Eigenvalues of automorphisms of hyperkähler manifolds

Misha Verbitsky

HSE, LAG seminar, 22.10.2021

Eigenvalues of an automorphism of a hyperkähler manifold

THEOREM: (Bogomolov, Kamenova, Lu, V.)

Let (M,I) be a hyperkähler manifold, and f an automorphism of M. Assume that f acts on $H^2(M)$ with an eigenvalue $\alpha>0$. Then all eigenvalues of γ have absolute value which is a power of $u:=\alpha^{1/2}$. Moreover, the maximal of these eigenvalues on even cohomology $H^{2d}(M)$ is equal to α^d (with eigenspace of dimension 1), and on odd cohomology $H^{2d+1}(M)$ it is strictly less than $\alpha^{\frac{2d+1}{2}}$. Finally, let $H^p_k(M) \subset H^p(M)$ be the direct sum of all eigenspaces associated with eigenvalues α satisfying $|\alpha|=u^k$. Then $\dim H^p_k(M)=h^{k,p-k}(M)$.

COROLLARY:

$$\lim_{n \to \infty} \frac{\log \operatorname{Tr}(f^n)|_{H^*(M)}}{n} = \alpha.$$

In particular, the number of k-periodic points grows as α^{nk} .

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I \cdot, \cdot)$, $\omega_J := g(J \cdot, \cdot)$, $\omega_K := g(K \cdot, \cdot)$.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_I + \sqrt{-1} \, \omega_K$ is a holomorphic symplectic form on (M,I).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **simple**, or **maximal** holonomy, or **IHS** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

THEOREM: ("Bochner's vanishing")

Let M be a maximal holonomy hyperkähler manifold. Then $H^{p,0}=0$ for p odd, and $H^{p,0}=\mathbb{C}$ for p even.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M=2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta,\eta)^n$, for some primitive integer quadratic form q on $H^2(M,\mathbb{Z})$, and c>0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_{X} \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{2n} \left(\int_{X} \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n} \right) \left(\int_{X} \eta \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: q has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

K. Oguiso: Dynamical degree of an automorphism of a hyperkähler manifold

THEOREM: (K. Oguiso) Let $f: M \to M$ be an automorphism of a hyperkähler manifold with a real eigenvalue $\alpha > 1$ on $H^2(M)$. Then $h_{2d}(f) \geqslant \alpha^d$ for all $d \leqslant \dim_{\mathbb{H}}(M)$.

Proof: $H^{2d}(M)$ contains the symmetric tensor product $Sym^d(H^2(M))$.

Problem: Not precise enough: we don't get estimations of number of periodic points, because we have no control over other eigenvalues.

Classification of automorphisms of hyperbolic space

REMARK: The group O(m, n), m, n > 0 has 4 connected components. We denote the connected component of 1 by $SO^+(m, n)$. We call a vector v positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature (1,n), $Pos(V) = \{x \in V \mid q(x,x) > 0\}$ its **positive cone**, and \mathbb{P}^+V projectivization of Pos(V). Denote by g any SO(V)-invariant Riemannian structure on \mathbb{P}^+V . Then (\mathbb{P}^+V,g) is called **hyperbolic space**, and the group $SO^+(V)$ the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and $\alpha \in SO^+(1, n)$ is an isometry acting on V. Then one and only one of these three cases occurs

- (i) α has an eigenvector x with q(x,x) > 0 (α is "elliptic isometry")
- (ii) α has an eigenvector x with q(x,x)=0 and a real eigenvalue λ_x satisfying $|\lambda_x|>1$ (α is "hyperbolic isometry")
- (iii) α has a unique eigenvector x with q(x,x)=0 (α is "parabolic isometry").

REMARK: All eigenvalues of elliptic and parabolic isometries have absolute value 1. Hyperbolic and elliptic isometries are semisimple (that is, diagonalizable).

Automorphisms of hyperkahler manifolds

REMARK: Serge Cantat argues for a change of terminology to use "loxodromic" instead of "hyperbolic", and using "hyperbolic" for automorphisms which act trivially on a codimension 2 hyperspace.

