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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n—1, and w a symplectic
form on M x R>9. Suppose that w is automorphic: Wjw = g%w, where
W,(m,t) = (m,qt). Then M is called contact.

DEFINITION: The contact form on M is defined as 6 = iyw, where v = t
Then df = {d, iy }w = Lieyw = w. Therefore, the form (d§)" 1 ro =1 Llevw
is non-degenerate on M x {tg} C M x R0,

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form 6 such that d9" 1 A 0 is nowhere degenerate.

Example: An odd-dimensional sphere S2"—1 is contact. Indeed, its cone
§2n=1 x R>0 = R?™\0 has the standard symplectic form Y7, dzo; 1 A dwo;
which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: The Reeb field on a contact manifold (M,0) is a field R €
TM such that d0(R,-) =0 and (0, R) = 1.
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Kahler manifolds.

Definition: Let (M, ) be a complex manifold, dimg M = n, and g is Rieman-
nian form. Then g is called Hermitian if g(Ix,Iy) = g(x,vy).

Remark: Since [2 = —1d, it is equivalent to g(Iz,y) = —g(x, Iy). The form
w(z,y) ;= g(x, [y) Is skew-symmetric.

Definition: The differential form w is called the Hermitian form of (M, 1,g).

Definition: A complex Hermitian manifold is called Kahler if dw = 0.
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Sasakian manifolds.

Definition: Let (M,g;,;) be a Riemannian manifold, dimM = 2n — 1, and
(g,w,I) a Kaehler structure on M x R>0 with ¢ = ga; + t2dt @ dt. Suppose
that w is automorphic: Wiw = ¢°g, where Wy(m,t) = (m,qt), and I is W,
invariant. Then M is called Sasakian, and M x R0 its Kahler cone.

Sasakian geometry is an odd-dimensional counterpart to Kahler geom-
etry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian man-
ifold is a contact manifold equipped with a compatible Riemannian
metric.

Example: An odd-dimensional sphere 5271 ijs Sasakian. Indeed, its cone
§2n=1 x R>0 = C™\0 has the standard Kahler form /=1 Y%, dz; A dz; which
IS obviously automorphic.

S. Sasaki, "On differentiable manifolds with certain structures which are
closely related to almost contact structure”, Tohoku Math. J. 2 (1960),

459-476.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, 8) is normal if it is equipped with an
Sl_action preserving 6 and tangent to the Reeb field.

REMARK: Let (M,0) be a contact manifold. Then the form df is non-
degenerate the bundle kerd C T' M.

THEOREM: (Boothby-Wang, 1958)

Let (M, 0) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection = : M — X induces a symplectic
isomorphism dr : ker 6|z — T () X.

THEOREM: (Boothby-Wang, 1958)

Let (M,0) be a normal contact manifold, and (X,w) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of w is
integral. Conversely, for any symplectic manifold (X,w) with [w] € H?(X,Z7),
there exists a principal S!-bundle L with ¢;(L) = [w] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M — X.
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Boothby-Wang theorem for Sasakian manifolds

REMARK: Suppose that M is a Sasakian manifold with all Reeb orbits
closed. Then its space X or Reeb orbits is a projective orbifold, and the
Kahler cone C(M) is the affine cone over X C CP™. The converse is also
true: whenever X is Kahler, the corresponding Boothby-Wang contact
manifold is Sasakian.
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Hypersurfaces of contact type

DEFINITION: A vector field v on a symplectic manifold (M,w) is called
Liouville if Liey,w = w. We say that a smooth hypersurface S C M is a
hypersurface of contact type if there exists a Liouville vector field v e T'M
defined in a neighbourhood U O S and transversal to S.

CLAIM: A hypersurface of contact type is contact, with the contact
form given by a 1= iyw|g.

Proof. Step 1: Since v is transversal to S, its orbit space is S. This can be
used to identify its tubular neighbourhood U with S x I, where [ is an interval,
in such a way that the shift in I multiplies the symplectic form w by a scalar.

