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Weinstein normal neighbourhood theorems

THEOREM: (Weinstein Lagrangian neighbourhood theorem)

Let X C M be a compact Lagrangian submanifold in (M,w). Then there
exists a neighbourhood U of X C M which is symplectomorphic to a
neighbourhood of X in X C T*X.

If X C M is a symplectic submanifold, the normal bundle NX is equipped
with a natural symplectic structure. This is used to state another normal
neighbourhood theorem

THEOREM: (Weinstein symplectic neighbourhood theorem)

Let Mq, M, be symplectic manifolda, X1 C My, Xo C M, be symplectic sub-
manifolds. Consider the normal bundles NX, with the induced symplectic
structure. Assume that there exists a symplectomorphism v : X7 — X5 such
that the symplectic vector bundle v*NX5 is isomorphic to NX;. Then a
neighbourhood of X, is symplectomorphic to a neighbourhood of X».

Both results are due to A. Weinstein, Alan Weinstein, Symplectic manifolds
and their lagrangian submanifolds, Advances in Mathematics, Vol. 6 (3),

June 1971, pp. 329-346
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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n—1, and w a symplectic
form on M x R>9. Suppose that w is automorphic: Wjw = g%w, where
W,(m,t) = (m,qt). Then M is called contact.

DEFINITION: The contact form on M is defined as 6 = iyw, where v = t
Then df = {d, iy }w = Lieyw = w. Therefore, the form (d§)" 1 ro =1 Llevw
is non-degenerate on M x {tg} C M x R0,

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form 6 such that d9" 1 A 0 is nowhere degenerate.

Example: An odd-dimensional sphere S2"—1 is contact. Indeed, its cone
§2n=1 x R>0 = R?™\0 has the standard symplectic form Y7, dzo; 1 A dwo;
which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: The Reeb field on a contact manifold (M,0) is a field R €
TM such that d0(R,-) =0 and (0, R) = 1.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, 8) is normal if it is equipped with an
Sl_action preserving 6 and tangent to the Reeb field.

REMARK: Let (M,0) be a contact manifold. Then the form df is non-
degenerate the bundle kerd C T' M.

THEOREM: (Boothby-Wang, 1958)

Let (M, 0) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection = : M — X induces a symplectic
isomorphism dr : ker 6|z — T () X.

THEOREM: (Boothby-Wang, 1958)

Let (M,0) be a normal contact manifold, and (X,w) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of w is
integral. Conversely, for any symplectic manifold (X,w) with [w] € H?(X,Z7),
there exists a principal S!-bundle L with ¢;(L) = [w] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M — X.
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Reeb field and almost complex structures

DEFINITION: An almost complex structure I is compatible with a sym-
plectic structure w if w(Ix,Iy) = w(x,y) and w(x,Ix) > 0 for any =z = 0. In
this case, g(x,vy) ;= w(x, Iy) is a positive definite scalar product.

PROPOSITION 1: Let S be a contact manifold and (C(S),w) its symplectic
cone, equipped with the symplectic homothety diffeomorphism W;. Consider
an Ws-invariant almost complex structure I on C(S). Assume that the vector
field d/dt satisfies |d/dt| = 1 and is orthogonal to S C C(S) embedded as
S x {r}. Then the Reeb field can be expressed as R = I(d/dt), where t is
the coordinate on R>9, considered as a function on C(S) = S x R>9.

Proof: For any x € TC(S), we have z € T'S if and only if :pL%. Therefore, the
symplectic orthogonal to T'S is I(d/dt); this vector field clearly has constant
length. m
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Geodesic flow on a Riemannian manifold as a Hamiltonian flow

REMARK: Recall that a Hamiltonian vector field on a symplectic manifold
M is a vector field v which is symplectically dual to dH, where H is a smooth
function, called the Hamiltonian of v.