DEFINITION: An automorphism of a hyperkähler manifold (M,I) is called **elliptic (parabolic, hyperbolic)** if it is elliptic (parabolic, hyperbolic) on $H_I^{1,1}(M,\mathbb{R})$.

THEOREM: (E. Amerik, V.)

Let M be a hyperkähler manifold, with $b_2(M) \ge 5$. Then M has a deformation admitting a hyperbolic automorphism.

THEOREM 1: (Bogomolov, Kamenova, Lu, V.)

Let M be a hyperkähler manifold, and $\gamma \in \operatorname{Aut}(H^*(M))$ an automorphism preserving the Hodge decomposition and acting on $H^{1,1}(M)$ hyperbolically. Denote by α the eigenvalue of γ on $H^2(M,\mathbb{R})$ with $|\alpha|>1$. Replacing γ by γ^2 if necessary, we may assume that $\alpha>1$. Then all eigenvalues of γ have absolute value which is a power of $\alpha^{1/2}$. Moreover, the eigenspace of eigenvalue $\alpha^{k/2}$ on $H^d(M)$ is isomorphic to $H^{\frac{(d+k)}{2},\frac{(d-k)}{2}}(M)$.

The proof of this result follows.

Hodge structures and automorphisms

REMARK: The Hodge decomposition defines multiplicative action of U(1) on cohomology $H^*(M)$, with $t \in U(1) \subset \mathbb{C}$ acting on $H^{p,q}(M)$ as t^{p-q} .

THEOREM: (V., 1995) Let G be the group generated by U(1)-action for all complex structures on a hyperkähler manifold. **Then** G **is isomorphic** to $\mathrm{Spin}^+(H^2(M,\mathbb{R}),q)$ (with center acting trivially on even-dimensional forms and as -1 on odd-dimensional forms). Here Spin^+ denotes the connected component, and q is BBF form.

Theorem 2: The connected component of the group of automorphisms of $H^*(M)$ is mapped to G surjectively and with compact kernel.

Proof: Aut $(H^*(M))$ is mapped to $SO(H^2(M,\mathbb{R}),q)$ by the restriction map; indeed, Aut $(H^*(M))$ is compatible with the BBF form, as follows from the Fujiki theorem. It is surjective because Aut $(H^*(M))$ contains the Hodge U(1)-action.

Finally, the kernel K of the map $\operatorname{Aut}(H^*(M)) \to G$ acts trivially on $H^2(M)$, hence commutes with the Lefschetz SL(2)-triples. However, the Hodge decomposition is expressed through the Lefschetz SL(2)-action by $\mathfrak{so}(1,4)$ -theorem. Therefore, K also preserves the Hodge type. Therefore, K preserves the Riemann-Hodge form, which is positive definite.

 $Aut(H^*(M))$ is a direct product

Theorem 2: The connected component of the group of automorphisms of $H^*(M)$ is mapped to G surjectively and with compact kernel.

REMARK: By Theorem 2, the group $\operatorname{Aut}(H^*(M))$ is a semidirect product, $\operatorname{Aut}(H^*(M)) = G \ltimes K$. However, elements of K commute with elements of G, because they commute with the Hodge decomposition. This gives $\operatorname{Aut}(H^*(M)) = K \times G$.

COROLLARY: For each $f \in Aut(H^*(M))$, there exists an element $f' \in G = Spin^+(H^2(M,\mathbb{R}),q)$ acting on $H^*(M)$ with eigenvalues of the same absolute value.

Proof: Let f = f'k, where $f' \in G$, $k \in K$. Since k belongs to a compact group, all its eigenvalues have absolute value 1; since f' and k commute, eigenvalues of $f' = fk^{-1}$ are products of eigenvalues of f and eigenvalues of k.

COROLLARY: We obtain that it suffices to prove Theorem 1 assuming that $\gamma \in G$.

Eigenvalues of hyperbolic automorphisms

LEMMA: Let $\gamma \in SO(V^{1,n})$ be a hyperbolic automorphism of a vector space of signature (1,n). Then there exists $\gamma' \in SO(V^{1,n})$ with all eigenvalues equal 2 except 2 of them, commuting with γ and with $\gamma'\gamma^{-1}$ elliptic.

