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Symplectic quotient

DEFINITION: Let ρ be an S1-action on a symplectic manifold (M,ω) pre-
serving the symplectic structure, and v⃗ its unit tangent vector. Cartan’s
formula gives 0 = Liev⃗ ω = d(ω⌟ v⃗), hence ω⌟ v⃗ is a closed 1-form. Hamilto-
nian, or moment map of ρ is an S1-invariant function µ such that dµ = ω⌟ v⃗,
and symplectic quotient M//cS1 is µ−1(c)/S1.

REMARK: In these assumptions, restriction of the symplectic form ω to
µ−1(c) vanishes on v⃗, hence it is obtained as a pullback of a closed 2-
form ω// on M//cS1.

THEOREM: The form ω// is a symplectic form on M//cS1. In other words,
the symplectic quotient is a symplectic manifold.

REMARK: If, in addition, M is equipped with a Kähler structure (I, ω), and
S1-action preserves the complex structure, the symplectic quotient M//cS1

inherits the Kähler structure. In this case it is called a Kähler quotient.
Whenever the S1-action can be integrated to holomorphic C∗-action, the
Kähler quotient is identified with an open subset of its orbit space.

REMARK: The moment map is defined by dµ = ω⌟ v⃗ uniquely up to a
constant. However, the symplectic quotient M//cS1 = µ−1(c)/S1 depends
heavily on the choice of c ∈ R.
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Symplectic blow-up

CLAIM: Consider the standard S1-action on Cn, and let W ⊂ Cn be an S1-

invariant open subset. Consider the product V := W × C with the standard

symplectic structure and take the S1-action on C opposite to the standard

one. Then its moment map is w − t, where w(x) = |x|2 is the length

function on W and r(t) = |t|2 the length function on C.

DEFINITION: Symplectic cut of W is (W × C)//cS1.

REMARK: Geometrically, the symplectic cut is obtained as follows. Take

c ∈ R, and let Wc := {w ∈ W | |w|2 ⩽ c}. Then Wc is a manifold with

boundary ∂Wc, which is a sphere |w|2 = c. Then (W ×C)//cS1 = (Wc×C)//cS1

is obtained from Wc by gluing each S1-orbit which lies on ∂Wc to a point.

Combinatorially, (W × C)//cS1 is Cn with 0 replaced with CPn−1.

DEFINITION: In these assumptions, symplectic blow-up of radius λ =
√
c

of W in 0 is (W × C)//cS1. Symplectic blow-up of a symplectic manifold M

is obtained by removing a symplectic ball W of radius
√
c and gluing back a

blown-up symplectic ball (W × C)//cS1.
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Lagrangian blow-up

PROPOSITION: Consider the total space (T ∗CP1,Ω0) as a holomorhically
symplectic manifold, and let π∗ T ∗CP1 → C2/±1 be the holomorphic contrac-
tion map. Let Ω0 be the natural (constant coefficient) holomorphically sym-
plectic form on C2/± 1, considered as a complex orbifold. Then π∗Ω0 = Ω.

Proof: The ring of functions on C2/ ± 1 is generated by a = x2, b = xy, c =
y2, and the holomorphic symplectic form is dx ∧ dy = da∧db

c . On T ∗CP1 =
Tot(O(2)), the functions π∗a, π∗b, π∗c have zero of second order, hence da
and db have zero of first order, and da∧db

c is non-degenerate.

DEFINITION: Let (B,ω) be a 4-dimensional symplectic ball, and (B,ω)/±
its orbifold quotient. Using Darboux coordinates, we identify ω with ReΩ
(the real part of a holomorphic symplectic form). The Lagrangian blow-
up B̃/± 1 is obtained by taking a holomorphic blow-up of (B,ω)/± with the
standard complex structure. It is isomorphic to a neighbourhood of CP1 in
Tot(T ∗CP1). By the previous proposition, π∗ω is non-degenerate, hence
B̃/± 1 is equipped with a natural symplectic structure.

REMARK: The blow-up sphere S2 is Lagrangian with respect to π∗ω.
REMARK: Similarly to the symplectic blow-up construction, this construc-
tion can be applied to any 4-dimensional symplectic orbifold with double
points, resulting in a symplectic manifold with a bunch of Lagrangian spheres.