DEFINITION: Let M be a complete Riemannian manifold, (m,v) € TM
a point in its tangent space, and V(m,v)(t) the geodesic starting in m and
tangent to v. The geodesic flow is a diffeomorphism flow W;,t € R on the
tangent bundle T'M taking (m,v) € TM to (Vi ) (£): Y(m)(t)) € T’Y(m,v)(t)M'

CLAIM: Let M be a Riemannian manifold. We use the Riemannian metric
to identify TM and T*M . This identification gives a symplectic structure on
TM. Denote by H the function H(v) = |v|2. Then the geodesic flow on
TM is the Hamiltonian flow associated with the function H.

Proof: See V. I. Arnold, Mathematical Methods of Classical Mechanics. m
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Reeb orbits and the geodesic flow

PROPOSITION: In the above assumptions, the Reeb field of ST*M is equal
to the symplectic dual of dH, that is, it is the vector field generating the
geodesic flow.

Proof. Step 1: To use Proposition 1, we need to construct a compatible
almost complex structure which is invariant with respect to the homothety
map. Letw: T*M — M be the projection. Using the Levi-Civita connection,
we obtain a decomposition TT*M = 7#*T*M 7™ T M. The symplectic structure
on T*M is induced by the natural pairing of these two factors.

The metric on M induces a Riemannian metric on TT*M, called the Sasaki
metric. The corresponding almost complex structure uses the decompo-
sition TT*M = #n*T*M @& «*T M, with the first term Tye+1T*M consisting of
fiberwise tangent vector fields, and the second term 7T}, T*M the ‘“hori-
zontal sub-bundle”, obtained using the connection. The almost complex
structure exchanges Ty.1T*M identified with #*T'M using the metric and
Thor T*M = #*T'M. Under this identification the radial vector field becomes
the vector field which is horizontal and equal to v in (m,v) € TM = T*M; this
is precisely the vector field tangent to the geodesic flow.

Step 2: By Proposition 1, the Reeb field is I(v), where v is the radial vector
field tangent to the homothety. =
.
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The Reeb field on S3

Let S be S3 with SU(2)-invariant contact structure. Then the Reeb field is
also SU(2)-invariant, and its orbits are translations of 1-parametric subgroups.
Since all 1-parametric subgroups in S(2) are closed, the Reeb foliation
coincides with the Hopf foliation.

COROLLARY: A left SU(2)-invariant contact structure on S3 is unique up
to the right SU(2)-action. It can be obtained as an orthogonal complement
to the tangent space to Hopf foliation. m

COROLLARY: Let L C M be a Lagrangian 2-sphere in a symplectic 4-
manifold. Then L has a symplectic neighbourhood with a boundary
which is contact equivalent to RP3.

Proof: From the description above, it is clear that there exists a normal
neighbourhood of L which admits an U(2)-action by symplectomorphisms,
extending the U(2)-action on CPL. Since T*CP! = TOHOLED) - \which is a
blow-up of C2, the boundary of a unit ball in T*CP! is S3/+ 1. An U(2)-
invariant contact structure on RP3 is unique up to a U(2)-action, as

shown above. =
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Hypersurfaces of contact type

DEFINITION: A vector field v on a symplectic manifold (M,w) is called
Liouville if Liey,w = w. We say that a smooth hypersurface S C M is a
hypersurface of contact type if there exists a Liouville vector field v e T'M
defined in a neighbourhood U O S and transversal to S.

CLAIM: A hypersurface of contact type is contact, with the contact
form given by a 1= iyw|g.

Proof. Step 1: Since v is transversal to S, its orbit space is S. This can be
used to identify its tubular neighbourhood U with S x I, where [ is an interval,
in such a way that the shift in I multiplies the symplectic form w by a scalar.

