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Eigenvalues of an automorphism of a hyperkahler manifold

THEOREM: (Bogomolov, Kamenova, Lu, V.)

Let (M, I) be a hyperkahler manifold, and f an automorphism of M. Assume
that f acts on H2(M) with an eigenvalue o > 0. Then all eigenvalues of
~ have absolute value which is a power of al/2. Moreover, the maximal
of these eigenvalues on even cohomology H24(M) is equal to o (with

eigenspace of dimension 1), and on odd cohomology H2d‘|‘1(M) it is
2d+1

strictly less than o 2

COROLLARY:

lim p—

n—oo n

.

In particular, the number of k-periodic points grows as o™*.



Eigenvalues of automorphisms M. Verbitsky

Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations oJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
wr :=g-,-), wyi=g(J), wg = g(K-,-).

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

REMARK: Hyperkahler manifolds are holomorphically symplectic. In-
deed, Q2 ‘= wj+ v/—1wg is a holomorphic symplectic form on (M,I).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple, or maximal
holonomy, or IHS if 71(M) =0, H%9(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.

THEOREM: (“Bochner’s vanishing”)
Let M be a maximal holonomy hyperkahler manifold. Then HPO = 0 for P
odd, and HP® = C for p even.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkidhler. Then [,;n°" = cq(n,n)", for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnpAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Qn) (/ nAQPAQ" 1)
2n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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K. Oguiso: Dynamical degree of an automorphism of a hyperkahler
manifold

THEOREM: (K. Oguiso) Let f: M—M be an automorphism of a hy-
perkdhler manifold with a real eigenvalue oo > 1 on H2(M). Then hoy(f) > o
for all d < dimyg(M).

Proof: H24(M) contains the symmetric tensor product Sym%(H2(M)). =

Problem: Not precise enough: we don’t get estimations of number of
periodic points, because we have no control over other eigenvalues.
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Classification of automorphisms of hyperbolic space

REMARK: The group O(m,n),m,n > 0 has 4 connected components. We
denote the connected component of 1 by SO"‘(m,n). We call a vector v
positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form ¢ of signature
(1,n), Pos(V) ={z €V | q(z,z) > 0} its positive cone, and PTV projec-
tivization of Pos(V). Denote by g any SO(V)-invariant Riemannian structure
on PTV. Then (P1TV,g) is called hyperbolic space, and the group SOT(V)
the group of oriented hyperbolic isometries.

T heorem-definition: Let n > 0, and a € SO+(1,n) IS an isometry acting on
V. Then one and only one of these three cases occurs

(i) @ has an eigenvector z with g(x,x2) > 0 («a is “elliptic isometry’)

(ii) o has an eigenvector = with ¢g(x,2) = 0 and a real eigenvalue \;
satisfying [Az| > 1 («a is “hyperbolic isometry”)

(ili) o« has a unique eigenvector = with ¢(z,z) = 0 («a is “parabolic
isometry” ).

REMARK: All eigenvalues of elliptic and parabolic isometries have ab-
solute value 1. Hyperbolic and elliptic isometries are semisimple (that
is, diagonalizable).
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Automorphisms of hyperkahler manifolds

REMARK: Serge Cantat argues for a change of terminology to use *“loxo-
dromic” instead of “hyperbolic”, and using “hyperbolic” for automorphisms
which act trivially on a codimension 2 hyperspace.

DEFINITION: An automorphism of a hyperkahler manifold (M, I) is called
elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
Hp (M, R).

THEOREM: (E. Amerik, V.)
Let M be a hyperkahler manifold, with (M) > 5. Then M has a
deformation admitting a hyperbolic automorphism.

THEOREM 1: (Bogomolov, Kamenova, Lu, V.)

Let M be a hyperkahler manifold, and ~ € Aut(H*(M)) an automorphism
preserving the Hodge decomposition and acting on H171(M) hyperbolically.
Denote by « the eigenvalue of v on H2(M,R) with |a| > 1. Replacing v by 72
if necessary, we may assume that « > 1. Then all eigenvalues of v have

absolute value which is a power of ol/2. Moreover, the eigenspace of
(d+k) (d—k)
eigenvalue o*/2 on HY(M) is isomorphic to H 2 = 2 (M).

The proof of this result follows.
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Hodge structures and automorphisms

REMARK: The Hodge decomposition defines multiplicative action of U(1)
on cohomology H*(M), with t € U(1) C C acting on HP9(M) as tP—1.

THEOREM: (V., 1995) Let G be the group generated by U(1)-action for
all complex structures on a hyperkahler manifold. Then G i1s isomorphic
to SpinT(H2(M,R),q) (with center acting trivially on even-dimensional forms
and as -1 on odd-dimensional forms). Here SpinT denotes the connected
component, and ¢ is BBF form. m

Theorem 2: The connected component of the group of automorphisms
of H*(M) is mapped to G surjectively and with compact kernel.

Proof: Aut(H*(M)) is mapped to SO(H?(M,R),q) by the restriction map;
indeed, Aut(H*(M)) is compatible with the BBF form, as follows from the
Fujiki theorem. It is surjective because Aut(H*(M)) contains the Hodge
U(1)-action.

