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Weinstein normal neighbourhood theorems

THEOREM: (Weinstein Lagrangian neighbourhood theorem)

Let X ⊂ M be a compact Lagrangian submanifold in (M,ω). Then there

exists a neighbourhood U of X ⊂ M which is symplectomorphic to a

neighbourhood of X in X ⊂ T ∗X.

If X ⊂ M is a symplectic submanifold, the normal bundle NX is equipped

with a natural symplectic structure. This is used to state another normal

neighbourhood theorem

THEOREM: (Weinstein symplectic neighbourhood theorem)

Let M1,M2 be symplectic manifolda, X1 ⊂ M1, X2 ⊂ M2 be symplectic sub-

manifolds. Consider the normal bundles NXi with the induced symplectic

structure. Assume that there exists a symplectomorphism ν : X1 −→X2 such

that the symplectic vector bundle ν∗NX2 is isomorphic to NX1. Then a

neighbourhood of X1 is symplectomorphic to a neighbourhood of X2.

Both results are due to A. Weinstein, Alan Weinstein, Symplectic manifolds

and their lagrangian submanifolds, Advances in Mathematics, Vol. 6 (3),

June 1971, pp. 329-346
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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n−1, and ω a symplectic
form on M × R>0. Suppose that ω is automorphic: Ψ∗qω = q2ω, where
Ψq(m, t) = (m, qt). Then M is called contact.

DEFINITION: The contact form on M is defined as θ = ivω, where v = t ddt.
Then dθ = {d, iv}ω = Liev ω = ω. Therefore, the form (dθ)n−1 ∧ θ = 1

n Liev ωn

is non-degenerate on M × {t0} ⊂M × R>0.

Remark: Usually, a contact manifold is defined as a (2n−1)-manifold with
1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone
S2n−1 × R>0 = R2n\0 has the standard symplectic form

∑n
i=1 dx2i−1 ∧ dx2i

which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic
geometry

DEFINITION: The Reeb field on a contact manifold (M, θ) is a field R ∈
TM such that dθ(R, ·) = 0 and 〈θ,R〉 = 1.
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Boothby-Wang theorem

W. M. Boothby, H. C. Wang, On Contact Manifolds Annals of Mathematics,
Second Series, Vol. 68, No. 3 (Nov., 1958), pp. 721-734.

DEFINITION: A contact manifold (M, θ) is normal if it is equipped with an
S1-action preserving θ and tangent to the Reeb field.

REMARK: Let (M, θ) be a contact manifold. Then the form dθ is non-
degenerate the bundle ker θ ⊂ TM.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold. Then its space X of Reeb orbits is
symplectic and the natural projection π : M −→X induces a symplectic
isomorphism dπ : ker θ|x −→ Tπ(x)X.

THEOREM: (Boothby-Wang, 1958)
Let (M, θ) be a normal contact manifold, and (X,ω) the symplectic manifold
obtained as its space of Reeb orbits. Then the cohomology class of ω is
integral. Conversely, for any symplectic manifold (X,ω) with [ω] ∈ H2(X,Z),
there exists a principal S1-bundle L with c1(L) = [ω] and a normal con-
tact structure on M := Tot(L) such that the corresponding Boothby-
Wang projection coincides with the natural map M −→X.
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Reeb field and almost complex structures

DEFINITION: An almost complex structure I is compatible with a sym-

plectic structure ω if ω(Ix, Iy) = ω(x, y) and ω(x, Ix) > 0 for any x 6= 0. In

this case, g(x, y) := ω(x, Iy) is a positive definite scalar product.

PROPOSITION 1: Let S be a contact manifold and (C(S), ω) its symplectic

cone, equipped with the symplectic homothety diffeomorphism Ψt. Consider

an Ψt-invariant almost complex structure I on C(S). Assume that the vector

field d/dt satisfies |d/dt| = 1 and is orthogonal to S ⊂ C(S) embedded as

S × {r}. Then the Reeb field can be expressed as R = I(d/dt), where t is

the coordinate on R>0, considered as a function on C(S) = S × R>0.