Step 2: We write w = tdt A a + t2wg, where wg is a 2-form on S and t the
coordinate on I. In these notations, v = t%. Then t2a = www. T herefore,
dw = 0 implies that da = —wg, hence iww™ = a A (wg)"™ = a A (da)™ is non-
degenerate on S. m

REMARK: Gray stability theorem claims that a smooth deformation of
a compact contact manifold S is contactomorphic to S. The space
of Liouville vector fields in a neighbourhood of S C M is convex, hence
contractible. This implies that the contact structure on a hypersurface
of contact type is unique up to a contact diffeomorphism.
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Contact manifold associated with the cotangent bundle

CLAIM: Let M be a smooth manifold, and w the Hamilton symplectic form
on T*M. Then the set ST*M :(={veT*M | |v|]=1}is a hypersurface of
contact type.

Proof: In coordinates the form w can be written as > dp; N dg;, where p;
are coordinates on M and q; the corresponding coordinates on the fibers of
the bundle T*M — M. The fiberwise homothety vector field > q;d/dq; is a
Liouville field, transversal to ST*M. m
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Gluing symplectic manifolds over contact hypersurfaces

DEFINITION: Let S C M be a contact-type boundary hypersurface in a
symplectic manifold. We say that S is convex if the Liouville field is directed
from M to S, and concave otherwise.

PROPOSITION: Let Sq1 C My be a concave component of a boundary of
a symplectic manifold, and S C M»> a convex component. Assume that S4
is isomorphic to S> as contact manifold. Then one can glue M; to M, by
taking an appropriate contact diffeomorphism, identifying S; with S>.

Proof: Since M; is symplectomorphic to a symplectic cone in a neighbourhood
of S;, it would suffice to pick a contactomorphism S; — S5 which can be
extended to a cone. However, any contactomorphism can be extended
to a cone, by definition. =
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Example: the conifold transform on K3 surfaces

Consider the complex manifold T*CP1, and let ¢(v) := |v|2. It is not hard to
see that dIdy is a Kahler metric outside of the zero section, and the level set
S of ¢ is contact. Since T*CPl = TOt(ﬂ_l)), which is a blow-up of C2, we
obtain that S is a contact manifold which is isomorphic to RP3 with the
standard contact structure.

COROLLARY: By Weinstein symplectic neighbourhood theorem, any sym-
plectic S2 in a symplectic 4-manifold M with ¢1(M) = 0 admits a neigh-
bourhood with a neighbourhood with the contact boundary isomorphic
to RP3.

DEFINITION: Let S be a Lagrangian sphere in a K3 surface. Using the pre-
vious arguments, we can replace a neighbourhood U of S by a neighbourhood
of symplectic S2 and glue it in place of U. This construction is an example
of a conifold transform, defined below in full generality.

12
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Zoll manifolds and contact manifolds

DEFINITION: A compact Riemannian manifold M is called Zoll if all its
geodesics are compact and the geodesics have constant length

PROPOSITION: Let M be a compact Riemannian manifold, and ST*M the
manifold of unit cotangent vectors, considered as a contact manifold. Then
ST*M is a normal contact manifold if and only if M is Zoll.

Proof. Step 1: Let Z be a Riemannian manifold equipped with a rank
1 foliation F with compact fibers, and Z — Z/F be the projection to the
leaf space. Then Z/F is smooth if and only if length of an orbit is a
continuous function on Z/F. This is left as an exercise.

Step 2: We apply this observation to the geodesic flow on ST*M. If M is Zoll,

this implies that the the projection from ST*M to the space of Reeb orbits is
smooth, hence ST*M is normal; converse follows from Wadsley theorem. =
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The conifold transition, a general definition

DEFINITION: Let M be a symplectic manifold, L C M a Lagrangian sub-
manifold admitting a Zoll metric. Consider a Weinstein neighbourhood Uy,
with normal (in Boothby-Wang sense) contact boundary. Denote by Z; the
corresponding singular complex variety, 0Z; = 0Uy,, and let V; be a complex
(or symplectic) partial resolution of singularities for the cone Z;. The di-
rect conifold transform is obtained by replacing Uy with Vp; it replaces a
Lagrangian submanifold by a symplectic submanifold.

