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Mapping class group action on cohomology

DEFINITION: Let M be a manifold, Diff its diffeomorphism group, Diffg
its connected component. The group ' C Diff / Diffg is called the mapping
class group of M.

REMARK: When 71(M) is nilpotent and dim M > 4, Sullivan has shown
that I is an arithmetic group (that is, commensurable with a group of
integer points in a Lie group).

EXAMPLE: For a torus T = (S1)", I acts on H*(T) as GL(n,Z), for a
hyperkdhler manifold it is a finite index subgroup in O(H?(M,Z),q), where q
is BBF form.
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[ -invariant pairing

QUESTION: Let M be a compact n-manifold. Does there exist a -
invariant non-degenerate pairing on H*(M), for all ;7

REMARK: When n = 22, it is Poincare pairing.

EXAMPLE: When M is a torus, and : # n/2, such a pairing does not
exist, because there are no SL(n,Z)-invariant tensors in A*(R™) @ A*(R™).

EXAMPLE: When M is hyperkahler, such a pairing exists, because repre-
sentations of O(n) admit a non-degenerate bilinear form.

QUESTION: Can we define this pairing in a more functorial way?
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Averaging

DEFINITION: G is called a reductive Lie group if all its finite-dimensional
represenations are semisimple.

REMARK: A group is reductive if and only if its Lie algebra is a direct
sum of semisimple Lie algebra and abelian. It follows immediately from
the Levi decomposition theorem.

REMARK: A compact Lie group is clearly reductive; conversely, a complex-
ification of a reductive Lie group always has a compact real form.

EXERCISE: Prove these statements.

DEFINITION: Let G be a reductive Lie group, and V its representation,
and Vj,, the space of G-invariant vectors. The G-invariant projection Av :
V. — Vihy IS called the averaging map.

REMARK: When G is compact, Av is really averaging with respect to Haar
measure.
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Averaging and convex hulls

QUESTION: Let V be a representation of a reductive Lie group GG, Gv an
orbit of v € V, and Hull(Gv) its convex hull. Is it true that Av(v) € Hull(Gv)?

EXAMPLE: Let V = RPT? be the fundamental representation of G =
SO(p,q), and h a positive definite bilinear symmetric form on V. Then all
points of Hull(Gv) are positive definite forms on V, however, Schur’'s lemma
implies that none of them is G-invariant. Therefore, Av(v) ¢ Hull(Gv).

EXAMPLE: Let V = R"tl be the fundamental representation of G =
SO(1,n), and Pos(V) C V its positive cone, that is, one of the components
of {v e V | (v,v) > 0}. By Cauchy-Schwarz inequality, Pos(V') is convex,
however, Av(v) = 0 for any v € V. Therefore, Av(v) ¢ Hull(Gv).

REMARK: Let K C R"™ be a convex set, and W C R"™ the smallest affine
subspace containing K. The set of interior points of K is the union of all
open subsets of W contained in K.

The main result of today’s lecture:

THEOREM: Let V be a representation of a reductive Lie group G, Gv an
orbit of v € V, and Hull(Gv) its convex hull. Assume that Av(v) ¢ Hull(Gv).
Then for any interior point w € Hull(Gv), its stabilizer St (w) is compact.
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Averaging and convex hulls: motivation
It is motivated by the following question (still unsolved).

QUESTION: Let M be a hyperkahler manifold, I' its mapping class group,
and G C Aut(H*(M)) its Zariski closure. Let w be a Kahler class, and consider
the following pairing on H24(M):

2n—d
x, = T ANYNw )
quw(z,y) /M Y

where 2n = dimg M. Is Avi(qw) non-degenerate? For H2(M) it is non-
degenerate, and this is how the BBF form is obtained.
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Hyperbolic metric

LEMMA: Let U C RP! be an interval, and Stpgr(o) U its stabilizer. Then
Stpar2)U = PSOT(1,1), where SOT(1,1) denotes the connected compo-
nent.

Proof: Let h € Sym2(R?) be a bilinear symmetric form of signature (1,1)
vanishing in the ends of the interval U. The form h is defined by this condition
up to a scalar multiplier. Therefore, Rh is fixed by the group Stpgy o),
which gives Stpgr (o) U = PSOT(1,1). =

DEFINITION: Let V be a vector space equipped with a form of signature
(1,n), and PPos(V) projectivisation of its positive cone. Clearly, a SO (1,n)-
invariant metric h on PPos(V) is unique, up to a constant multiplier. We call
(PPos(V),h) hyperbolic space, or Lobachevsky space, and denote it by H.

REMARK: The constant can be fixed by any reasonable convention,
e. g. by identifying H with the space of unit vectors in Pos and considering
the induced metric.
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Hilbert metric

DEFINITION: A subset U C RP"™ is called convex if it is an image of a
convex subset in R*T1\0.

DEFINITION: Hilbert metric on a convex set U C RP"™ is a Finsler metric
which restricts to a hyperbolic metric on each straight interval RPINU.

REMARK: Since Stpgr 2y = PSOT(1,1) for an interval I C RP!, Hilbert
metric is invariant with respect to projective automorphisms.

DEFINITION: Let U, W be open subsets in projective spaces, and ¢
U— W a map which maps straight intervals to straight intervals and acts
linearly on the corresponding open cones in R2. Then @ Is called projective
map.

REMARK: Clearly, projective maps are 1-Lipschitz with respect to the
Hilbert metric (prove it).
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Projective automorphisms of hyperbolic subsets

DEFINITION: Let U C RP™ a convex subset, obtained as a projectivization
of a convex cone U. Then U is called the convex cone associated with U.
Clearly, it is projected to U with fiber RO,

LEMMA 1: Let U C RP™ be a convex subset, U its convex cone, and v € U
any vector. Consider the group G of projective automorphisms of U fixing wv.
Then G is compact.

Proof: Clearly, G is the group of projective automorphisms of U fixing the
line [, passing through v. Then it acts on U by isometries. However, the
group of isometries of a Finsler manifold fixing a point [, is compact (prove
it as an exercise). =
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Proof of main theorem

THEOREM: Let V be a representation of a reductive Lie group G, Gv an
orbit of v € V, and Hull(Gv) its convex hull. Assume that Av(v) ¢ Hull(Gv).
Then for any interior point w € Hull(Gv), its stabilizer St (w) is compact.

Proof: Substracting Av(v), we can always assume that Av(v) = 0. Let U be
the set of interior points of Hull(Gv). Since U is a convex, open cone not con-
taining 0, it can be separated from any z ¢ U by a hyperplane (Hahn-Banach
theorem). Therefore, U is an intersection of half-spaces, and its projec-
tivization U is convex. Then Lemma 1 implies that Stg(w) is compact.
|
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