Proof: For any x ∈ TC(S), we have x ∈ TS if and only if x⊥ d
dt. Therefore, the

symplectic orthogonal to TS is I(d/dt); this vector field clearly has constant

length.
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Geodesic flow on a Riemannian manifold as a Hamiltonian flow

REMARK: Recall that a Hamiltonian vector field on a symplectic manifold

M is a vector field v which is symplectically dual to dH, where H is a smooth

function, called the Hamiltonian of v.

DEFINITION: Let M be a complete Riemannian manifold, (m, v) ∈ TM

a point in its tangent space, and γ(m,v)(t) the geodesic starting in m and

tangent to v. The geodesic flow is a diffeomorphism flow Ψt, t ∈ R on the

tangent bundle TM taking (m, v) ∈ TM to (γ(m,v)(t), γ̇(m,v)(t)) ∈ Tγ(m,v)(t)M .

CLAIM: Let M be a Riemannian manifold. We use the Riemannian metric

to identify TM and T ∗M . This identification gives a symplectic structure on

TM . Denote by H the function H(v) = |v|2. Then the geodesic flow on

TM is the Hamiltonian flow associated with the function H.

Proof: See V. I. Arnold, Mathematical Methods of Classical Mechanics.
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Reeb orbits and the geodesic flow

PROPOSITION: In the above assumptions, the Reeb field of ST ∗M is equal
to the symplectic dual of dH, that is, it is the vector field generating the
geodesic flow.

Proof. Step 1: To use Proposition 1, we need to construct a compatible
almost complex structure which is invariant with respect to the homothety
map. Let π : T ∗M −→M be the projection. Using the Levi-Civita connection,
we obtain a decomposition TT ∗M = π∗T ∗M⊕π∗TM . The symplectic structure
on T ∗M is induced by the natural pairing of these two factors.

The metric on M induces a Riemannian metric on TT ∗M , called the Sasaki
metric. The corresponding almost complex structure uses the decompo-
sition TT ∗M = π∗T ∗M ⊕ π∗TM , with the first term TvertT

∗M consisting of
fiberwise tangent vector fields, and the second term ThorT

∗M the “hori-
zontal sub-bundle”, obtained using the connection. The almost complex
structure exchanges TvertT

∗M identified with π∗TM using the metric and
ThorT

∗M = π∗TM . Under this identification the radial vector field becomes
the vector field which is horizontal and equal to v in (m, v) ∈ TM = T ∗M ; this
is precisely the vector field tangent to the geodesic flow.

Step 2: By Proposition 1, the Reeb field is I(v), where v is the radial vector
field tangent to the homothety.
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The Reeb field on S3

Let S be S3 with SU(2)-invariant contact structure. Then the Reeb field is

also SU(2)-invariant, and its orbits are translations of 1-parametric subgroups.

Since all 1-parametric subgroups in S(2) are closed, the Reeb foliation

coincides with the Hopf foliation.

COROLLARY: A left SU(2)-invariant contact structure on S3 is unique up

to the right SU(2)-action. It can be obtained as an orthogonal complement

to the tangent space to Hopf foliation.

COROLLARY: Let L ⊂ M be a Lagrangian 2-sphere in a symplectic 4-

manifold. Then L has a symplectic neighbourhood with a boundary

which is contact equivalent to RP3.

Proof: From the description above, it is clear that there exists a normal

neighbourhood of L which admits an U(2)-action by symplectomorphisms,

extending the U(2)-action on CP1. Since T ∗CP1 = Tot(O(−1))
±1 , which is a

blow-up of C2, the boundary of a unit ball in T ∗CP1 is S3/ ± 1. An U(2)-

invariant contact structure on RP3 is unique up to a U(2)-action, as

shown above.
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Hypersurfaces of contact type

DEFINITION: A vector field v on a symplectic manifold (M,ω) is called
Liouville if Liev ω = ω. We say that a smooth hypersurface S ⊂ M is a
hypersurface of contact type if there exists a Liouville vector field v ∈ TM
defined in a neighbourhood U ⊃ S and transversal to S.