Step 2: We write w = tdt A a + t2wg, where wg is a 2-form on S and t the
coordinate on I. In these notations, v = t%. Then t2a = www. T herefore,
dw = 0 implies that da = —wg, hence iww™ = a A (wg)"™ = a A (da)™ is non-
degenerate on S. m

REMARK: Gray stability theorem claims that a smooth deformation of
a compact contact manifold S is contactomorphic to S. The space
of Liouville vector fields in a neighbourhood of S C M is convex, hence
contractible. This implies that the contact structure on a hypersurface
of contact type is unique up to a contact diffeomorphism.
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Reeb field and almost complex structures

DEFINITION: An almost complex structure I is compatible with a sym-
plectic structure w if w(Ix,Iy) = w(x,y) and w(x,Ix) > 0 for any =z = 0. In
this case, g(x,vy) ;= w(x, Iy) is a positive definite scalar product.

PROPOSITION 1: Let S be a contact manifold and (C(S),w) its symplectic
cone, equipped with the symplectic homothety diffeomorphism W;. Consider
an Ws-invariant almost complex structure I on C(S). Assume that the vector
field d/dt satisfies |d/dt| = 1 and is orthogonal to S C C(S) embedded as
S x {r}. Then the Reeb field can be expressed as R = I(d/dt), where t is
the coordinate on R>9, considered as a function on C(S) = S x R>9.

Proof: For any x € TC(S), we have z € T'S if and only if :pL%. Therefore, the
symplectic orthogonal to T'S is I(d/dt); this vector field clearly has constant
length. m
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Geodesic flow on a Riemannian manifold as a Hamiltonian flow

REMARK: Recall that a Hamiltonian vector field on a symplectic manifold
M is a vector field v which is symplectically dual to dH, where H is a smooth
function, called the Hamiltonian of v.

DEFINITION: Let M be a complete Riemannian manifold, (m,v) € TM
a point in its tangent space, and V(m,v)(t) the geodesic starting in m and
tangent to v. The geodesic flow is a diffeomorphism flow W;,t € R on the
tangent bundle T'M taking (m,v) € TM to (Vi ) (£): Y(m)(t)) € T’Y(m,v)(t)M'

CLAIM: Let M be a Riemannian manifold. We use the Riemannian metric
to identify TM and T*M . This identification gives a symplectic structure on
TM. Denote by H the function H(v) = |v|2. Then the geodesic flow on
TM is the Hamiltonian flow associated with the function H.

Proof: See V. I. Arnold, Mathematical Methods of Classical Mechanics. m
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Contact manifold associated with the cotangent bundle

CLAIM: Let M be a smooth manifold, and w the Hamilton symplectic form
on T*M. Then the set ST*M :(={veT*M | |v|]=1}is a hypersurface of
contact type.

Proof: In coordinates the form w can be written as > dp; N dg;, where p;
are coordinates on M and q; the corresponding coordinates on the fibers of
the bundle T*M — M. The fiberwise homothety vector field > q;d/dq; is a
Liouville field, transversal to ST*M. m
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Reeb orbits and the geodesic flow

PROPOSITION: In the above assumptions, the Reeb field of ST*M is equal
to the symplectic dual of dH, that is, it is the vector field generating the
geodesic flow.

Proof. Step 1: To use Proposition 1, we need to construct a compatible
almost complex structure which is invariant with respect to the homothety
map. Letw: T*M — M be the projection. Using the Levi-Civita connection,
we obtain a decomposition TT*M = 7#*T*M 7™ T M. The symplectic structure
on T*M is induced by the natural pairing of these two factors.

