Hilbert metrics and averaging

Misha Verbitsky

March 3, Thursday, 2016,

seminar on geometric structures on manifolds,

LAG HSE.

Mapping class group action on cohomology

DEFINITION: Let M be a manifold, Diff its diffeomorphism group, Diff₀ its connected component. The group $\Gamma \subset \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

REMARK: When $\pi_1(M)$ is nilpotent and dim M > 4, Sullivan has shown that Γ is an arithmetic group (that is, commensurable with a group of integer points in a Lie group).

EXAMPLE: For a torus $T = (S^1)^n$, Γ acts on $H^*(T)$ as $GL(n,\mathbb{Z})$, for a hyperkähler manifold it is a finite index subgroup in $O(H^2(M,\mathbb{Z}),q)$, where q is BBF form.

F-invariant pairing

QUESTION: Let M be a compact n-manifold. Does there exist a Γ -invariant non-degenerate pairing on $H^i(M)$, for all i?

REMARK: When n = 2i, it is Poincare pairing.

EXAMPLE: When *M* is a torus, and $i \neq n/2$, such a pairing does not exist, because there are no $SL(n,\mathbb{Z})$ -invariant tensors in $\Lambda^i(\mathbb{R}^n) \otimes \Lambda^i(\mathbb{R}^n)$.

EXAMPLE: When M is hyperkähler, such a pairing exists, because representations of O(n) admit a non-degenerate bilinear form.

QUESTION: Can we define this pairing in a more functorial way?

Averaging

DEFINITION: *G* is called a reductive Lie group if all its finite-dimensional representations are semisimple.

REMARK: A group is reductive **if and only if its Lie algebra is a direct sum of semisimple Lie algebra and abelian.** It follows immediately from the Levi decomposition theorem.

REMARK: A compact Lie group is clearly reductive; conversely, a complexification of a reductive Lie group always has a compact real form.

EXERCISE: Prove these statements.

DEFINITION: Let G be a reductive Lie group, and V its representation, and V_{inv} the space of G-invariant vectors. The G-invariant projection Av : $V \longrightarrow V_{inv}$ is called **the averaging map**.

REMARK: When G is compact, Av is really averaging with respect to Haar measure.

Averaging and convex hulls

QUESTION: Let V be a representation of a reductive Lie group G, Gv an orbit of $v \in V$, and Hull(Gv) its convex hull. Is it true that $Av(v) \in Hull(Gv)$?

EXAMPLE: Let $V = \mathbb{R}^{p+q}$ be the fundamental representation of G = SO(p,q), and h a positive definite bilinear symmetric form on V. Then all points of Hull(Gv) are positive definite forms on V, however, Schur's lemma implies that none of them is G-invariant. **Therefore,** $Av(v) \notin Hull(Gv)$.

EXAMPLE: Let $V = \mathbb{R}^{n+1}$ be the fundamental representation of G = SO(1,n), and $Pos(V) \subset V$ its positive cone, that is, one of the components of $\{v \in V \mid (v,v) > 0\}$. By Cauchy-Schwarz inequality, Pos(V) is convex, however, Av(v) = 0 for any $v \in V$. Therefore, $Av(v) \notin Hull(Gv)$.

REMARK: Let $K \subset \mathbb{R}^n$ be a convex set, and $W \subset \mathbb{R}^n$ the smallest affine subspace containing K. The set of **interior points** of K is the union of all open subsets of W contained in K.

The main result of today's lecture:

THEOREM: Let V be a representation of a reductive Lie group G, Gv an orbit of $v \in V$, and Hull(Gv) its convex hull. Assume that $Av(v) \notin Hull(Gv)$. Then for any interior point $w \in Hull(Gv)$, its stabilizer $St_G(w)$ is compact.

Averaging and convex hulls: motivation

It is motivated by the following question (still unsolved).

QUESTION: Let M be a hyperkähler manifold, Γ its mapping class group, and $G \subset Aut(H^*(M))$ its Zariski closure. Let ω be a Kähler class, and consider the following pairing on $H^{2d}(M)$:

$$q_{\omega}(x,y) = \int_M x \wedge y \wedge \omega^{2n-d},$$

where $2n = \dim_{\mathbb{C}} M$. Is $Av_G(q_\omega)$ non-degenerate? For $H^2(M)$ it is non-degenerate, and this is how the BBF form is obtained.