4



Lagrangian blow-downs Misha Verbitsky

Lagrangian blow-down

THEOREM: (Weinstein’s Lagrangian neighbourhood theorem)
Let X ⊂ M be a compact Lagrangian submanifold in (M,ω). Then there
exists a neighbourhood U of X ⊂ M which is symplectomorphic to a
neighbourhood of X in X ⊂ T ∗X.

Given a Lagrangian sphere S2 in a symplectic 4-fold M , we chose its Weinstein
neighbourhood W , symplectomorphic to an ε-neighbourhood of S2 in T ∗S2,
identify it with (T ∗CP1,ReΩ), where ReΩ is the real part of the holomorphic
symplectic form, and perform the (complex analytic) blow-down, resulting in
holomorphic symplectic orbifold (W0, dx ∧ dy), obtained as a quotient of a
neighbourhood of 0 in C2 by ±1.
REMARK: Clearly, the manifolds W and W0 are naturally identified outside
of a small neighbourhood of S2 in W and the orbifold point in W0.

DEFINITION: The Lagrangian blow-down is obtained from M by remov-
ing W ⊂ M and gluing W0 in its place.

REMARK: By construction, the Lagrangian blow-up “is inverse” to the
Lagrangian blow-down. Here “is inverse” means that we made many choices
performing both operations; to show that these choices cancel each other, we
use the symplectic Teichmüller theory, which provides a way to speak
of symplectic constructions functorially.
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Teichmüller space for symplectic structures

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a Fréchet vector space, and Symp a Fréchet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff, as a

Fréchet Lie group, and denote its connected component (“group of iso-

topies”) by Diff0. The quotient group Γ := Diff /Diff0 is called the mapping

class group of M .

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0.
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Moser theorem

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diff0.

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping

a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

REMARK: This means that Teichs is smooth. However, it is often non-

Hausdorff.

The proof is based on another theorem of Moser.

THEOREM: (Moser)

Let ωt, t ∈ S be a smooth family of symplectic structures, parametrized by

a connected manifold S. Assume that the cohomology class [ωt] ∈ H2(M) is

constant in t. Then all ωt are diffeomorphic.
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Teichmüller space for Lagrangian submanifolds

DEFINITION: Fix a symplectic manifold (M,ω), and let L ⊂ M be a La-

grangian submanifold with b1(L) := dimH1(L,R) = 0. Denote by SympL an

infinite-dimensional space of symplectic forms ω on M such that ω|L = 0. We

define the Teichmüller space of pairs (ω,L) as the quotient SympL /Diff0
L,

where Diff0
L is the group of diffeomorphisms of M which preserve L ⊂ M , and

Diff0
L its connected component.

REMARK: The space SympL /Diff0
L is always smooth, but it is harder to

prove this when b1(L) > 0, because the period map is more difficult to define.

Therefore, we restrict ourselves to the case b1(L) = 0.
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Moser theorem for the Teichmüller space of Lagrangian subvarieties

THEOREM: Let V ⊂ H2(M,R) be the space of all cohomology classes on

M which vanish on L, and PerL : SympL /Diff0
L −→ V take (M,ω) to the

cohomology class of ω. Then Per is locally a diffeomorphism.

Proof. Step 1: Let TL be the Teichmüller space of symplectic structures ω

such that ω|L is homologous to zero. By Moser’s theorem, the period map

TL → V is locally a diffeomorphism. To prove the theorem, it remains to

show that the natural map Ψ : SympL /Diff0
L → TL is locally a locally a

diffeomorphism.

Step 2: We have assumed that L is Lagrangian in (M,ω). To prove that Ψ is

locally surjective, it would suffice to prove that a small deformation ω1 ∈ TL of

ω is isotopic to a form which is also Lagrangian on L. This is equivalent to

constructing a Lagrangian submanifold L1 of (M,ω1) which is smoothly

isotopic to L.
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Moser for the Teichmüller space of Lagrangian subvarieties (2)

Step 3: Take a Weinstein neighbourhood UL of L in (M,ω). Then ω1 = ω−dθ,
where θ is a 1-form. Denote by L1 the graph of θ in T ∗L. For ω1 sufficiently
close to ω and θ sufficiently small, we may assume that L1 belongs to UL.
On a graph of a map θ : L−→ T ∗L, the form ω is equal to dθ, hence L1 ⊂ UL
is Lagrangian. This shows that the Ψ : SympL /Diff0

L −→ TL is locally a
surjection.

