Kobayashi hyperbolicity and ergodic theory

Misha Verbitsky

Seminário de Álgebra,

IMPA, August 23, 2017

Geometric structures

DEFINITION: "Geometric structure" on a manifold is a collection of tensors satisfying a certain set of differential equations.

Let me give some examples.

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator *I* : $TM \rightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

DEFINITION: Symplectic form on a manifold is a non-degenerate differential 2-form ω satisfying $d\omega = 0$.

Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex, or symplectic. We put topology of uniform convergence with all derivatives on C. Let $\text{Diff}_0(M)$ be the connected component of its diffeomorphism group Diff(M) (the group of isotopies).

DEFINITION: The quotient $C/Diff_0$ is called **Teichmüller space** of geometric strictures of this type.

DEFINITION: The group $\Gamma := \text{Diff}(M) / \text{Diff}_0(M)$ is called **the mapping** class group of M. It acts on Teich by homeomorphisms.

DEFINITION: The orbit space C/ Diff = Teich $/\Gamma$ is called **the moduli space** of geometric structure of this type.

Today I will describe Teich and Γ for complex structures on holomorphically symplectic manifolds and explain some important concepts, such as **ergod**-**icity of** Γ -**action**.

Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is an endomorphism $I \in \text{End} TM$, $I^2 = -\text{Id}_{TM}$, such that the eigenspace bundles of I are involutive, that is, satisfy $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$.

Let Comp be the space of such tensors equipped with a topology of convergence of all derivatives on all compact subsets.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting on Comp in a natural way. A complex structure is called **ergodic** if its Difforbit is dense in Comp.

REMARK: The "moduli space" of complex structures (if it exists) is identified with Comp / Diff; **existence of ergodic complex structures guarantees that the quotient** Comp / Diff **has no Hausdorff open subsets**, because all open sets of the quotient intersect.

THEOREM: Let *M* be a compact torus, dim_{\mathbb{C}} $M \ge 2$. A complex structure on *M* is ergodic if and only if Pic(M) is not of maximal rank.

REMARK: Similar result is true for hyperkähler manifolds.

Teichmüller spaces

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often **non-Hausdorff**.

DEFINITION: A Calabi-Yau manifold is a compact, Kähler manifold M with $c_1(M) = 0$.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M. We call $\Gamma := Diff(M)/Diff_0(M)$ the mapping class group. The quotient Teich/ Γ is identified with the set of equivalence classes of complex structures.

REMARK: This terminology is **standard for curves.**

Holomorphically symplectic manifolds

DEFINITION: A holomorphic symplectic form is a non-degenerate, closed, holomorphic 2-form.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This produces a triple of symplectic forms on M: $\omega_I(\cdot, \cdot) = g(\cdot, I \cdot), \omega_J(\cdot, \cdot) = g(\cdot, J \cdot), \omega_K(\cdot, \cdot) = g(\cdot, K \cdot).$

CLAIM: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

Proof: It's closed and has Hodge type (2,0), hence holomorphic. It is non-degenerate because ω_J and ω_K are non-degenerate.

REMARK: Converse is also true: any holomorphic symplectic compact Kähler manifold is hyperkähler.

Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called **simple**, or **IHS**, or **maximal holonomy**, if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be compact and of maximal holonomy.

Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Beauville) **A Hilbert scheme of a hyperkähler surface is** hyperkähler.

EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is of maximal holonomy and hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known maximal holonomy hyperkaehler manifolds are these 2 and two series:** Hilbert schemes of K3, and generalized Kummer.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich **the space of all complex structures of hyperkähler type**, that is, **holomorphically symplectic and Kähler**. It is open in the usual Teichmüller space. We shall use this notation further on.

Computation of the mapping class group

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

DEFINITION: The form q is called **Bogomolov-Beauville-Fujiki form**. It has signature $(3, b_2 - 3)$, positive on $\langle \omega_I, \omega_J, \omega_K \rangle$, and negative on the primitive (1,1)-classes.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\Gamma := \text{Diff}(M) / \text{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

THEOREM: Let M be a simple hyperkähler manifold, and Γ its mapping class group. Then (i) $\Gamma|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

REMARK: Sullivan's theorem implies that the mapping class group for compact Kähler M with dim_{\mathbb{C}} $M \ge 3$, $\pi_1(M) = 0$, is an arithmetic lattice. Very much unlike the Teichmüller group!

