Deformations of complex structures given by differential forms

Misha Verbitsky

Differential geometry seminar, IMPA, 08.01.2019

Some of these results are from collaboration with Fedor Bogomolov, Rodion Deev, Ljudmila Kamenova

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

REMARK: The "usual definition": complex structure is an atlas on a manifold with differentials of all transition functions in $GL(n, \mathbb{C})$.

THEOREM: (Newlander-Nirenberg) These two definitions are equivalent.

REMARK: An almost complex structure *I* is uniquely determined by a subbundle $B \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ such that $TM \otimes_{\mathbb{R}} \mathbb{C} = B \oplus \overline{B}$. Then we write $I = \sqrt{-1}$ on *B* and $I = -\sqrt{-1}$ on \overline{B} .

Null-space of a form and and Cartan's formula

DEFINITION: Let Ω be a differential form on M. The kernel, or the nullspace ker $(\Omega) \subset TM$ of Ω is the space of all vector fields $X \in TM$ such that the contraction $i_X(\Omega)$ vanishes.

Theorem 1: Let Ω be a differential *p*-form on *M*, $d\Omega = 0$. Then for any $X, Y \in \text{ker}(\Omega)$, one has $[X, Y] \in \text{ker}(\Omega)$.

Proof. Step 1: Let $X, X_1 \in \text{ker}(\Omega)$, and $X_2, ..., X_p$ any vector fields. Cartan's formula implies that $\text{Lie}_X(\Omega) = d(i_X(\Omega)) + i_X(d\Omega) = 0$, hence $\text{Lie}_X(\Omega) = 0$.

Step 2: $\operatorname{Lie}_X(\Omega)(X_1, ..., X_p) = \operatorname{Lie}_X(\Omega(X_1, ..., X_p)) - \sum_{i=1}^p \Omega(X_1, ..., [X, X_i], ..., X_p)$. All terms of this sum, except $\Omega([X, X_1], X_2, ..., X_p)$, vanish, because $X_1 \in \operatorname{ker}(\Omega)$. Since $\operatorname{Lie}_X(\Omega) = 0$, we have $\Omega([X, X_1], X_2, ..., X_p) = 0$ for all $X_2, ..., X_p$. Therefore, $[X, X_1] \in \operatorname{ker}(\Omega)$.

Corollary 1: Suppose that $\Omega \in \Lambda^2(M, \mathbb{C})$ be a closed *p*-form such that ker $(\Omega) \cap T_{\mathbb{R}}M = 0$ and ker $(\Omega) \oplus \overline{\text{ker}(\Omega)} = T_{\mathbb{C}}M$. Define $I : TM \longrightarrow TM$ by $I|_{\text{ker}(\Omega)} = -\sqrt{-1}$ and $I|_{\overline{\text{ker}(\Omega)}} = \sqrt{-1}$. Then *I* defines a complex structure.

Proof: *I* is by construction real and satisfies $I^2 = -1$. The corresponding eigenspace $T^{1,0}M$ coincides with ker(Ω), and Theorem 1 implies that *I* is integrable.

Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and $\Omega \in \Lambda^2(M, \mathbb{C})$ a differential form. We say that Ω is **non-degenerate** if ker $\Omega \cap T_{\mathbb{R}}M = 0$. We say that it is **holomorphically symplectic** if it is non-degenerate, $d\Omega = 0$, and $\Omega(IX, Y) = \sqrt{-1} \Omega(X, Y)$.

REMARK: The equation $\Omega(IX, Y) = \sqrt{-1}\Omega(X, Y)$ means that Ω is complex linear with respect to the complex structure on $T_{\mathbb{R}}M$ induced by *I*.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$ (decomposition according to eigenvalues of *I*). Since $\Omega(IX, Y) = \sqrt{-1} \Omega(X, Y)$ and $I(Z) = -\sqrt{-1} Z$ for any $Z \in T^{0,1}(M)$, we have $\ker(\Omega) \supset T^{0,1}(M)$. Since $\ker \Omega \cap T_{\mathbb{R}}M = 0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}} \ker \Omega = \dim M$. **Therefore,** $\ker(\Omega) = T^{0,1}M$.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

Let's define complex structures in terms of complex-valued 2-forms!