DEFINITION: Its inverse is defined in a similar way: given a smooth sym-
plectic submanifold X C M, isomorphic to the preimage of the singularity in
the resolution map V;, — Z7, with normal bundle isomorphic to the normal
bundle of X C V;, the inverse conifold transform uses the Weinstein
neighbourhood theorem to replace V; with Uj.

14
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Teichmuller space for symplectic structures

For a K3 surface, this construction replaces a Lagrangian sphere by a sym-
plectic sphere, in a way which is almost (but not quite) functorial. To make
sense of it functorially, we define the symplectic Teichmuller spaces.

DEFINITION: Let M(A2M) be the space of all 2-forms on a manifold M,
and Symp C I’(/\QM) the space of all symplectic 2-forms. We equip I‘(/\QM)
with C°-topology of uniform convergence on compacts with all derivatives.
Then M(A2M) is a Fréchet vector space, and Symp a Fréchet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff, as a
Fréchet Lie group, and denote its connected component (‘group of iso-
topies’” ) by Diffg. The quotient group I := Diff / Diffg is called the mapping
class group of M.

DEFINITION: Teichmuller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp / Diffg.

15
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Moser theorem

DEFINITION: Two symplectic structures are called isotopic if they lie in
the same orbit of Diffg.

DEFINITION: Define the period map Per: Teichs — H?(M,R) mapping
a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)
The Teichmuler space Teichg is a manifold (possibly, non-Hausdorff), and
the period map Per: Teichs — H2(M,R) is locally a diffeomorphism.

16



Conifold transform Misha Verbitsky

Teichmuller space for Lagrangian submanifolds

DEFINITION: Fix a symplectic manifold (M,w), and let L C M be a La-
grangian submanifold with. Denote by Symp; an infinite-dimensional space
of symplectic forms w on M such that w|;, = 0. We define the Teichmuiiller
space of pairs (w, L) as the quotient Sympy, / Diff?, where Diff? is the group
of diffeomorphisms of M which preserve L C M, and Diﬂ’% its connected
component.

REMARK: The space SympL/DifF% IS always smooth, but it is harder to

prove this when b1 (L) > 0, because the period map is more difficult to define.
Therefore, we restrict ourselves with the case b1(L) = 0.

17
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Moser theorem for the Teichmuller space of Lagrangian subvarieties

THEOREM: Let W C HQ(M, R) be the space of all cohomology classes on
M which vanish on L, and Pery : Sympy, /Diff} — W take (M,w) to the
cohomology class of w. Then Per is locally a diffeomorphism.

Proof. Step 1: It would suffice to prove that a small deformation wy of a
symplectic form w which is Lagrangian on L is isotopic to a form which is
also Lagrangian on L, assuming that wy is exact on L. This is equivalent
to constructing a Lagrangian submanifold L of (M,w;) which can be
iIsotopically mapped to L, and proving it is unique up to isotopy.

Step 2: Take a Weinstein neighbourhood Uy, of L in (M,w). Then wy = w—db,
where 0 is a 1-form. Denote by L1 the graph of 6 in T*L. For wy sufficiently
close to w and 6 sufficiently small, we may assume that L1 belongs to U;. On
a graph ofamap 0: L —T*L, the form w is equal to df#, hence L1 C Uy, is
Lagrangian. This shows that the period map Pery : SympL/Diﬂ"% — W
IS locally a surjection.

Step 3: The period map is locally injective, because b1(L) = 0, hence any
closed 1-form is exact, which implies that all Lagrangian sections of
T*L — L are Hamiltonian isotopic. =

18
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Orbifolds

REMARK: Unlike Lagrangian spheres, the symplectic spheres have a nu-
meric invariant: the symplectic volume. If we obtain a symplectic sphere as
a result of the conifold transform, its volume depends on the choice of the
Weinstein neighbourhood Uy, which is arbitrary for small volumes, but not
for big volumes. It is more convenient to blow down the sphere, and
consider an orbifold.