The metric on M induces a Riemannian metric on TT*M, called the Sasaki
metric. The corresponding almost complex structure uses the decompo-
sition TT*M = #n*T*M @& «*T M, with the first term Tye+1T*M consisting of
fiberwise tangent vector fields, and the second term 7T}, T*M the ‘“hori-
zontal sub-bundle”, obtained using the connection. The almost complex
structure exchanges Ty.1T*M identified with #*T'M using the metric and
Thor T*M = #*T'M. Under this identification the radial vector field becomes
the vector field which is horizontal and equal to v in (m,v) € TM = T*M; this
is precisely the vector field tangent to the geodesic flow.

Step 2: By Proposition 1, the Reeb field is F'(v), where v is the radial vector
field tangent to the homothety. =
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Zoll manifolds and contact manifolds

DEFINITION: A compact Riemannian manifold M is called Zoll if all its
geodesics are compact and the geodesics have constant length

PROPOSITION: Let M be a compact Riemannian manifold, and ST*M the
manifold of unit cotangent vectors, considered as a contact manifold. Then
ST*M is a normal contact manifold if and only if M is Zoll.

Proof. Step 1: Let Z be a Riemannian manifold equipped with a rank
1 foliation F with compact fibers, and Z — Z/F be the projection to the
leaf space. Then Z/F is smooth if and only if length of an orbit is a
continuous function on Z/F. This is left as an exercise.

Step 2: We apply this observation to the geodesic flow on ST*M. If M is Zoll,

this implies that the the projection from ST*M to the space of Reeb orbits is
smooth, hence ST*M is normal; converse follows from Wadsley theorem. =
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Zoll manifolds and Kahler geometry

EXAMPLE: In dimension 2, there are many non-trivial metrics on 2-spheres
(“Zoll spheres”), and a symmetric metric on RP2. In bigger dimension, the
only known Zoll manifolds are S™, RP™, CP"™, HP™, and the Cayley projective
plane CaP?.

PROPOSITION: Let M be S"™ RP"™ CP™, HP"™, or CaP?. Then the con-
tact manifold ST*M is Sasakian, and its space of Reeb orbits is Kahler.

REMARK: For S™ the space of Reeb orbits is Gro(R"T1), with its natural

structure of the Kahler symmetric space. For CP" it is the space of 1, 2-flags
(point and a line) in CP". For HP™ and CaP? we don't know.
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The conifold transform for Calabi-Yau threefolds

Smith, I., Thomas, R. P.; Yau, S.-T., Symplectic conifold transitions, J.
Differential Geom. 62 (2002), no. 2, 209-242.

DEFINITION: A Calabi-Yau threefold is a complex 3-dimensional compact
Kahler manifold with ¢1 (M) = 0.

REMARK: Let S ¢ M be a smooth CPl on a Calabi-Yau manifold. In
the typical situation, NS = O(-1) & O(—-1). By Grauert theorem, such a
rational curve can be blown down, defining a map M — Mg, where My is a
singular complex variety. It is not hard to see that this singularity is locally
biholomorphic to an affine cone over CP! x CPL.

PROPOSITION: Let S C M be a smooth rational curve on a Calabi-Yau
manifold, with NS = O(-1) @ O(—1), and Mgy the singular variety obtained
by a blow-down of S. Then My admits a smooth deformation M.

DEFINITION: The transition from M to M, is called the conifold transi-
tion.
14
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Miles Reed’s conjecture

REMARK: The manifold M; has trivial canonical bundle. If it satisfies
b>(M7) = 0, this manifold is diffeomorphic to #,;53 x S3 (connected sum of
several copies of S3x.53). Miles Reed conjectured that any Calabi-Yau can
be devolved to such a manifold after a sequence of conifold transitions.

Note that the conifold transform in complex-analytic setup is emphatically
non-invertible: there exists a Calabi-Yau manifold with a Lagrangian

S3 which cannot be blown down.

Smith-Thomas and Yau described the topology of conifold transition sym-
plectically.
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Gluing symplectic manifolds over contact hypersurfaces

DEFINITION: Let S C M be a contact-type boundary hypersurface in a
symplectic manifold. We say that S is convex if the Liouville field is directed
from M to S, and concave otherwise.