CLAIM: A hypersurface of contact type is contact, with the contact
form given by α := ivω|S .

Proof. Step 1: Since v is transversal to S, its orbit space is S. This can be
used to identify its tubular neighbourhood U with S×I, where I is an interval,
in such a way that the shift in I multiplies the symplectic form ω by a scalar.

Step 2: We write ω = tdt ∧ α + t2ω0, where ω0 is a 2-form on S and t the
coordinate on I. In these notations, v = t ddt. Then t2α = ivω. Therefore,
dω = 0 implies that dα = −ω0, hence ivωn = α ∧ (ω0)n = α ∧ (dα)n is non-
degenerate on S.

REMARK: Gray stability theorem claims that a smooth deformation of
a compact contact manifold S is contactomorphic to S. The space
of Liouville vector fields in a neighbourhood of S ⊂ M is convex, hence
contractible. This implies that the contact structure on a hypersurface
of contact type is unique up to a contact diffeomorphism.
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Contact manifold associated with the cotangent bundle

CLAIM: Let M be a smooth manifold, and ω the Hamilton symplectic form

on T ∗M . Then the set ST ∗M := {v ∈ T ∗M | |v| = 1} is a hypersurface of

contact type.

Proof: In coordinates the form ω can be written as
∑
dpi ∧ dqi, where pi

are coordinates on M and qi the corresponding coordinates on the fibers of

the bundle T ∗M −→M . The fiberwise homothety vector field
∑
qid/dqi is a

Liouville field, transversal to ST ∗M .
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Gluing symplectic manifolds over contact hypersurfaces

DEFINITION: Let S ⊂ M be a contact-type boundary hypersurface in a

symplectic manifold. We say that S is convex if the Liouville field is directed

from M to S, and concave otherwise.

PROPOSITION: Let S1 ⊂ M1 be a concave component of a boundary of

a symplectic manifold, and S2 ⊂ M2 a convex component. Assume that S1

is isomorphic to S2 as contact manifold. Then one can glue M1 to M2 by

taking an appropriate contact diffeomorphism, identifying S1 with S2.

Proof: Since Mi is symplectomorphic to a symplectic cone in a neighbourhood

of Si, it would suffice to pick a contactomorphism S1 −→ S2 which can be

extended to a cone. However, any contactomorphism can be extended

to a cone, by definition.
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Example: the conifold transform on K3 surfaces

Consider the complex manifold T ∗CP1, and let ϕ(v) := |v|2. It is not hard to

see that dIdϕ is a Kähler metric outside of the zero section, and the level set

S of ϕ is contact. Since T ∗CP1 = Tot(O(−1))
±1 , which is a blow-up of C2, we

obtain that S is a contact manifold which is isomorphic to RP3 with the

standard contact structure.

COROLLARY: By Weinstein symplectic neighbourhood theorem, any sym-

plectic S2 in a symplectic 4-manifold M with c1(M) = 0 admits a neigh-

bourhood with a neighbourhood with the contact boundary isomorphic

to RP3.

DEFINITION: Let S be a Lagrangian sphere in a K3 surface. Using the pre-

vious arguments, we can replace a neighbourhood U of S by a neighbourhood

of symplectic S2 and glue it in place of U . This construction is an example

of a conifold transform, defined below in full generality.
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Zoll manifolds and contact manifolds

DEFINITION: A compact Riemannian manifold M is called Zoll if all its

geodesics are compact and the geodesics have constant length

PROPOSITION: Let M be a compact Riemannian manifold, and ST ∗M the

manifold of unit cotangent vectors, considered as a contact manifold. Then

ST ∗M is a normal contact manifold if and only if M is Zoll.

Proof. Step 1: Let Z be a Riemannian manifold equipped with a rank

1 foliation F with compact fibers, and Z −→ Z/F be the projection to the

leaf space. Then Z/F is smooth if and only if length of an orbit is a

continuous function on Z/F. This is left as an exercise.