DEFINITION: A smooth orbifold is a topological space equipped with a
covering by open sets of form B;/I;, where B; is an open ball, and I; a
finite group acting on B;, in such a way that the transition maps phiij ;
B;/T"; — B;/I"; are naturally lifted to smooth maps ¢;; : B; — B;.

DEFINITION: A symplectic (complex, Kahler, etc) orbifold is an orbifold
(M, {B;/I";}) such that every ball B; is symplectic (complex, Kahler, etc), the
action of ['; preserves the symplectic (complex, Kahler, etc) structure, and the
transition maps ¢;; : B; — B; are compatible with the symplectic (complex,
Kahler, etc) structure.
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Orbifold K3 surfaces

EXAMPLE: (symplectic blowdown on a K3 surface)

Consider a symplectic 2-sphere S in a K3 surface. Using Weinstein neighbour-
hood theorem, we may assume that S has a neighbourhood Vg isomorphic
to a neighbourhood of S in T*S. The boundary of Vg is contactomorphic to
RP3 with the standard contact structure. Using the conifold transform, we
replace Vg by B/ + 1, where B is a ball in C2 with the standard symplectic
structure. This gives an orbifold, called an orbifold K3 surface.

DEFINITION: This correspondence (or the same operation applied to a
collection of non-intersecting Lagrangian subvarieties) is called the orbifold
conifold transform.

DEFINITION: More generally, consider a symplectic or complex orbifold M
with all singularities of form B/I', where ' C SU(2) is a finite subgroup.
Assume that after the symplectic or complex blow-up, M is diffeomorphic to
a K3 surface. Then M is called an orbifold symplectic or complex K3
surface.

REMARK: Let ' be a finite group acting on a complex K3 surface M by
holomorphic symplectic automorphisms. It is possible to show that M/I" is an
orbifold K3 surface. However, not all orbifold K3 surfaces are obtained
this way.
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Conifold transition for K3 surfaces
The main result today’s talk

THEOREM: Let Lq,...,L, be a collection of Lagrangian 2-spheres in a K3
surface M, and Teichy,  j the corresponding symplectic Teichmuller space.
Consider an orbifold K3 surface My obtained from the orbifold conifold trans-
form, and let TeichM1 be its symplectic Teichmuller space. The orbifold
conifold transform defines a diffeomorphism Teich;, r — Teich,,,.

Proof: It would suffice to show that the result of direct and inverse transform
IS independent from the choice of Weinstein neighbourhood, but the group of
Hamiltonian symplectomorphisms acs on the set of sufficiently small Weinstein
neighbourhoods of given volume transitively. m
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Donaldson’s conjecture is false for orbifold K3 surfaces

CONJECTURE: (Donaldson)
All symplectic structures on a K3 surface are compatible with a Kahler
structure.

This conjecture is still open. However, an orbifold version of this conjecture
is false, which is implied by the conifold transform.

THEOREM: There exists an orbifold symplectic K3 surface M with a single
double point not admitting an orbifold Kahler structure.

Proof. Step 1: As follows from a result of Amerik-V. (2015), the Te-
ichmuller space of symplectic structures compatible with a Kahler structure
is Hausdorff and connected (the same argument works for Kahler K3 orb-
ifolds). Suppose, on contrary, that any orbifold symplectic K3 surface with a
single double point admits a Kahler structure. This would imply that the Te-
ichmuller space Teichy is connected, and, indeed, that in each homotopy
class of 2-spheres on a K3 surface there exists at most one (up to a
Lagrangian isotopy) Lagrangian sphere.
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Step 2: This is impossible, by a result of P. Seidel (2000): for any La-
grangian 2-sphere S in a symplectic K3 surface, there exists infinitely

many Lagrangian spheres in the same smooth isotopy class, which are
not Lagrangian isotopic. m
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