PROPOSITION: Let Sq1 C My be a concave component of a boundary of
a symplectic manifold, and S C M»> a convex component. Assume that S4
is isomorphic to S> as contact manifold. Then one can glue M; to M, by
taking an appropriate contact diffeomorphism, identifying S; with S>.

Proof: Since M; is symplectomorphic to a symplectic cone in a neighbourhood
of S;, it would suffice to pick a contactomorphism S{ — So> which can be
extended to a cone. However, any contactomorphism can be extended to a
cone, by construction. m
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Symplectic manifolds with normal contact boundary

EXAMPLE: Let M be a symplectic threefold, and S3 c M a LLagrangian
3-sphere. By Weinstein neighbourhood theorem, there is a neighbourhood of
S in M which is symplectomorphic to a manifold of open balls in T*83 (for
sufficiently small radius of the ball). Its boundary 7 is a Boothby-Wang
contact manifold, which is Sl-fibered over the space of geodesics in S3,
identified with CP! x CPl Then Z is a boundary of the cone over CP! x cpl
associated with the ample bundle O(1,1).

We glue the corresponding singular complex variety in Z, using the gluing
theorem. This replaces the Lagrangian S3 with a neighbourhood of zero in
the affine cone over CPl x CcP!.

CLAIM: A small resolution of this conical singularity is biholomorphic to
a neighbourhood of a rational curve C in a Calabi-Yau manifold, with

NC =0(—1)® O(-1).

REMARK: Unlike the construction with complex deformations, this con-
struction is invertible: by Weinstein neighbourhood theorem, any symplec-
tic submanifold in a symplectic manifold has a neighbourhood symplec-

tomorphic to its neighbourhood in the normal bundle.
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T he conifold transition, a general definition

DEFINITION: Let M be a symplectic manifold, L C M a Lagrangian sub-
manifold admitting a Zoll metric. Consider a Weinstein neighbourhood Uy,
with normal (in Boothby-Wang sense) contact boundary. Denote by Z; the
corresponding singular complex variety, 0Z; = 0Uy,, and let V; be a complex
resolution of Z;. The direct conifold transform is obtained by replacing Uy,
with Vi ; it replaces a Lagrangian submanifold by a symplectic submanifold.

DEFINITION: Its inverse is defined in a similar way: given a smooth sym-
plectic submanifold X C M, isomorphic to the preimage of the singularity in
the resolution map V; — Z;, with normal bundle isomorphic to the normal
bundle of X C V;, the inverse conifold transform uses the Weinstein
neighbourhood theorem to replace V; with Uj.

EXAMPLE: The symplectic conifold transition of Smith-Thomas and Yau
IS an example of this construction.
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The conifold transition, examples and applications

EXAMPLE: For dimension n > 4 the cone over Gro(R"™) does not have partial
resoltions, this means that we can only replace a Lagrangian sphere S™
with a Grassmannian Gr,(R"), symplectically embedded to an ambient
manifoldm, and vice versa.

EXAMPLE: The cone over (1,2)-flags (the space of geodesics in CP™) has
a partial resolution which is bimeromorphic to a holomorphic cotangent
bundle to CP™. The corresponding conifold transform replaces a Lagrangian
CP™ by a symplectic CP™ and vice versa, similar to the hyperkahler rotation.

T his construction is useful for symplectic packing: if we have a control
over the volume of V;, we obtain control over volume of U; and vice versa.

This brings the following result about K3 surfaces.

THEOREM: Let Lq,...,Ly, be a collection of non-intersecting special La-
grangian 2-spheres in a K3 surface M, and uq,...,un @ numbers which satisfy
> u; < Vol, M. Denote by Uy the Weinstein neighbourhood of S2 in T*52
which is invariant under rotations and has symplectic volume u;; such a neigh-
bourhood is clearly uniqgue. Then there exists a collection of symplectic
embeddings o, : ULi—>M, with non-intersecting images, taking the
zero section 52 C Uy, C T*S? to L; C M.
19



