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Eigenvalues of an automorphism of a hyperkähler manifold

THEOREM: (Bogomolov, Kamenova, Lu, V.)

Let (M, I) be a hyperkähler manifold, and f an automorphism of M . Assume

that f acts on H2(M) with an eigenvalue α > 0. Then all eigenvalues of

γ have absolute value which is a power of α1/2. Moreover, the maximal

of these eigenvalues on even cohomology H2d(M) is equal to αd (with

eigenspace of dimension 1), and on odd cohomology H2d+1(M) it is

strictly less than α
2d+1

2 .

COROLLARY:

lim
n→∞

log Tr(fn)
∣∣∣H∗(M)

n
= α.

In particular, the number of k-periodic points grows as αnk.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

REMARK: Hyperkähler manifolds are holomorphically symplectic. In-

deed, Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple, or maximal
holonomy, or IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

THEOREM: (“Bochner’s vanishing”)
Let M be a maximal holonomy hyperkähler manifold. Then Hp,0 = 0 for p

odd, and Hp,0 = C for p even.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

2n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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K. Oguiso: Dynamical degree of an automorphism of a hyperkähler

manifold

THEOREM: (K. Oguiso) Let f : M→M be an automorphism of a hy-

perkähler manifold with a real eigenvalue α > 1 on H2(M). Then h2d(f) > αd

for all d 6 dimH(M).

Proof: H2d(M) contains the symmetric tensor product Symd(H2(M)).

Problem: Not precise enough: we don’t get estimations of number of

periodic points, because we have no control over other eigenvalues.
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Classification of automorphisms of hyperbolic space

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We
denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature
(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-
tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure
on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is an isometry acting on
V . Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)
(ii) α has an eigenvector x with q(x, x) = 0 and a real eigenvalue λx

satisfying |λx| > 1 (α is “hyperbolic isometry”)
(iii) α has a unique eigenvector x with q(x, x) = 0 (α is “parabolic

isometry”).

REMARK: All eigenvalues of elliptic and parabolic isometries have ab-
solute value 1. Hyperbolic and elliptic isometries are semisimple (that
is, diagonalizable).
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Automorphisms of hyperkahler manifolds

REMARK: Serge Cantat argues for a change of terminology to use “loxo-
dromic” instead of “hyperbolic”, and using “hyperbolic” for automorphisms
which act trivially on a codimension 2 hyperspace.

DEFINITION: An automorphism of a hyperkähler manifold (M, I) is called
elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
H

1,1
I (M,R).

THEOREM: (E. Amerik, V.)
Let M be a hyperkähler manifold, with b2(M) > 5. Then M has a
deformation admitting a hyperbolic automorphism.

THEOREM 1: (Bogomolov, Kamenova, Lu, V.)
Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an automorphism
preserving the Hodge decomposition and acting on H1,1(M) hyperbolically.
Denote by α the eigenvalue of γ on H2(M,R) with |α| > 1. Replacing γ by γ2

if necessary, we may assume that α > 1. Then all eigenvalues of γ have
absolute value which is a power of α1/2. Moreover, the eigenspace of

eigenvalue αk/2 on Hd(M) is isomorphic to H
(d+k)

2 ,(d−k)
2 (M).

The proof of this result follows.
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Hodge structures and automorphisms

REMARK: The Hodge decomposition defines multiplicative action of U(1)
on cohomology H∗(M), with t ∈ U(1) ⊂ C acting on Hp,q(M) as tp−q.

THEOREM: (V., 1995) Let G be the group generated by U(1)-action for
all complex structures on a hyperkähler manifold. Then G is isomorphic
to Spin+(H2(M,R), q) (with center acting trivially on even-dimensional forms
and as -1 on odd-dimensional forms). Here Spin+ denotes the connected
component, and q is BBF form.

Theorem 2: The connected component of the group of automorphisms
of H∗(M) is mapped to G surjectively and with compact kernel.

Proof: Aut(H∗(M)) is mapped to SO(H2(M,R), q) by the restriction map;
indeed, Aut(H∗(M)) is compatible with the BBF form, as follows from the
Fujiki theorem. It is surjective because Aut(H∗(M)) contains the Hodge
U(1)-action.

Finally, the kernel K of the map Aut(H∗(M))→G acts trivially on H2(M),
hence commutes with the Lefschetz SL(2)-triples. However, the Hodge
decomposition is expressed through the Lefschetz SL(2)-action by so(1,4)-
theorem. Therefore, K also preserves the Hodge type. Therefore, K pre-
serves the Riemann-Hodge form, which is positive definite.
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Aut(H∗(M)) is a direct product

Theorem 2: The connected component of the group of automorphisms

of H∗(M) is mapped to G surjectively and with compact kernel.