Step 4: It remains to show that PerL : SympL /Diff0
L −→ V is locally in-

jective. This is proven using the same argument as Moser used: given a
continuous family ωt of cohomologous symplectic forms vanishing on L, we
write the antiderivatives ηt ∈ Λ1(M) such that d

dtωt = dηt. Since ωt|L = 0,
the restrictions ηt|L are closed. They are exact because b1(L) = 0, hence
ηr|L = dft. We extend ft to M smoothly and replace each ηt by ηt − dft,
obtaining ηt|X = 0. Solving the equation LieXt

ωt = d(iXt
ωt) = d

dtωt as in
Moser’s proof, we obtain a flow of diffeomorphisms which takes ω0 to ωt; for
this solution, we need iXt

ωt = ηt. Since ηt|L = 0, and L is Lagrangian with
respect to ωt, the vector field Xt remains tangent to L.

COROLLARY: Assume that L, L′ are Lagrangian submanifolds in (M,ω),
and φ ∈ Diff0(M) a smooth isotopy such that φ(L) = L′. Then (ω,L) and
(φ∗ω,L) represent the same point in TeichL if and only if L and L′ are
Lagrangian isotopic in (M,ω).
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Teichm̈ller space and Lagrangian blow-ups and blow-downs

REMARK: From now on, we will focus on just one example, namely

the K3 surface and the orbifold K3, obtained by a contraction of a smooth

rational curve. This is done do simplify the conventions, everything works

in a general situation.

THEOREM: Let L be a Lagrangian 2-sphere in a K3 surface M , and TeichL
the corresponding Teichmüller space of symplectic structures vanishing on L.

Consider an orbifold K3 surface M̌ obtained from the Lagrangian blow-down,

and let TeichM̌ be its symplectic Teichmüller space. Then the Lagrangian

blow-down defines a diffeomorphism TeichL −→ TeichM̌.

Proof: Clearly, the Lagrangian blow-down is (up to choices made) inverse

to the Lagrangian blow-up. Therefore, it suffices to prove that both

constructions are independent from all the choices we made (see the

next slide).
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Teichm̈ller space and Lagrangian blow-ups

THEOREM: Let TeichM̌ be a 4-dimensional symplectic orbifold with a single

double point, and (M,L, ω) its Lagrangian blow-up. Then the corresponding

point in TeichL is independent from the choices we made.

Proof: Lagrangian blow-up is determined by a germ of the Darboux coordi-

nates in a neighbourhood of the orbifold point o. For any two choices A,B

of Darboux coordinates around o, there is a germ of a flow φt of symplec-

tomorphisms in a neighbourhood of o taking a germ of A to a germ of B.

Since b1(A) = 0, the diffeomorphisms φt are Hamiltonian. Extending the

corresponding Hamiltonian vector fields to M , we obtain a flow Φt Hamilto-

nian symplectomorphisms of M which carries A to B. This defines a smooth

family of symplectic structures on the Lagrangian blow-up, which are all ho-

mologous, and connect the first blow-up to the second; by Moser’s theorem,

this implies that these two blow-up manifolds correspond to the same

point in TeichL.
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Teichm̈ller space and Lagrangian blow-downs

THEOREM: Let (M,L, ω) be a 4-manifold with a Lagrangian sphere L, and

(M̌, ω̌) its Lagrangian blow-down. Then the corresponding point in TeichM̌
is independent from the choices we made.

Proof: The Lagrangian blow-down of a Lagrangian sphere S in a symplectic 4-

manifold is determined by a germ of a Weinstein neighbourhood of S; same as

in the previous proof, we need to show that any two such germs are related by

a smooth family of Hamiltonian symplectomorphisms. By definition, any two

Weinstein neighbourhoods of S have germs in S which are symplectomorphic;

these germs are Hamiltonian symplectomorphic, because b1(S) = 0, hence any

symplectomorphic vector field on a Weinstein neighbourhood is Hamiltonian.

