector
field tangent to the homothety.
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Zoll manifolds and contact manifolds

DEFINITION: A compact Riemannian manifold M is called Zoll if all its

geodesics are compact and the geodesics have constant length

PROPOSITION: Let M be a compact Riemannian manifold, and ST ∗M the

manifold of unit cotangent vectors, considered as a contact manifold. Then

ST ∗M is a normal contact manifold if and only if M is Zoll.

Proof. Step 1: Let Z be a Riemannian manifold equipped with a rank

1 foliation F with compact fibers, and Z −→ Z/F be the projection to the

leaf space. Then Z/F is smooth if and only if length of an orbit is a

continuous function on Z/F. This is left as an exercise.

Step 2: We apply this observation to the geodesic flow on ST ∗M . If M is Zoll,

this implies that the the projection from ST ∗M to the space of Reeb orbits is

smooth, hence ST ∗M is normal; converse follows from Wadsley theorem.
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Zoll manifolds and Kähler geometry

EXAMPLE: In dimension 2, there are many non-trivial metrics on 2-spheres

(“Zoll spheres”), and a symmetric metric on RP2. In bigger dimension, the

only known Zoll manifolds are Sn, RPn, CPn, HPn, and the Cayley projective

plane CaP2.

PROPOSITION: Let M be Sn, RPn, CPn, HPn, or CaP2. Then the con-

tact manifold ST ∗M is Sasakian, and its space of Reeb orbits is Kähler.

REMARK: For Sn the space of Reeb orbits is Gr2(Rn+1), with its natural

structure of the Kähler symmetric space. For CPn it is the space of 1,2-flags

(point and a line) in CPn. For HPn and CaP2 we don’t know.
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The conifold transform for Calabi-Yau threefolds

Smith, I.; Thomas, R. P.; Yau, S.-T., Symplectic conifold transitions, J.

Differential Geom. 62 (2002), no. 2, 209-242.

DEFINITION: A Calabi-Yau threefold is a complex 3-dimensional compact

Kähler manifold with c1(M) = 0.

REMARK: Let S ⊂ M be a smooth CP1 on a Calabi-Yau manifold. In

the typical situation, NS ∼= O(−1) ⊕ O(−1). By Grauert theorem, such a

rational curve can be blown down, defining a map M −→M0, where M0 is a

singular complex variety. It is not hard to see that this singularity is locally

biholomorphic to an affine cone over CP1 × CP1.

PROPOSITION: Let S ⊂ M be a smooth rational curve on a Calabi-Yau

manifold, with NS ∼= O(−1) ⊕ O(−1), and M0 the singular variety obtained

by a blow-down of S. Then M0 admits a smooth deformation M1.

DEFINITION: The transition from M to M1 is called the conifold transi-

tion.
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Miles Reed’s conjecture

REMARK: The manifold M1 has trivial canonical bundle. If it satisfies

b2(M1) = 0, this manifold is diffeomorphic to #iS
3 × S3 (connected sum of

several copies of S3×S3). Miles Reed conjectured that any Calabi-Yau can

be devolved to such a manifold after a sequence of conifold transitions.

Note that the conifold transform in complex-analytic setup is emphatically

non-invertible: there exists a Calabi-Yau manifold with a Lagrangian

S3 which cannot be blown down.

Smith-Thomas and Yau described the topology of conifold transition sym-

plectically.
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Gluing symplectic manifolds over contact hypersurfaces

DEFINITION: Let S ⊂ M be a contact-type boundary hypersurface in a

symplectic manifold. We say that S is convex if the Liouville field is directed

from M to S, and concave otherwise.

PROPOSITION: Let S1 ⊂ M1 be a concave component of a boundary of

a symplectic manifold, and S2 ⊂ M2 a convex component. Assume that S1

is isomorphic to S2 as contact manifold. Then one can glue M1 to M2 by

taking an appropriate contact diffeomorphism, identifying S1 with S2.

Proof: Since Mi is symplectomorphic to a symplectic cone in a neighbourhood

of Si, it would suffice to pick a contactomorphism S1 −→ S2 which can be

extended to a cone. However, any contactomorphism can be extended to a

cone, by construction.
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Symplectic manifolds with normal contact boundary

EXAMPLE: Let M be a symplectic threefold, and S3 ⊂ M a Lagrangian
3-sphere. By Weinstein neighbourhood theorem, there is a neighbourhood of
S in M which is symplectomorphic to a manifold of open balls in T ∗S3 (for
sufficiently small radius of the ball). Its boundary Z is a Boothby-Wang
contact manifold, which is S1-fibered over the space of geodesics in S3,
identified with CP1×CP1 Then Z is a boundary of the cone over CP1×CP1

associated with the ample bundle O(1,1).

We glue the corresponding singular complex variety in Z, using the gluing
theorem. This replaces the Lagrangian S3 with a neighbourhood of zero in
the affine cone over CP1 × CP1.

CLAIM: A small resolution of this conical singularity is biholomorphic to
a neighbourhood of a rational curve C in a Calabi-Yau manifold, with
NC = O(−1)⊕O(−1).

REMARK: Unlike the construction with complex deformations, this con-
struction is invertible: by Weinstein neighbourhood theorem, any symplec-
tic submanifold in a symplectic manifold has a neighbourhood symplec-
tomorphic to its neighbourhood in the normal bundle.
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The conifold transition, a general definition

DEFINITION: Let M be a symplectic manifold, L ⊂ M a Lagrangian sub-

manifold admitting a Zoll metric. Consider a Weinstein neighbourhood UL
with normal (in Boothby-Wang sense) contact boundary. Denote by ZL the

corresponding singular complex variety, ∂ZL = ∂UL, and let VL be a complex

resolution of ZL. The direct conifold transform is obtained by replacing UL
with VL; it replaces a Lagrangian submanifold by a symplectic submanifold.

DEFINITION: Its inverse is defined in a similar way: given a smooth sym-

plectic submanifold X ⊂ M , isomorphic to the preimage of the singularity in

the resolution map VL −→ ZL, with normal bundle isomorphic to the normal

bundle of X ⊂ VL, the inverse conifold transform uses the Weinstein

neighbourhood theorem to replace VL with UL.

EXAMPLE: The symplectic conifold transition of Smith-Thomas and Yau

is an example of this construction.
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The conifold transition, examples and applications

EXAMPLE: For dimension n > 4 the cone over Gr2(Rn) does not have partial
resoltions, this means that we can only replace a Lagrangian sphere Sn

with a Grassmannian Gr2(Rn), symplectically embedded to an ambient
manifoldm, and vice versa.

EXAMPLE: The cone over (1,2)-flags (the space of geodesics in CPn) has
a partial resolution which is bimeromorphic to a holomorphic cotangent
bundle to CPn. The corresponding conifold transform replaces a Lagrangian
CPn by a symplectic CPn and vice versa, similar to the hyperkähler rotation.

This construction is useful for symplectic packing: if we have a control
over the volume of VL, we obtain control over volume of UL and vice versa.

This brings the following result about K3 surfaces.

THEOREM: Let L1, ..., Ln be a collection of non-intersecting special La-
grangian 2-spheres in a K3 surface M , and u1, ..., un a numbers which satisfy∑
ui 6 VolωM . Denote by ULi the Weinstein neighbourhood of S2 in T ∗S2

which is invariant under rotations and has symplectic volume ui; such a neigh-
bourhood is clearly unique. Then there exists a collection of symplectic
embeddings ϕi : ULi −→M, with non-intersecting images, taking the
zero section S2 ⊂ ULi ⊂ T

∗S2 to Li ⊂M.
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