REMARK: By Theorem 2, the group Aut(H∗(M)) is a semidirect product,

Aut(H∗(M)) = G n K. However, elements of K commute with elements

of G, because they commute with the Hodge decomposition. This gives

Aut(H∗(M)) = K ×G.

COROLLARY: For each f ∈ Aut(H∗(M)), there exists an element f ′ ∈
G = Spin+(H2(M,R), q) acting on H∗(M) with eigenvalues of the same

absolute value.

Proof: Let f = f ′k, where f ′ ∈ G, k ∈ K. Since k belongs to a compact

group, all its eigenvalues have absolute value 1; since f ′ and k commute,

eigenvalues of f ′ = fk−1 are products of eigenvalues of f and eigenvalues of

k.

COROLLARY: We obtain that it suffices to prove Theorem 1 assuming

that γ ∈ G.
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Eigenvalues of hyperbolic automorphisms

LEMMA: Let γ ∈ SO(V 1,n) be a hyperbolic automorphism of a vector space

of signature (1, n). Then there exists γ′ ∈ SO(V 1,n) with all eigenvalues

equal 2 except 2 of them, commuting with γ and with γ′γ−1 elliptic.

Proof: Let α, α−1 be the eigenvalues of γ with absolute value 6= 1, and

X ⊂ V 1,n the corresponding 2-dimensional subspace. Then X⊥ ⊂ V 1,n is a

negative definite subspace preserved by γ.

Let γ′ act as γ on X and as identity on X⊥. Then γ′γ−1 acts as isometry

on X⊥ and trivially on X, hence it has a positive eigenvector, and all its

eigenvalues have absolute value 1.

REMARK: Since eigenvalues of γ and γ′ on H∗(M) have the same absolute

values, it suffices to prove Theorem 1 for γ equal to identity on a

codimension 2 subspace.
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Eigenvalues of hyperbolic automorphisms

CLAIM: Let G be a group, and V its representation. Then the eigenvalues
of g and xgx−1 are equal for all x, g ∈ G.

PROPOSITION: Let (M, I) be a hyperkähler manifold, and γ ∈ G =
Spin+(H2(M,R), q) a hyperbolic isometry which acts as identity on a codi-
mension 2 subspace in H2(M). Consider the one-parametric subgroup Hγ :=
eC log γ in the complexification GC of G. Let W act on Hp,q(M) as a mul-
tiplication by a scalar

√
−1 (p − q), and let H = eCW be the corresponding

one-parametric subgroups in GC. Then Hγ and H are conjugate by some
h ∈ GC.

Proof: Both H and Hγ act on H2(M,C) with 2-dimensional eigenspaces X

with eigenvalues λ, λ−1 and as identity on X⊥. However, all such X are
conjugate by some h ∈ GC.

COROLLARY: The eigenvalue decomposition for γ acting on H∗(M) is
conjugate to the Hodge decomposition, and the eigenspaces with absolute
value αk/2 under this conjugation correspond to Hp,q(M) with p− q = k.

This finishes the proof of Theorem 1.
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Topological entropy

DEFINITION: Let K be a metric space. A subset S ⊂ K is called ε-

separated if for all x 6= y in S, d(x, y) > ε. Denote my N(K, ε) the cardinality

of a maximal ε-separated subset of S ⊂ K.

DEFINITION: Let (M,d) be a metric space, and f : M→M a self-map.

Denote by dn the metric dn(x, y) = maxn−1
k=0 d(fk(x), fk(y)). The topological

entropy of f is the number

h(f) := lim
ε→0

lim sup
n→∞

logN(M,dn, ε)

n
.

REMARK: Topological entropy counts the exponential growth of the number

of ε-separated orbits.

Exercise: Assume that M is a compact metric space. Prove that this

number is independent from the choice of d.
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Gromov’s theorem

DEFINITION: Let T be an automorphism of a manifold M , and consider the

corresponding action on Hd(M,R). The d-th dynamical degree is logarithm

of the maximal absolute value of its eigenvalues.

THEOREM: (Gromov)

Let M be compact, Kähler, f : M→M its automorphism, hd(f) the d-th

dynamical degree, and h(f) topological entropy. Then f(h) = maxhd(f).

Proof: M. Gromov, On the entropy of holomorphic maps, http://www.ihes.

fr/~gromov/PDF/10%5B24%5D.pdf, 1977.

S. Friedland, Entropy of algebraic maps, Proceedings of the Conference in

Honor of Jean-Pierre Kahane, J. Fourier Anal. Appl. (1995), Special Issue,

215-228. http://homepages.math.uic.edu/~friedlan/Dynalg.pdf
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