This implies that any two choices of Lagrangian blow-down are related

by a smooth family of cohomologous symplectic structures on M̌, hence

by Moser’s theorem they give the same point in TeichM̌.
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Donaldson’s conjecture is false for orbifold K3 surfaces

CONJECTURE: (Donaldson) All symplectic structures on a K3 surface
are compatible with a Kähler structure.

This conjecture is still open. However, an orbifold version of this conjecture
is false.

THEOREM: There exists an orbifold symplectic K3 surface M with a single
double point not admitting an orbifold Kähler structure.

Proof. Step 1: As follows from a result of Amerik-V. (2015), the Te-
ichmüller space of symplectic structures compatible with a hyperkähler struc-
ture is Hausdorff and connected (the same argument works for Kähler K3
orbifolds). Suppose, on contrary, that any orbifold symplectic K3 surface
with a single double point admits a Kähler structure. This would imply that
the Teichmüller space TeichL is connected, and, indeed, that in each ho-
motopy class of 2-spheres on a K3 surface there exists at most one
(up to a Lagrangian isotopy) Lagrangian sphere.

Step 2: This is impossible, by a result of P. Seidel (2000): for some La-
grangian 2-sphere in a symplectic K3 surface there exists infinitely
many Lagrangian spheres in the same smooth isotopy class, which are
not Lagrangian isotopic.
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Special Lagrangian submanifolds

DEFINITION: Let (M, I, ω) be a symplectic manifold equipped with a com-

patible almost complex structure, dimM = 2n, and Φ a non-degenenerate,

closed (n,0)-form which satisfies |Φ| = const. A phase of a Lagrangian sub-

manifold S ⊂ M is the complex-valued function Φ|S
VolS

on S. A Lagrangian

submanifold S ⊂ M is called special Lagrangian if it has constant phase.

THEOREM: Let S ⊂ M be a Lagrangian sphere in a K3 surface, and π :

(M,ω)−→ (M̌, ω̌) the corresponding Lagrangian blow-down map. Then S is

Lagrangian isotopic to a special Lagrangian sphere if and only if the

symplectic form ω̌ is of Kähler type.

Proof: Later today.

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold. A

complex manifold S ⊂ M is holomorphic Lagrangian if Ω|S = 0 and dimM =

2dimS.

REMARK: On a hyperkähler manifold, “special Lagrangian” follows from

“holomorphic Lagrangian”; in real dimension 4, the converse is true as well,

if one varies the complex structure in the quaternions.
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Holomorphic Lagrangian submanifolds

The condition of being a complex submanifold is in fact implied by being
Lagrangian with respect to the symplectic forms ReΩ and ImΩ.
PROPOSITION: (“Hitchin’s lemma”)
Let (M, I,Ω) be a holomorphically symplectic manifold, and S ⊂ M a real
submanifold, dimM = 2dimS. Then S is holomorphic Lagrangian if and
only if Ω|S = 0.

Corollary 1: Let (M, I, J,K, g) be a hyperkähler manifold of real dimension
4n, considered as a Kähler manifold (M, I, ωI), and Φ := Ωn ∈ Λ2n,0(M, I) the
corresponding holomorphic volume form. Consider a Lagrangian submanifold
S ⊂ (M,ωI), such that aωJ + bωK|S = 0, for some real numbers a, b ∈ R, a2 +
b2 = 1. Then S is special Lagrangian, and, moreover, it is holomorphic
with respect to the complex structure −aK + bJ.

Proof: The form Ω1 := ωI +
√
−1 (aΩJ + bΩK) is holomorphic symplectic

on (M,−aK + bJ), hence Ω1|S = 0 By Hitchin’s lemma, S is a complex
submanifold of (M,−aK+ bJ), and therefore it is holomorphic Lagrangian. It
is special Lagrangian, because in the 3-dimensional space ⟨ωI , ωJ , ωK⟩ there is
a basis, where two forms restrict to S as zero, and the third is the Kähler form
of (M,−aK+bJ). Its top power restricted to a complex submanifold is always
proportional to its Riemannian volume, hence the phase of S is constant.
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Special Lagrangian submanifolds in real dimension 4

Corollary 2: Let M be a 4-dimensional hyperkähler manifold, ωI , ωJ , ωK a

triple of symplectic structures and S ⊂ M a Lagrangian submanifold of (M,ωI).