Holomorphically symplectic forms and complex structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a bijective correspondence between the set of almost complex structures, and the set of sub-bundles $T^{0,1}M \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $\dim_{\mathbb{C}} T^{0,1}M = n$ and $T^{0,1}M \cap TM = 0$ (the last condition means that there are no real vectors in $T^{1,0}M$, that is, that $T^{0,1}M \cap T^{1,0}M = 0$).

Proof: Set
$$I|_{T^{1,0}M} = \sqrt{-1}$$
 and $I|_{T^{0,1}M} = -\sqrt{-1}$.

Theorem 2: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a smooth, complex-valued, non-degenerate 2-form on a 4n-dimensional real manifold. Assume that $\Omega^{n+1} = 0$. Consider the bundle

$$T_{\Omega}^{0,1}(M) := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$$

Then $T_{\Omega}^{0,1}(M)$ satisfies assumptions of the claim above, hence **defines an** almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable.

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and it is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. Now Theorem 2 follows from Theorem 1.

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation $I^2 = J^2 = K^2 = IJK = -\text{Id}$. Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

CLAIM: A hyperkähler manifold (M, I, J, K) is **holomorphically symplectic** (equipped with a holomorphic, non-degenerate 2-form). Recall that M is equipped with 3 symplectic forms ω_I , ω_J , ω_K .

LEMMA: The form $\Omega := \omega_J + \sqrt{-1}\omega_K$ is a holomorphic symplectic 2-form on (M, I).

THEOREM: (Calabi-Yau, 1978) Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

For compact manifolds, "hyperkähler" is essentially synonymous with "holomorphically symplectic of Kähler type".

6

Holomorphic Lagrangian fibrations

DEFINITION: Let (M, Ω) be a holomorphically symplectic manifold, dim_{$\mathbb{C}} M = 2n$. A complex subvariety $Z \subset M$ is called **holomorphically Lagrangian** if $\Omega|_Z = 0$ in all smooth points of Z and dim Z = n.</sub>

DEFINITION: A holomorphic Lagrangian fibration is a holomorphic map $f: M \longrightarrow X$ with all fibers holomorphic Lagrangian.

REMARK: Nota bene: Neither X nor fibers of f need to be nonsingular: the definition makes sense in singular situation.

DEFINITION: (1,1)-form on a complex manifold is a differential form which satisfies $\omega(IX, Y) = -\omega(X, IY)$ (same Hodge type as the Hermitian forms).

Matsushita Theorem

THEOREM: (Matsushita, 1997)

Let $\pi : M \longrightarrow X$ be a surjective holomorphic map from a hyperkähler manifold M to X, whith $0 < \dim X < \dim M$. Then $\dim X = 1/2 \dim M$, and the fibers of π are holomorphic Lagrangian (this means that the symplectic form vanishes on $\pi^{-1}(x)$).

DEFINITION: Such a map is called **holomorphic Lagrangian fibration**.

REMARK: The base of π is conjectured to be $\mathbb{C}P^n$ if it is normal. Hwang (2007) proved that $X \cong \mathbb{C}P^n$, if it is smooth. Matsushita (2000) proved that it has the same rational cohomology as $\mathbb{C}P^n$.

REMARK: The base of π has a natural flat connection on the smooth locus of π . The combinatorics of this connection can be used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it's recommended to start from a holomorphic Lagrangian fibration (if it exists).

Degenerate twistor deformations

THEOREM: Let (M, Ω) be a holomorphically symplectic manifold, $\dim_{\mathbb{C}} M = 2n$, and $f: M \longrightarrow X$ a holomorphic Lagrangian fibration. Consider a (2,0) + (1,1)-form $\eta \in \Lambda^2(X,\mathbb{C})$. Then (a) $\Omega_\eta := \Omega + f^*\eta$ is a **non-degenerate form** which satisfies $\Omega_\eta^{n+1} = 0$, hence defines an almost complex structure. (b) If, moreover, $d\eta = 0$, this almost complex structure is integrable.