Step 2: We apply this observation to the geodesic flow on ST ∗M . If M is Zoll,

this implies that the the projection from ST ∗M to the space of Reeb orbits is

smooth, hence ST ∗M is normal; converse follows from Wadsley theorem.
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The conifold transition, a general definition

DEFINITION: Let M be a symplectic manifold, L ⊂ M a Lagrangian sub-

manifold admitting a Zoll metric. Consider a Weinstein neighbourhood UL
with normal (in Boothby-Wang sense) contact boundary. Denote by ZL the

corresponding singular complex variety, ∂ZL = ∂UL, and let VL be a complex

(or symplectic) partial resolution of singularities for the cone ZL. The di-

rect conifold transform is obtained by replacing UL with VL; it replaces a

Lagrangian submanifold by a symplectic submanifold.

DEFINITION: Its inverse is defined in a similar way: given a smooth sym-

plectic submanifold X ⊂ M , isomorphic to the preimage of the singularity in

the resolution map VL −→ ZL, with normal bundle isomorphic to the normal

bundle of X ⊂ VL, the inverse conifold transform uses the Weinstein

neighbourhood theorem to replace VL with UL.
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Teichmüller space for symplectic structures

For a K3 surface, this construction replaces a Lagrangian sphere by a sym-

plectic sphere, in a way which is almost (but not quite) functorial. To make

sense of it functorially, we define the symplectic Teichmüller spaces.

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a Fréchet vector space, and Symp a Fréchet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff, as a

Fréchet Lie group, and denote its connected component (“group of iso-

topies”) by Diff0. The quotient group Γ := Diff /Diff0 is called the mapping

class group of M .

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0.
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Moser theorem

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diff0.

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping

a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

16



Conifold transform Misha Verbitsky

Teichmüller space for Lagrangian submanifolds

DEFINITION: Fix a symplectic manifold (M,ω), and let L ⊂ M be a La-

grangian submanifold with. Denote by SympL an infinite-dimensional space

of symplectic forms ω on M such that ω|L = 0. We define the Teichmüller

space of pairs (ω,L) as the quotient SympL /Diff0
L, where Diff0

L is the group

of diffeomorphisms of M which preserve L ⊂ M , and Diff0
L its connected

component.

REMARK: The space SympL /Diff0
L is always smooth, but it is harder to

prove this when b1(L) > 0, because the period map is more difficult to define.

Therefore, we restrict ourselves with the case b1(L) = 0.
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Moser theorem for the Teichmüller space of Lagrangian subvarieties

THEOREM: Let W ⊂ H2(M,R) be the space of all cohomology classes on
M which vanish on L, and PerL : SympL /Diff0

L −→W take (M,ω) to the
cohomology class of ω. Then Per is locally a diffeomorphism.

Proof. Step 1: It would suffice to prove that a small deformation ω1 of a
symplectic form ω which is Lagrangian on L is isotopic to a form which is
also Lagrangian on L, assuming that ω1 is exact on L. This is equivalent
to constructing a Lagrangian submanifold L1 of (M,ω1) which can be
isotopically mapped to L, and proving it is unique up to isotopy.

Step 2: Take a Weinstein neighbourhood UL of L in (M,ω). Then ω1 = ω−dθ,
where θ is a 1-form. Denote by L1 the graph of θ in T ∗L. For ω1 sufficiently
close to ω and θ sufficiently small, we may assume that L1 belongs to UL. On
a graph of a map θ : L−→ T ∗L, the form ω is equal to dθ, hence L1 ⊂ UL is
Lagrangian. This shows that the period map PerL : SympL /Diff0

L −→W

is locally a surjection.

Step 3: The period map is locally injective, because b1(L) = 0, hence any
closed 1-form is exact, which implies that all Lagrangian sections of
T ∗L−→ L are Hamiltonian isotopic.
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Orbifolds

REMARK: Unlike Lagrangian spheres, the symplectic spheres have a nu-

meric invariant: the symplectic volume. If we obtain a symplectic sphere as

a result of the conifold transform, its volume depends on the choice of the

Weinstein neighbourhood UL, which is arbitrary for small volumes, but not

for big volumes. It is more convenient to blow down the sphere, and

consider an orbifold.