Then S is special Lagrangian if and only if for some real numbers

a, b ∈ R, a2 + b2 = 1, the submanifold S is complex analytic with respect

to −aK + bJ.

Proof: If S is complex analytic with respect to −aK + bJ, the correspond-

ing holomorphic symplectic form vanishes on S, because dimC S = 1, and by

Corollary 1 it is special Lagrangian. Conversely, for any special Lagrangian

submanifold S ⊂ (M, I), the constant phase condition Ω|S = const Volg im-

plies that the restriction map ⟨ωJ , ωK⟩ has 1-dimensional kernel, hence S is

Lagrangian with respect to ωI and aωJ + b
√
−1 ωK, for some a, b ∈ R such

that a2 + b2 = 1. By Hitchin’s lemma, S is holomorphic with respect to

−aK + bJ.
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Symplectic K3 orbifolds of Kähler type

Further on, we will use the following elementary observation.

CLAIM: Let (M̌, I) be a complex orbifold of K3 type, and Ω̌ its holomorphic

symplectic form. Then Re Ω̌ is a symplectic structure of Kähler type.

Proof: Using an orbifold version of Calabi-Yau theorem, we choose a hy-

perkähler structure (I, J,K, g) on M̌, such that Ω̌ = ωJ +
√
−1 ωK. Then

Re Ω̌ = ωJ is a Kähler form of (M̌, J).

DEFINITION: Let M be a K3 orbifold, and ω an orbifold symplectic struc-

ture. We say that ω is of Kähler type if there exists an orbifold Kähler

structure such that ω is its Kähler form.
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Special Lagrangian spheres and symplectic structures on orbifolds

THEOREM: Let S ⊂ M be a Lagrangian sphere in a K3 surface, and π :
(M,ω)−→ (M̌, ω̌) the corresponding Lagrangian blow-down map. Then S is
Lagrangian isotopic to a special Lagrangian sphere if and only if the
symplectic form ω̌ is of Kähler type.

Proof. Step 1: Let S ⊂ M be a special Lagrangian sphere. Since S ⊂ (M,ω)
is Lagrangian, its self-intersection is -2. Without restricting the generality,
we may assume that S ⊂ (M,K) is a complex curve, that is, a = 0, b = 1 in
the notation of Corollary 2. Consider the complex analytic blow-down map
π : (M,K) 7→ (M̌,K), taking M to a complex orbifold with a double point.
Let ΩK := ωI +

√
−1 ωJ be a holomorphic symplectic form on (M,K). Then

ΩK = π∗Ω̌K, hence ωI = ReΩK = π∗Re Ω̌K. This identifies (M̌,ReΩK)
and the Lagrangian blow-down of (M,ωI). However, (M̌,ReΩK) is a
complex orbifold, and the symplectic form Re Ω̌K is of Kähler type by the
previous claim. This proves that the Lagrangian blow-down of (M,ωI) is
of Kähler type.

Step 2: Conversely, assume that (M̌, ω̌) is an orbifold symplectic K3 of
Kähler type with one double point, and (M,π∗ω̌) its Lagrangian blow-up.
Since the blow-up map is holomorphic on (M̌,K), the exceptional sphere of
the projection π : M −→ M̌ is holomorphic in (M,K). By Corollary 1, it is
special Lagrangian in (M, I).
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Lagrangian spheres which are not Hamiltonian isotopic to special La-

grangian

THEOREM: Let (M,ω) be a symplectic K3 surface of Kähler type. Then,

for an appropriate choice of ω, there exists a countably many La-

grangian 2-spheres in the same homotopy class which are not isotopic

to a special Lagrangian sphere.

Proof: Using Seidel’s thorem, we obtain that there exists a countably

many pairwise non-Lagrangian-isotopic Lagrangian spheres Si in the

same homotopy class such that the corresponding Lagrangian blow-

down give a K3-type orbifolds which are not of Kähler type. By the

previous theorem, all these Si are not isotopic to a special Lagrangian sphere.
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