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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

REMARK: The “usual definition”: complex structure is an atlas on a man-
ifold with differentials of all transition functions in GL(n,C).

THEOREM: (Newlander-Nirenberg)
These two definitions are equivalent.

REMARK: An almost complex structure I is uniquely determined by a
subbundle B ⊂ TM ⊗R C such that TM ⊗R C = B ⊕ B. Then we write
I =
√
−1 on B and I = −

√
−1 on B.
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Null-space of a form and and Cartan’s formula

DEFINITION: Let Ω be a differential form on M . The kernel, or the null-
space ker(Ω) ⊂ TM of Ω is the space of all vector fields X ∈ TM such that
the contraction iX(Ω) vanishes.

Theorem 1: Let Ω be a differential p-form on M , dΩ = 0. Then for any
X,Y ∈ ker(Ω), one has [X,Y ] ∈ ker(Ω).

Proof. Step 1: Let X,X1 ∈ ker(Ω), and X2, ..., Xp any vector fields. Cartan’s
formula implies that LieX(Ω) = d(iX(Ω)) + iX(dΩ) = 0, hence LieX(Ω) = 0.

Step 2: LieX(Ω)(X1, ..., Xp) = LieX(Ω(X1, ..., Xp))−
∑p
i=1 Ω(X1, ..., [X,Xi], ...Xp).

All terms of this sum, except Ω([X,X1], X2, ..., Xp), vanish, because X1 ∈
ker(Ω). Since LieX(Ω) = 0, we have Ω([X,X1], X2, ..., Xp) = 0 for all X2, ..., Xp.
Therefore, [X,X1] ∈ ker(Ω).

Corollary 1: Suppose that Ω ∈ Λ2(M,C) be a closed p-form such that ker(Ω)∩
TRM = 0 and ker(Ω) ⊕ ker(Ω) = TCM . Define I : TM −→ TM by I|ker(Ω) =
−
√
−1 and I|

ker(Ω)
=
√
−1 . Then I defines a complex structure.

Proof: I is by construction real and satisfies I2 = −1. The corresponding
eigenspace T1,0M coincides with ker(Ω), and Theorem 1 implies that I is
integrable.
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Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.

Let’s define complex structures

in terms of complex-valued 2-forms!
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Holomorphically symplectic forms and complex structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a

bijective correspondence between the set of almost complex structures,

and the set of sub-bundles T0,1M ⊂ TM ⊗R C satisfying dimC T
0,1M = n

and T0,1M ∩TM = 0 (the last condition means that there are no real vectors

in T1,0M , that is, that T0,1M ∩ T1,0M = 0).

Proof: Set I
∣∣∣T1,0M =

√
−1 and I

∣∣∣T0,1M = −
√
−1 .

Theorem 2: Let Ω ∈ Λ2(M,C) be a smooth, complex-valued, non-degenerate

2-form on a 4n-dimensional real manifold. Assume that Ωn+1 = 0. Consider

the bundle

T
0,1
Ω (M) := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M) satisfies assumptions of the claim above, hence defines an

almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is

integrable.

Proof: Rank of Ω is 2n because Ωn+1 = 0 and it is non-degenerate. Then

ker Ω⊕ ker Ω = TCM . Now Theorem 2 follows from Theorem 1.
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Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is

called hyperkähler.

CLAIM: A hyperkähler manifold (M, I, J,K) is holomorphically symplectic

(equipped with a holomorphic, non-degenerate 2-form). Recall that M is

equipped with 3 symplectic forms ωI, ωJ, ωK.

LEMMA: The form Ω := ωJ+
√
−1ωK is a holomorphic symplectic 2-form

on (M, I).

THEOREM: (Calabi-Yau, 1978) Let M be a compact, holomorphically sym-

plectic Kähler manifold. Then M admits a hyperkähler metric, which is

uniquely determined by the cohomology class of its Kähler form ωI.

For compact manifolds, “hyperkähler” is essentially synonymous with

“holomorphically symplectic of Kähler type”.
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Holomorphic Lagrangian fibrations

DEFINITION: Let (M,Ω) be a holomorphically symplectic manifold, dimCM =

2n. A complex subvariety Z ⊂ M is called holomorphically Lagrangian if

Ω|Z = 0 in all smooth points of Z and dimZ = n.

DEFINITION: A holomorphic Lagrangian fibration is a holomorphic map

f : M −→X with all fibers holomorphic Lagrangian.

REMARK: Nota bene: Neither X nor fibers of f need to be non-

singular: the definition makes sense in singular situation.

