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Plan of the talk

This is a joint work with Sasha Anan′in (UNICAMP)

1. Introduce hyperkähler manifolds and their moduli. Define the bira-

tional moduli space as a quotient of a Teichmüller space Per = SO(b2−
3,3)/SO(2)× SO(b2 − 3,1) by an arithmetic group ΓI.

2. Define the polarized Teichmüller space as a divisor in Per.

3. Show that its image in the moduli space Per/ΓI is dense.

4. Explain the background story: why is this interesting.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by T̃eich the space of complex structures on M , and let Teich :=

T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

Remark: This terminology is standard for curves.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkähler type, that is, holomor-

phically symplectic and Kähler. It is open in the usual Teichmüller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-

fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-
separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-
ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-
ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is
called the birational moduli space of M .

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/ΓI,
where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and ΓI is an arithmetic
group in O(H2(M,R), q).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H2(M,Z) determines the complex structure. For dimCM > 2, it is false.
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Polarized Teichmüller space

THEOREM: (Demailly, Paun, Huybrechts, Boucksom) Let M be a hy-

perkähler manifold, such that all integer (1,1)-classes satisfy q(ν, ν) > 0.

Then its Kähler cone is one of two connected components of the set

K :=
{
ν ∈ H1,1(M,R)

∣∣∣ q(ν, ν) > 0
}
.

REMARK: H1,1(M,R) is an orthogonal complement to 〈Ω,Ω〉, where Ω is

the cohomology class of holomorphic symplectic form.

DEFINITION: Define Teichη ⊂ Teich to be the set of all I with l := Per(I) ∈
Per ⊂ PH2(M,C) satisfying l ∈ 〈Ω,Ω〉⊥.

COROLLARY: Let η ∈ H2(M,Z) be a vector which satisfies q(η, η) > 0.

Then, for a general I ∈ Teichη, the class η is ample on (M, I).

DEFINITION: We call Teichη the polarized Teichmüller space of M . It

is a divisor in Teich.

REMARK: η is not necessarily ample in non-generic points of Teichη. How-

ever, the set of I for which η is ample is open and dense in Teichη.
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Polarized moduli space

DEFINITION: Let ΓI,η be a subgroup of a mapping class group preserving

η and a given component of Teichη. Define the polarized birational moduli

space as a quotient (Teichη / ∼)/ΓI,η.

THEOREM: (Anan′in-V.; this is the main result of this talk)

For each η, the birational polarized moduli space is dense in the birational

moduli space Teichb /Γ.

REMARK: For a K3 surface, the moduli of quartic surfaces is dense in

the moduli of all K3 surfaces. The original proofs of many results on K3

surfaces were based on this observation.
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Polarized moduli space and the 2-plane Grassmannian

The density theorem is implied by the following algebraic observation.

THEOREM: Let VZ ⊂ V be an integer lattice in a vector spac V equipped
with an integral bilinear form of signature (+ + +,−...−). Given a positive
integer vector η ∈ VZ, denote by Gr++(η⊥) ⊂ Gr++(V ) the space of all ori-
ented, positive 2-planes orthogonal to η. Consider a finite index subgroup
G ⊂ SO(VZ) acting on Gr++(V ) in a natural way. Then G · Gr++(η⊥) is
dense in Gr++(V ).

For our purposes, VZ = (H2(M,Z), q) is a lattice of second cohomology of a
hyperkähler manifold, and Gr++(η⊥) = Per(Teichη), and G = ΓI the subgroup
of the mapping class group preserving a connected component TeichI.

Then, density of G · Gr++(η⊥) in Gr++(V ) is equivalent to the density of
the image of Teichη in the birational moduli space Teichb /ΓI.

REMARK: When VZ is unimodular, the group SO(VZ) acts transitively on
the set of integer vectors of a given length in VZ (“Eichler’s criterion”).
Therefore, the orbit G · η is dense in P(V ), hence G · Gr++(η⊥) is dense in
Gr++(V ).

When VZ is not unimodular, this is false.
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Proof of the density theorem

Step 1: It suffices to prove it for V of signature (+ + +−). Since the
rational subspaces are dense in Gr++(V ), it suffices to show that any rational
2-plane C ∈ Gr++(V ) belongs to the closure of G·Gr++(η⊥). Choose a rational
space V0 of signature (3,1) containing C and η, and notice that G ∩ SO(V0)
has finite index in SO(V0,Z).

From now on we assume that V has signature (3,1).

Step 2: Using the homeomorphism Gr++(V ) → Gr+−(V ), G 7→ G⊥ mapping
the subspaces of signature ++ to their orthogonal complements (of signature
+−, we reformulate the density theorem as follows: Every rational plane
C0 ∈ Gr+−(V ) belongs to the closure of G ·

{
R ∈ Gr+−(V )

∣∣∣ R 3 l}.
Step 3: Consider the space W (of signature + + −) generated by R and l.
The statement of Step 3 is implied by the following lemma.

LEMMA: Let V be an R-vector space equipped with a symmetric form of
signature + +−, G a subgroup of finite index in Ø(VZ), where VZ is a lattice
in V , and l ∈ V a positive vector. Then G ·

{
C ∈ Gr+−(V )

∣∣∣ C 3 l} is dense
in Gr+−(V ).
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The density lemma and the hyperbolic plane

Now we prove the lemma stated above:

LEMMA: Let V be an R-vector space equipped with a symmetric form of
signature + +−, G a subgroup of finite index in Ø(VZ), where VZ is a lattice
in V , and l ∈ V a positive vector. Then G ·

{
C ∈ Gr+−(V )

∣∣∣ C 3 l} is dense
in Gr+−(V ).

It is a statement about geometry of the hyperbolic plane H.

REMARK: Identify H with the projectivization of the negative cone in V .
Any geodesic on H is obtained as a projectivization of a subspace
C ∈ Gr+−(V ).

CLAIM: Let l be a positive vector in V , and C a (+−)-plane. Then l ∈ C
iff the geodesic PC is orthogonal to the geodesic Pl⊥ ∈ Gr+−(V ).

We reduced the lemma above to the following claim.

CLAIM: Let V be a vector space of signature + +−, C,C′ a pair of distinct
geodesics, and G a subgroup of finite index in SO(VZ). Then for some γ ∈ G,
C intersects γ(C′), and the set of angles {α = ∠(C, γ(C′)) | γ ∈ G}
between those geodesics is dense in [0, π].
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Open questions

QUESTION: This proof does not work when q(η, η) 6 0. Is the density

theorem true for such η? It should be.

QUESTION: Let Mη be the polarized moduli space. It is quasiprojective

and admits a complex analytic compactification (Baily-Borel compactifica-

tion) Is there a way to compactify the moduli space of all hyperkähler

manifolds? Should follow from Gromov’s compactification.

QUESTION: Tosatti has shown that the Gromov’s limits have algebraic

properties as long as the volume of the Kähler form stays bounded from

below. In particular, it is compatible with the Viehweg’s universal family on

the Baily-Borel compactification (proven in 1980-ies by Kobayashi, Todorov

for K3). Is there a way to relate Gromov’s limits of the set of all Ricci-flat

metrics on M with algebraic geometry?

REMARK: Gromov’s collapse has obvious applications to the SYZ/abundance

conjecture for hyperkähler manifolds.
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