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Eigenvalues of an automorphism of a hyperkahler manifold

THEOREM: (Bogomolov, Kamenova, Lu, V.)

Let (M,I) be a hyperkahler manifold, and f an automorphism of M. Assume
that f acts on H?(M) with an eigenvalue a > 0. Then all eigenvalues of
~ have absolute value which is a power of u := «l/2. Moreover, the
maximal of these eigenvalues on even cohomology sz(M) IS equal to
o (with eigenspace of dimension 1), and on odd cohomology H24t1(a\)

2d+1
it is strictly less than o 2 . Finally, let Hﬁ(M) C HP(M) be the direct sum
of all eigenspaces associated with eigenvalues a satisfying |a| = v®. Then
dimHY (M) = hFP=F(M).

COROLLARY::
lim —

n—oo n

.

In particular, the number of k-periodic points grows as o™*.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
wy .= 9(17)! Wy .= g(J7)’ WK .= Q(K,)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

REMARK: Hyperkahler manifolds are holomorphically symplectic. In-
deed, Q2 :=wj+ vV—1wg is a holomorphic symplectic form on (M, I).
3



Eigenvalues of automorphisms M. Verbitsky

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple, or maximal
holonomy, or IHS if 71(M) =0, H%9(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.

THEOREM: (“Bochner’s vanishing”)
Let M be a maximal holonomy hyperkahler manifold. Then HPO = 0 for P

odd, and HPO = C for p even.
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T he Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkidhler. Then [,;n°" = cq(n,n)", for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

M) = [ gagar A

_1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
2n X X

where €2 is the holomorphic symplectic form, and A > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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K. Oguiso: Dynamical degree of an automorphism of a hyperkahler
manifold

THEOREM: (K. Oguiso) Let f: M—M be an automorphism of a hy-
perkdhler manifold with a real eigenvalue oo > 1 on H2(M). Then hoy(f) > o
for all d < dimyg(M).

Proof: H24(M) contains the symmetric tensor product Sym¢(H2(M)). =

Problem: Not precise enough: we don’t get estimations of number of
periodic points, because we have no control over other eigenvalues.
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Classification of automorphisms of hyperbolic space

REMARK: The group O(m,n),m,n > 0 has 4 connected components. We
denote the connected component of 1 by SOT(m,n). We call a vector v
positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form g of signature
(1,n), Pos(V) ={z €V | q¢(z,z) > 0} its positive cone, and PTV projec-
tivization of Pos(V). Denote by g any SO(V)-invariant Riemannian structure
on PTV. Then (PTV,q) is called hyperbolic space, and the group SOT (V)
the group of oriented hyperbolic isometries.

Theorem-definition: Let n >0, and o € SO+(1,n) IS an isometry acting on
V. Then one and only one of these three cases occurs

(i) « has an eigenvector x with g(x,z) > 0 («a is “elliptic isometry”)

(ii) o has an eigenvector = with ¢g(x,2) = 0 and a real eigenvalue \;
satisfying |Az| > 1 («a is “hyperbolic isometry”)

(ili) o« has a unique eigenvector = with ¢(z,z) = 0 (« is “parabolic
isometry”).

REMARK: All eigenvalues of elliptic and parabolic isometries have ab-
solute value 1. Hyperbolic and elliptic isometries are semisimple (that
is, diagonalizable).
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Automorphisms of hyperkahler manifolds

REMARK: Serge Cantat argues for a change of terminology to use “loxo-
dromic” instead of “hyperbolic’, and using “hyperbolic” for automorphisms
which act trivially on a codimension 2 hyperspace.

DEFINITION: An automorphism of a hyperkahler manifold (M, ) is called

elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
1,1

Hy ™ (M,R).

THEOREM: (E. Amerik, V.)
Let M be a hyperkahler manifold, with (M) > 5. Then M has a
deformation admitting a hyperbolic automorphism.

THEOREM 1: (Bogomolov, Kamenova, Lu, V.)

Let M be a hyperkahler manifold, and ~ € Aut(H*(M)) an automorphism
preserving the Hodge decomposition and acting on Hlvl(M) hyperbolically.
Denote by a the eigenvalue of v on H2(M,R) with |a| > 1. Replacing v by ~2
if necessary, we may assume that « > 1. Then all eigenvalues of v have

absolute value which is a power of ol/2. Moreover, the eigenspace of
(d+k) (d—k)
eigenvalue o*/2 on HY(M) is isomorphic to H 2 = 2 (M).

The proof of this result follows.
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Hodge structures and automorphisms

REMARK: The Hodge decomposition defines multiplicative action of U(1)
on cohomology H*(M), with t € U(1) Cc C acting on HP9(M) as tP~1.

THEOREM: (V., 1995) Let G be the group generated by U(1)-action for
all complex structures on a hyperkahler manifold. Then G i1s isomorphic
to SpinT(H2(M,R),q) (with center acting trivially on even-dimensional forms
and as -1 on odd-dimensional forms). Here SpinT denotes the connected
component, and ¢q is BBF form. =

Theorem 2: The connected component of the group of automorphisms
of H*(M) is mapped to G surjectively and with compact kernel.