Proof: Let α, α^{-1} be the eigenvalues of γ with absolute value $\neq 1$, and $X \subset V^{1,n}$ the corresponding 2-dimensional subspace. Then $X^{\perp} \subset V^{1,n}$ is a negative definite subspace preserved by γ .

Let γ' act as γ on X and as identity on X^{\perp} . Then $\gamma'\gamma^{-1}$ acts as isometry on X^{\perp} and trivially on X, hence it has a positive eigenvector, and all its eigenvalues have absolute value 1. \blacksquare

REMARK: Since eigenvalues of γ and γ' on $H^*(M)$ have the same absolute values, it suffices to prove Theorem 1 for γ equal to identity on a codimension 2 subspace.

Eigenvalues of hyperbolic automorphisms

CLAIM: Let G be a group, and V its representation. Then the eigenvalues of g and xgx^{-1} are equal for all $x,g \in G$.

PROPOSITION: Let (M,I) be a hyperkähler manifold, and $\gamma \in G = \operatorname{Spin}^+(H^2(M,\mathbb{R}),q)$ a hyperbolic isometry which acts as identity on a codimension 2 subspace in $H^2(M)$. Consider the one-parametric subgroup $H_\gamma := e^{\mathbb{C} \log \gamma}$ in the complexification $G_{\mathbb{C}}$ of G. Let W act on $H^{p,q}(M)$ as a multiplication by a scalar $\sqrt{-1}$ (p-q), and let $H=e^{\mathbb{C} W}$ be the corresponding one-parametric subgroups in $G_{\mathbb{C}}$. Then H_γ and H are conjugate by some $h \in G_{\mathbb{C}}$.

Proof: Both H and H_{γ} act on $H^2(M,C)$ with 2-dimensional eigenspaces X with eigenvalues λ, λ^{-1} and as identity on X^{\perp} . However, all such X are conjugate by some $h \in G_{\mathbb{C}}$.

COROLLARY: The eigenvalue decomposition for γ acting on $H^*(M)$ is conjugate to the Hodge decomposition, and the eigenspaces with absolute value $\alpha^{k/2}$ under this conjugation correspond to $H^{p,q}(M)$ with p-q=k.

This finishes the proof of Theorem 1.

Topological entropy

DEFINITION: Let K be a metric space. A subset $S \subset K$ is called ε -**separated** if for all $x \neq y$ in S, $d(x,y) \geqslant \varepsilon$. Denote my $N(K,\varepsilon)$ the cardinality of a maximal ε -separated subset of $S \subset K$.

DEFINITION: Let (M,d) be a metric space, and $f: M \to M$ a self-map. Denote by d_n the metric $d_n(x,y) = \max_{k=0}^{n-1} d(f^k(x), f^k(y))$. The **topological** entropy of f is the number

$$h(f) := \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{\log N(M, d_n, \varepsilon)}{n}.$$

REMARK: Topological entropy counts the exponential growth of the number of ε -separated orbits.

Exercise: Assume that M is a compact metric space. Prove that this number is independent from the choice of d.

Gromov's theorem

DEFINITION: Let T be an automorphism of a manifold M, and consider the corresponding action on $H^d(M,\mathbb{R})$. The d-th dynamical degree is logarithm of the maximal absolute value of its eigenvalues.

THEOREM: (Gromov)

Let M be compact, Kähler, $f: M \rightarrow M$ its automorphism, $h_d(f)$ the d-th dynamical degree, and h(f) topological entropy. Then $f(h) = \max h_d(f)$.

Proof: M. Gromov, On the entropy of holomorphic maps, http://www.ihes.fr/~gromov/PDF/10%5B24%5D.pdf, 1977.

S. Friedland, Entropy of algebraic maps, Proceedings of the Conference in Honor of Jean-Pierre Kahane, J. Fourier Anal. Appl. (1995), Special Issue, 215-228. http://homepages.math.uic.edu/~friedlan/Dynalg.pdf ■