DEFINITION: A smooth orbifold is a topological space equipped with a

covering by open sets of form Bi/Γi, where Bi is an open ball, and Γi a

finite group acting on Bi, in such a way that the transition maps phiij :

Bi/Γi −→Bj/Γj are naturally lifted to smooth maps ϕ̃ij : Bi −→Bj.

DEFINITION: A symplectic (complex, Kähler, etc) orbifold is an orbifold

(M, {Bi/Γi}) such that every ball Bi is symplectic (complex, Kähler, etc), the

action of Γi preserves the symplectic (complex, Kähler, etc) structure, and the

transition maps ϕ̃ij : Bi −→Bj are compatible with the symplectic (complex,

Kähler, etc) structure.
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Orbifold K3 surfaces

EXAMPLE: (symplectic blowdown on a K3 surface)
Consider a symplectic 2-sphere S in a K3 surface. Using Weinstein neighbour-
hood theorem, we may assume that S has a neighbourhood VS isomorphic
to a neighbourhood of S in T ∗S. The boundary of VS is contactomorphic to
RP3 with the standard contact structure. Using the conifold transform, we
replace VS by B/ ± 1, where B is a ball in C2 with the standard symplectic
structure. This gives an orbifold, called an orbifold K3 surface.

DEFINITION: This correspondence (or the same operation applied to a
collection of non-intersecting Lagrangian subvarieties) is called the orbifold
conifold transform.

DEFINITION: More generally, consider a symplectic or complex orbifold M
with all singularities of form B/Γ, where Γ ⊂ SU(2) is a finite subgroup.
Assume that after the symplectic or complex blow-up, M is diffeomorphic to
a K3 surface. Then M is called an orbifold symplectic or complex K3
surface.

REMARK: Let Γ be a finite group acting on a complex K3 surface M by
holomorphic symplectic automorphisms. It is possible to show that M/Γ is an
orbifold K3 surface. However, not all orbifold K3 surfaces are obtained
this way.
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Conifold transition for K3 surfaces

The main result today’s talk

THEOREM: Let L1, ..., Ln be a collection of Lagrangian 2-spheres in a K3

surface M , and TeichL1,...Ln the corresponding symplectic Teichmüller space.

Consider an orbifold K3 surface M1 obtained from the orbifold conifold trans-

form, and let TeichM1
be its symplectic Teichmüller space. The orbifold

conifold transform defines a diffeomorphism TeichL1,...Ln −→ TeichM1
.

Proof: It would suffice to show that the result of direct and inverse transform

is independent from the choice of Weinstein neighbourhood, but the group of

Hamiltonian symplectomorphisms acs on the set of sufficiently small Weinstein

neighbourhoods of given volume transitively.
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Donaldson’s conjecture is false for orbifold K3 surfaces

CONJECTURE: (Donaldson)

All symplectic structures on a K3 surface are compatible with a Kähler

structure.

This conjecture is still open. However, an orbifold version of this conjecture

is false, which is implied by the conifold transform.

THEOREM: There exists an orbifold symplectic K3 surface M with a single

double point not admitting an orbifold Kähler structure.

Proof. Step 1: As follows from a result of Amerik-V. (2015), the Te-

ichmüller space of symplectic structures compatible with a Kähler structure

is Hausdorff and connected (the same argument works for Kähler K3 orb-

ifolds). Suppose, on contrary, that any orbifold symplectic K3 surface with a

single double point admits a Kähler structure. This would imply that the Te-

ichmüller space TeichL is connected, and, indeed, that in each homotopy

class of 2-spheres on a K3 surface there exists at most one (up to a

Lagrangian isotopy) Lagrangian sphere.
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Step 2: This is impossible, by a result of P. Seidel (2000): for any La-

grangian 2-sphere S in a symplectic K3 surface, there exists infinitely

many Lagrangian spheres in the same smooth isotopy class, which are

not Lagrangian isotopic.
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