Finally, the kernel K of the map Aut(H*(M))—G acts trivially on H2(M),
hence commutes with the Lefschetz SL(2)-triples. However, the Hodge
decomposition is expressed through the Lefschetz SL(2)-action by so(1,4)-
theorem. Therefore, K also preserves the Hodge type. Therefore, K pre-
serves the Riemann-Hodge form, which is positive definite. m
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Aut(H*(M)) is a direct product

Theorem 2: The connected component of the group of automorphisms
of H*(M) is mapped to G surjectively and with compact kernel.

REMARK: By Theorem 2, the group Aut(H*(M)) is a semidirect product,
Aut(H*(M)) = G x K. However, elements of K commute with elements
of G, because they commute with the Hodge decomposition. This gives
Aut(H*(M)) = K x G.

COROLLARY: For each f € Aut(H*(M)), there exists an element f’' ¢
G = SpinT(H2(M,R),q) acting on H*(M) with eigenvalues of the same
absolute value.

Proof: Let f = f'k, where f' € G, k € K. Since k belongs to a compact
group, all its eigenvalues have absolute value 1; since f’ and k commute,
eigenvalues of f/ = fk—l are products of eigenvalues of f and eigenvalues of
k. n

COROLLARY: We obtain that it suffices to prove Theorem 1 assuming
that ~ € G.
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Eigenvalues of hyperbolic automorphisms

LEMMA: Let v € SO(V1™) be a hyperbolic automorphism of a vector space
of signature (1,n). Then there exists 1/ € SO(V1™) with all eigenvalues
equal 2 except 2 of them, commuting with v and with +/~~1 elliptic.

Proof: Let a,a~! be the eigenvalues of ~ with absolute value # 1, and
X c VIm the corresponding 2-dimensional subspace. Then X+ c V1Im is a
negative definite subspace preserved by ~.

Let 4/ act as v on X and as identity on X+. Then ~/v~1 acts as isometry
on X1 and trivially on X, hence it has a positive eigenvector, and all its
eigenvalues have absolute value 1. =

REMARK: Since eigenvalues of v and ~/ on H*(M) have the same absolute

values, it suffices to prove Theorem 1 for v equal to identity on a
codimension 2 subspace.
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Eigenvalues of hyperbolic automorphisms

CLAIM: Let G be a group, and V its representation. Then the eigenvalues
of ¢ and zgz~! are equal for all z,g € G. m

PROPOSITION: Let (M,I) be a hyperkahler manifold, and v~ €¢ G =
SpintT (H2(M,R), q) a hyperbolic isometry which acts as identity on a codi-
mension 2 subspace in HQ(M). Consider the one-parametric subgroup H~ 1=
eC1097 in the complexification G¢ of G. Let W act on HP4(M) as a mul-
tiplication by a scalar v—1 (p — q), and let H = ¢V be the corresponding
one-parametric subgroups in G¢. Then H, and H are conjugate by some
h € G¢.

Proof: Both H and H, act on H?(M,C) with 2-dimensional eigenspaces X
with eigenvalues >\,>\_1 and as identity on X+ However, all such X are
conjugate by some h € G¢. =

COROLLARY: The eigenvalue decomposition for v acting on H*(M) is
conjugate to the Hodge decomposition, and the eigenspaces with absolute
value a*/2 under this conjugation correspond to HP4(M) with p — g = k.

T his finishes the proof of Theorem 1.
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Topological entropy

DEFINITION: Let K be a metric space. A subset S C K is called e-
separated if for all x Zy in S, d(xz,y) > . Denote my N(K,¢e) the cardinality
of a maximal e-separated subset of S C K.

DEFINITION: Let (M,d) be a metric space, and f : M—M a self-map.
Denote by dy, the metric dn(z,y) = max_$ d(f5(x), f*(y)). The topological
entropy of f is the number

log N(M, d
h(f) := lim limsup g N ( ’n’g).

e—0 n—oo n

REMARK: Topological entropy counts the exponential growth of the number
of e-separated orbits.

Exercise: Assume that M is a compact metric space. Prove that this
number is independent from the choice of d.

13



Eigenvalues of automorphisms M. Verbitsky

Gromov’s theorem

DEFINITION: Let T be an automorphism of a manifold M, and consider the
corresponding action on Hd(M, R). The d-th dynamical degree is logarithm
of the maximal absolute value of its eigenvalues.

THEOREM: (Gromov)
Let M be compact, Kahler, f : M—M its automorphism, hy(f) the d-th
dynamical degree, and h(f) topological entropy. Then f(h) = maxh, (f).

Proof: M. Gromov, On the entropy of holomorphic maps, http://www.ihes.
fr/~gromov/PDF/10%5B24%5D.pdf, 1977.

S. Friedland, Entropy of algebraic maps, Proceedings of the Conference in
Honor of Jean-Pierre Kahane, J. Fourier Anal. Appl. (1995), Special Issue,
215-228. http://homepages.math.uic.edu/~friedlan/Dynalg.pdf m
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