Proof: Aut(H*(M)) is mapped to SO(H?(M,R),q) by the restriction map:
indeed, Aut(H*(M)) is compatible with the BBF form, as follows from the
Fujiki theorem. It is surjective because Aut(H*(M)) contains the Hodge
U(1)-action.

Finally, the kernel K of the map Aut(H*(M))—G acts trivially on H2(M),
hence commutes with the Lefschetz SL(2)-triples. However, the Hodge
decomposition is expressed through the Lefschetz SL(2)-action by so(1,4)-
theorem. Therefore, K also preserves the Hodge type. Therefore, K pre-
serves the Riemann-Hodge form, which is positive definite. m

O]



Eigenvalues of automorphisms M. Verbitsky

Aut(H*(M)) is a direct product

Theorem 2: The connected component of the group of automorphisms
of H*(M) is mapped to G surjectively and with compact kernel.

REMARK: By Theorem 2, the group Aut(H*(M)) is a semidirect product,
Aut(H*(M)) = G x K. However, elements of K commute with elements
of G, because they commute with the Hodge decomposition. This gives
Aut(H*(M)) = K x G.

COROLLARY: For each f € Aut(H*(M)), there exists an element f' ¢
G = SpinT(H2(M,R),q) acting on H*(M) with eigenvalues of the same
absolute value.

Proof: Let f = f'k, where f' € G, k € K. Since k belongs to a compact
group, all its eigenvalues have absolute value 1; since f’ and k commute,
eigenvalues of f/ = fk—1 are products of eigenvalues of f and eigenvalues of
k. m

COROLLARY: We obtain that it suffices to prove Theorem 1 assuming

that v € G.
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Eigenvalues of hyperbolic automorphisms

LEMMA: Let v € SO(VI™) be a hyperbolic automorphism of a vector space
of signature (1,n). Then there exists 1/ € SO(V1™) with all eigenvalues
equal 2 except 2 of them, commuting with v and with +/~~1 elliptic.

Proof: Let a,a~! be the eigenvalues of v with absolute value # 1, and
X c VIm the corresponding 2-dimensional subspace. Then X+ c VIm is a
negative definite subspace preserved by 7.

Let 4/ act as v on X and as identity on X1. Then ~/v~1 acts as isometry
on X1 and trivially on X, hence it has a positive eigenvector, and all its
eigenvalues have absolute value 1. =

REMARK: Since eigenvalues of v and v/ on H*(M) have the same absolute

values, it suffices to prove Theorem 1 for v equal to identity on a
codimension 2 subspace.
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Eigenvalues of hyperbolic automorphisms

CLAIM: Let G be a group, and V its representation. Then the eigenvalues
of ¢ and zgxz~1 are equal for all z,g € G. =

PROPOSITION: Let (M,I) be a hyperkahler manifold, and v €¢ G =
SpinT(H2(M,R), q) a hyperbolic isometry which acts as identity on a codi-
mension 2 subspace in HQ(M). Consider the one-parametric subgroup H~ 1=
eC1997 in the complexification G¢ of G. Let W act on HPY(M) as a mul-
tiplication by a scalar v/—1 (p — q), and let H = eW be the corresponding
one-parametric subgroups in G¢. Then H, and H are conjugate by some
h € G@.

Proof: Both H and Hy act on H?(M, C) with 2-dimensional eigenspaces X
with eigenvalues A\, A~1 and as identity on X-+. However, all such X are
conjugate by some h e G¢. =

COROLLARY: The eigenvalue decomposition for v acting on H*(M) is
conjugate to the Hodge decomposition, and the eigenspaces with absolute
value a*/2 under this conjugation correspond to HP4(M) with p — q = k.

This finishes the proof of Theorem 1.
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Topological entropy

DEFINITION: Let K be a metric space. A subset S C K is called e-
separated if for all x Zy in S, d(z,y) > . Denote my N(K,¢e) the cardinality
of a maximal e-separated subset of S C K.

DEFINITION: Let (M,d) be a metric space, and f : M—M a self-map.
Denote by dy, the metric dn(z,y) = maxy_3 d(f*(x), f*(y)). The topological
entropy of f is the number

log N (M
(P = lim timsup 23N M dn, )

e—0 n—oo n

REMARK: Topological entropy counts the exponential growth of the number
of e-separated orbits.

Exercise: Assume that M is a compact metric space. Prove that this
number is independent from the choice of d.
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Gromov’s theorem

DEFINITION: Let T be an automorphism of a manifold M, and consider the
corresponding action on Hd(M, R). The d-th dynamical degree is logarithm
of the maximal absolute value of its eigenvalues.

THEOREM: (Gromov)
Let M be compact, Kahler, f : M—M its automorphism, h,(f) the d-th
dynamical degree, and h(f) topological entropy. Then f(h) = maxh, (f).

Proof: M. Gromov, On the entropy of holomorphic maps, http://www.ihes.
fr/~gromov/PDF/10%5B247%5D.pdf, 1977.

S. Friedland, Entropy of algebraic maps, Proceedings of the Conference in
Honor of Jean-Pierre Kahane, J. Fourier Anal. Appl. (1995), Special Issue,
215-228. http://homepages.math.uic.edu/~friedlan/Dynalg.pdf =
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