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Mapping class group action on cohomology

DEFINITION: Let M be a manifold, Diff its diffeomorphism group, Diff0

its connected component. The group Γ ⊂ Diff /Diff0 is called the mapping

class group of M .

REMARK: When π1(M) is nilpotent and dimM > 4, Sullivan has shown

that Γ is an arithmetic group (that is, commensurable with a group of

integer points in a Lie group).

EXAMPLE: For a torus T = (S1)n, Γ acts on H∗(T ) as GL(n,Z), for a

hyperkähler manifold it is a finite index subgroup in O(H2(M,Z), q), where q

is BBF form.
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Γ-invariant pairing

QUESTION: Let M be a compact n-manifold. Does there exist a Γ-

invariant non-degenerate pairing on Hi(M), for all i?

REMARK: When n = 2i, it is Poincare pairing.

EXAMPLE: When M is a torus, and i 6= n/2, such a pairing does not

exist, because there are no SL(n,Z)-invariant tensors in Λi(Rn)⊗ Λi(Rn).

EXAMPLE: When M is hyperkähler, such a pairing exists, because repre-

sentations of O(n) admit a non-degenerate bilinear form.

QUESTION: Can we define this pairing in a more functorial way?
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Averaging

DEFINITION: G is called a reductive Lie group if all its finite-dimensional

represenations are semisimple.

REMARK: A group is reductive if and only if its Lie algebra is a direct

sum of semisimple Lie algebra and abelian. It follows immediately from

the Levi decomposition theorem.

REMARK: A compact Lie group is clearly reductive; conversely, a complex-

ification of a reductive Lie group always has a compact real form.

EXERCISE: Prove these statements.

DEFINITION: Let G be a reductive Lie group, and V its representation,

and Vinv the space of G-invariant vectors. The G-invariant projection Av :

V −→ Vinv is called the averaging map.

REMARK: When G is compact, Av is really averaging with respect to Haar

measure.
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Averaging and convex hulls

QUESTION: Let V be a representation of a reductive Lie group G, Gv an
orbit of v ∈ V , and Hull(Gv) its convex hull. Is it true that Av(v) ∈ Hull(Gv)?

EXAMPLE: Let V = Rp+q be the fundamental representation of G =
SO(p, q), and h a positive definite bilinear symmetric form on V . Then all
points of Hull(Gv) are positive definite forms on V , however, Schur’s lemma
implies that none of them is G-invariant. Therefore, Av(v) /∈ Hull(Gv).

EXAMPLE: Let V = Rn+1 be the fundamental representation of G =
SO(1, n), and Pos(V ) ⊂ V its positive cone, that is, one of the components
of {v ∈ V | (v, v) > 0}. By Cauchy-Schwarz inequality, Pos(V ) is convex,
however, Av(v) = 0 for any v ∈ V . Therefore, Av(v) /∈ Hull(Gv).

REMARK: Let K ⊂ Rn be a convex set, and W ⊂ Rn the smallest affine
subspace containing K. The set of interior points of K is the union of all
open subsets of W contained in K.

The main result of today’s lecture:

THEOREM: Let V be a representation of a reductive Lie group G, Gv an
orbit of v ∈ V , and Hull(Gv) its convex hull. Assume that Av(v) /∈ Hull(Gv).
Then for any interior point w ∈ Hull(Gv), its stabilizer StG(w) is compact.
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Averaging and convex hulls: motivation

It is motivated by the following question (still unsolved).

QUESTION: Let M be a hyperkähler manifold, Γ its mapping class group,

and G ⊂ Aut(H∗(M)) its Zariski closure. Let ω be a Kähler class, and consider

the following pairing on H2d(M):

qω(x, y) =
∫
M
x ∧ y ∧ ω2n−d,

where 2n = dimCM . Is AvG(qω) non-degenerate? For H2(M) it is non-

degenerate, and this is how the BBF form is obtained.
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Hyperbolic metric

LEMMA: Let U ⊂ RP1 be an interval, and StPGL(2)U its stabilizer. Then

StPGL(2)U = PSO+(1,1), where SO+(1,1) denotes the connected compo-

nent.

Proof: Let h ∈ Sym2(R2) be a bilinear symmetric form of signature (1,1)

vanishing in the ends of the interval U . The form h is defined by this condition

up to a scalar multiplier. Therefore, Rh is fixed by the group StPGL(2),

which gives StPGL(2)U = PSO+(1,1).

DEFINITION: Let V be a vector space equipped with a form of signature

(1, n), and PPos(V ) projectivisation of its positive cone. Clearly, a SO+(1, n)-

invariant metric h on PPos(V ) is unique, up to a constant multiplier. We call

(PPos(V ), h) hyperbolic space, or Lobachevsky space, and denote it by H.

REMARK: The constant can be fixed by any reasonable convention,

e. g. by identifying H with the space of unit vectors in Pos and considering

the induced metric.
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Hilbert metric

DEFINITION: A subset U ⊂ RPn is called convex if it is an image of a

convex subset in Rn+1\0.

DEFINITION: Hilbert metric on a convex set U ⊂ RPn is a Finsler metric

which restricts to a hyperbolic metric on each straight interval RP1 ∩ U .

REMARK: Since StPGL(2) I = PSO+(1,1) for an interval I ⊂ RP1, Hilbert

metric is invariant with respect to projective automorphisms.

DEFINITION: Let U,W be open subsets in projective spaces, and ϕ :

U −→W a map which maps straight intervals to straight intervals and acts

linearly on the corresponding open cones in R2. Then ϕ is called projective

map.

REMARK: Clearly, projective maps are 1-Lipschitz with respect to the

Hilbert metric (prove it).
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Projective automorphisms of hyperbolic subsets

DEFINITION: Let U ⊂ RPn a convex subset, obtained as a projectivization

of a convex cone Ũ . Then Ũ is called the convex cone associated with U .

Clearly, it is projected to U with fiber R>0.

LEMMA 1: Let U ⊂ RPn be a convex subset, Ũ its convex cone, and v ∈ Ũ
any vector. Consider the group G of projective automorphisms of U fixing v.

Then G is compact.

Proof: Clearly, G is the group of projective automorphisms of U fixing the

line lv passing through v. Then it acts on U by isometries. However, the

group of isometries of a Finsler manifold fixing a point lv is compact (prove

it as an exercise).
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Proof of main theorem

THEOREM: Let V be a representation of a reductive Lie group G, Gv an

orbit of v ∈ V , and Hull(Gv) its convex hull. Assume that Av(v) /∈ Hull(Gv).

Then for any interior point w ∈ Hull(Gv), its stabilizer StG(w) is compact.

Proof: Substracting Av(v), we can always assume that Av(v) = 0. Let Ũ be

the set of interior points of Hull(Gv). Since Ũ is a convex, open cone not con-

taining 0, it can be separated from any z /∈ Ũ by a hyperplane (Hahn-Banach

theorem). Therefore, U is an intersection of half-spaces, and its projec-

tivization U is convex. Then Lemma 1 implies that StG(w) is compact.
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