DEFINITION: (1,1)-form on a complex manifold is a differential form which

satisfies ω(IX, Y ) = −ω(X, IY ) (same Hodge type as the Hermitian forms).
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Matsushita Theorem

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the symplectic

form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be CPn if it is normal. Hwang

(2007) proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that

it has the same rational cohomology as CPn.

REMARK: The base of π has a natural flat connection on the smooth locus

of π. The combinatorics of this connection can be used to determine

the topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it’s recommended to start

from a holomorphic Lagrangian fibration (if it exists).
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Degenerate twistor deformations

THEOREM: Let (M,Ω) be a holomorphically symplectic manifold, dimCM =

2n, and f : M −→X a holomorphic Lagrangian fibration. Consider a (2,0) +

(1,1)-form η ∈ Λ2(X,C). Then (a) Ωη := Ω + f∗η is a non-degenerate form

which satisfies Ωn+1
η = 0, hence defines an almost complex structure.

(b) If, moreover, dη = 0, this almost complex structure is integrable.

Proof: (b) follows from Theorem 2 and (a) immediately. Relation Ωn+1
η = 0

is proving by writing Ω and η in a basis dpi, dqi such that Ω =
∑
i dpi ∧ dqi,

coordinates on X are pi, and

η =
∑

βijdpi ∧ dpj +
∑

αidpi ∧ dpi,

where αi, βij ∈ C∞X. Non-degeneracy follows immediately, because (2,0)-part

of Ωη is Ω + η2,0, and it is non-degenerate.

DEFINITION: Let (M,Ω) be a holomorphically symplectic manifold, dimCM =

2n, f : M −→X a holomorphic Lagrangian fibration, and η ∈ Λ1,1(X,C) a

closed (1,1)-form. Let Ωtη := Ω + tη, where t ∈ C, and let It be the complex

structure associated with t. The family of complex structures It is called a

degenerate twistor deformation of M .
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Degenerate twistor deformations: their properties

1. If η is exact, this deformation is trivial by Moser’s theorem.

2. When M is compact and of Kähler type, M is hyperkähler. In this case It
is a limit of twistor deformations. The manifolds (M, It) are projective for

t ∈ S, where S is a dense, countable family S ⊂ C, and non-algebraic for

t /∈ S. It is unknown if (M, It) is Kähler for all t ∈ C.

3. Each manifold (M, It) is equipped with a holomorphic Lagrangian fibration

ft : (M, It)−→X. The fibers and the base of ft are isomorphic for all t.

4. This deformation has a number-theoretic interpretation (“Tate-Shafarevich

deformation”).
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Sections of holomorphic Lagrangian fibrations

THEOREM: (Hitchin) Let (M,Ω) be a holomorphically symplectic mani-

fold, and Z ⊂ M a subvariety which is Lagrangian with respect to Re Ω and

Im Ω. Then Z is a complex subvariety.

Proof: Let α be the determinant vector of Z, and LJ , LK,ΛJ ,ΛK elements

of Hodge triples associated with J,K. Then [LJ ,Λk]α = 0. However, [LJ ,Λk]

acts on Λp,q(M) as (p− q)
√
−1 , which implies that α is of Hodge type (n, n).

COROLLARY: Let (M,Ω) be a holomorphic symplectic manifold, π : M −→B

a holomorphic Lagrangian fibration, and B1 ⊂M a section of π. Suppose that

Ω
∣∣∣TB1

is of Hodge type (1,1) + (2,0) with respect to the natural complex

structure on B1 = B. Then there exists a degenerate twistor deformation

given by Ω + π∗η, such that B1 is holomorphic.
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Sections of holomorphic Lagrangian fibrations (2)

THEOREM: Let (M,Ω) be a holomorphic symplectic manifold, π : M −→B

be a holomorphic Lagrangian fibration, and B1 ⊂ M a smooth section of π.

Consider the form Ω
∣∣∣B1

as a form on B. Then it has type (2,0) + (1,1).

REMARK: Then it follows that B1 becomes holomorphic after a de-

generate twistor deformation.

Proof: Consider the map Ω : TM −→ T ∗M . Since π is a Lagrangian fibration,

Ω(TπM) ⊂ π∗(Λ1B), where TπM denotes vector tangent to the fibers of π

(“vertical tangent vectors”) Since the (1,0)-component of π−1(T0,1B) is

vertical, one has

Ω(π−1(T0,1B)) ⊂ π∗Λ1,0B.

This implies that Ω
∣∣∣B1

pairs (0,1) vectors to (1,0)-vectors, and has

type (1,1) + (2,0).
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