Proof: (b) follows from Theorem 2 and (a) immediately. Relation $\Omega_{\eta}^{n+1} = 0$ is proving by writing Ω and η in a basis dp_i, dq_i such that $\Omega = \sum_i dp_i \wedge dq_i$, coordinates on X are p_i , and

$$\eta = \sum \beta_{ij} dp_i \wedge dp_j + \sum \alpha_i dp_i \wedge d\overline{p}_i,$$

where $\alpha_i, \beta_{ij} \in C^{\infty}X$. Non-degeneracy follows immediately, because (2,0)-part of Ω_{η} is $\Omega + \eta^{2,0}$, and it is non-degenerate.

DEFINITION: Let (M, Ω) be a holomorphically symplectic manifold, $\dim_{\mathbb{C}} M = 2n, f : M \longrightarrow X$ a holomorphic Lagrangian fibration, and $\eta \in \Lambda^{1,1}(X,\mathbb{C})$ a closed (1,1)-form. Let $\Omega_{t\eta} := \Omega + t\eta$, where $t \in \mathbb{C}$, and let I_t be the complex structure associated with t. The family of complex structures I_t is called **a degenerate twistor deformation** of M.

Degenerate twistor deformations: their properties

1. If η is exact, this deformation is trivial by Moser's theorem.

2. When M is compact and of Kähler type, M is hyperkähler. In this case I_t is a limit of *twistor deformations*. The manifolds (M, I_t) are projective for $t \in S$, where S is a dense, countable family $S \subset \mathbb{C}$, and non-algebraic for $t \notin S$. It is unknown if (M, I_t) is Kähler for all $t \in \mathbb{C}$.

3. Each manifold (M, I_t) is equipped with a holomorphic Lagrangian fibration $f_t : (M, I_t) \longrightarrow X$. The fibers and the base of f_t are isomorphic for all t.

4. This deformation has a number-theoretic interpretation ("Tate-Shafarevich deformation").

Sections of holomorphic Lagrangian fibrations

THEOREM: (Hitchin) Let (M, Ω) be a holomorphically symplectic manifold, and $Z \subset M$ a subvariety which is Lagrangian with respect to Re Ω and Im Ω . Then Z is a complex subvariety.

Proof: Let α be the determinant vector of Z, and $L_J, L_K, \Lambda_J, \Lambda_K$ elements of Hodge triples associated with J, K. Then $[L_J, \Lambda_k]\alpha = 0$. However, $[L_J, \Lambda_k]$ acts on $\Lambda^{p,q}(M)$ as $(p-q)\sqrt{-1}$, which implies that α is of Hodge type (n, n).

COROLLARY: Let (M, Ω) be a holomorphic symplectic manifold, $\pi : M \longrightarrow B$ a holomorphic Lagrangian fibration, and $B_1 \subset M$ a section of π . Suppose that $\Omega|_{TB_1}$ is of Hodge type (1,1) + (2,0) with respect to the natural complex structure on $B_1 = B$. Then there exists a degenerate twistor deformation given by $\Omega + \pi^*\eta$, such that B_1 is holomorphic.

Sections of holomorphic Lagrangian fibrations (2)

THEOREM: Let (M, Ω) be a holomorphic symplectic manifold, $\pi : M \longrightarrow B$ be a holomorphic Lagrangian fibration, and $B_1 \subset M$ a smooth section of π . Consider the form $\Omega|_{B_1}$ as a form on B. Then it has type (2,0) + (1,1).

REMARK: Then it follows that B_1 becomes holomorphic after a degenerate twistor deformation.

Proof: Consider the map Ω : $TM \longrightarrow T^*M$. Since π is a Lagrangian fibration, $\Omega(T_{\pi}M) \subset \pi^*(\Lambda^1B)$, where $T_{\pi}M$ denotes vector tangent to the fibers of π ("vertical tangent vectors") Since the (1,0)-component of $\pi^{-1}(T^{0,1}B)$ is vertical, one has

$$\Omega(\pi^{-1}(T^{0,1}B)) \subset \pi^* \Lambda^{1,0} B.$$

This implies that $\Omega|_{B_1}$ pairs (0,1) vectors to (1,0)-vectors, and has type (1,1) + (2,0).