Hyperbolic metric

LEMMA: Let $U \subset \mathbb{R}P^1$ be an interval, and $\operatorname{St}_{PGL(2)} U$ its stabilizer. Then $\operatorname{St}_{PGL(2)} U = PSO^+(1,1)$, where $SO^+(1,1)$ denotes the connected component.

Proof: Let $h \in \text{Sym}^2(\mathbb{R}^2)$ be a bilinear symmetric form of signature (1,1) vanishing in the ends of the interval U. The form h is defined by this condition up to a scalar multiplier. Therefore, $\mathbb{R}h$ is fixed by the group $\text{St}_{PGL(2)}$, which gives $\text{St}_{PGL(2)}U = PSO^+(1,1)$.

DEFINITION: Let V be a vector space equipped with a form of signature (1, n), and $\mathbb{P} \operatorname{Pos}(V)$ projectivisation of its positive cone. Clearly, a $SO^+(1, n)$ -invariant metric h on $\mathbb{P} \operatorname{Pos}(V)$ is unique, up to a constant multiplier. We call $(\mathbb{P} \operatorname{Pos}(V), h)$ hyperbolic space, or Lobachevsky space, and denote it by \mathbb{H} .

REMARK: The constant can be fixed by any reasonable convention, e. g. by identifying \mathbb{H} with the space of unit vectors in Pos and considering the induced metric.

Hilbert metric

DEFINITION: A subset $U \subset \mathbb{R}P^n$ is called **convex** if it is an image of a convex subset in $\mathbb{R}^{n+1}\setminus 0$.

DEFINITION: Hilbert metric on a convex set $U \subset \mathbb{R}P^n$ is a Finsler metric which restricts to a hyperbolic metric on each straight interval $\mathbb{R}P^1 \cap U$.

REMARK: Since $\operatorname{St}_{PGL(2)} I = PSO^+(1,1)$ for an interval $I \subset \mathbb{R}P^1$, Hilbert metric is invariant with respect to projective automorphisms.

DEFINITION: Let U, W be open subsets in projective spaces, and φ : $U \longrightarrow W$ a map which maps straight intervals to straight intervals and acts linearly on the corresponding open cones in \mathbb{R}^2 . Then φ is called **projective map**.

REMARK: Clearly, projective maps are 1-Lipschitz with respect to the Hilbert metric (prove it).

Projective automorphisms of hyperbolic subsets

DEFINITION: Let $U \subset \mathbb{R}P^n$ a convex subset, obtained as a projectivization of a convex cone \tilde{U} . Then \tilde{U} is called **the convex cone associated with** U. Clearly, it is projected to U with fiber $\mathbb{R}^{>0}$.

LEMMA 1: Let $U \subset \mathbb{R}P^n$ be a convex subset, \tilde{U} its convex cone, and $v \in \tilde{U}$ any vector. Consider the group G of projective automorphisms of U fixing v. **Then** G is compact.

Proof: Clearly, *G* is the group of projective automorphisms of *U* fixing the line l_v passing through v. Then it acts on *U* by isometries. However, the group of isometries of a Finsler manifold fixing a point l_v is compact (prove it as an exercise).

Proof of main theorem

THEOREM: Let V be a representation of a reductive Lie group G, Gv an orbit of $v \in V$, and Hull(Gv) its convex hull. Assume that $Av(v) \notin Hull(Gv)$. **Then for any interior point** $w \in Hull(Gv)$, its stabilizer $St_G(w)$ is compact.

Proof: Substracting Av(v), we can always assume that Av(v) = 0. Let \tilde{U} be the set of interior points of Hull(Gv). Since \tilde{U} is a convex, open cone not containing 0, it can be separated from any $z \notin \tilde{U}$ by a hyperplane (Hahn-Banach theorem). Therefore, U is an intersection of half-spaces, and **its projectivization** U **is convex.** Then Lemma 1 implies that $St_G(w)$ is compact.