The period map

REMARK: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

DEFINITION: Let Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: Per maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}.$$

It is called **the period space** of M.

THEOREM: (Bogomolov) For any hyperkähler manifold, **period map is locally a diffeomorphism.**

Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

$$\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}.$$

is identified with $SO(b_2-3,3)/SO(2) \times SO(b_2-3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

Proof. Step 1: Given $l \in \mathbb{P}H^2(M, \mathbb{C})$, the space generated by Im l, Re l is **2-dimensional**, because $q(l, l) = 0, q(l, \overline{l})$ implies that $l \cap H^2(M, \mathbb{R}) = 0$.

Step 2: This 2-dimensional plane is positive, because $q(\text{Re} l, \text{Re} l) = q(l + \overline{l}, l + \overline{l}) = 2q(l, \overline{l}) > 0.$

Step 3: Conversely, for any 2-dimensional positive plane $V \in H^2(M, \mathbb{R})$, **the quadric** $\{l \in V \otimes_{\mathbb{R}} \mathbb{C} \mid q(l, l) = 0\}$ **consists of two lines;** a choice of a line is determined by orientation.

General hyperkähler manifolds are non-algebraic

REMARK: Let $W \subset H^2(M, \mathbb{R})$ be a 2-plane associated with a manifold (M, I). Then $W^{\perp} = H_I^{1,1}(M, \mathbb{R})$. Since Per is locally a diffeomorphism, $H_I^{1,1}(M) \cap H^2(M, \mathbb{Z})$ is generally empty.

COROLLARY: A general deformation of a given hyperkähler manifold has no complex curves and no divisors.

Proof: The corresponding cohomology groups $H_I^{1,1}(M) \cap H^2(M,\mathbb{Z})$ and $H_I^{2n-1,2n-1}(M) \cap H^2(M,\mathbb{Z})$ are trivial.

Birational Teichmüller moduli space

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (Huybrechts) Two points $I, I' \in$ Teich are non-separable if and only if there exists a bimeromorphism $(M, I) \longrightarrow (M, I')$ which is non-singular in codimension 2 and acts as identity on $H^2(M)$.

REMARK: This is possible only if (M, I) and (M, I') contain a rational curve. **General hyperkähler manifold has no curves;** ones which have curves belong to a countable union of divisors in Teich.

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: (Torelli theorem for hyperkähler manifolds) **The period map** Teich_b $\xrightarrow{\text{Per}}$ Per is a diffeomorphism, for each connected component of Teich_b.

Ergodic complex structures

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting $U, x \in M \setminus M'$. Therefore, the set Z_U of such orbits has measure 0.

Step 2: Choose a countable base $\{U_i\}$ of topology on M. Then the set of points in dense orbits is $M \setminus \bigcup_i Z_{U_i}$.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich **An ergodic complex structure** is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup $\Gamma \subset G$ such that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. **Then the left action of** Γ **on** G/H **is ergodic.**

THEOREM: Let \mathbb{P} er be a component of a birational Teichmüller space, and Γ its monodromy group. Let \mathbb{P} er_e be a set of all points $L \subset \mathbb{P}$ er such that the orbit $\Gamma \cdot L$ is dense (such points are called **ergodic**). Then $Z := \mathbb{P}$ er \ \mathbb{P} er_e has measure 0.

Proof. Step 1: Let $G = SO(b_2 - 3, 3)$, $H = SO(2) \times SO(b_2 - 3, 1)$. Then Γ -action on G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic orbits has measure 0. ■

REMARK: Generic deformation of M has no rational curves, and no nontrivial birational models. Therefore, **outside of a measure zero subset**, Teich = Teich_b. This implies that **almost all complex structures on** M **are ergodic**.

Ratner's theorem

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in a simple Lie group has finite covolume.

DEFINITION: Unipotent element in a Lie group $G \subset GL(V)$ is an exponent of a nilpotent element in its Lie algebra.

THEOREM: Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ an arithmetic lattice. Then **the closure of any** Γ **-orbit in** G/H **is an orbit of a Lie subgroup** $S \subset G$, such that $S \cap \Gamma \subset S$ is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear symmetric form of signature (3, k), k > 0, $G := SO^+(V)$ a connected component of the isometry group, $H \subset G$ a subgroup acting trivially on a given positive 2-dimensional plane, $H \cong SO^+(1, k)$, and $\Gamma \subset G$ an arithmetic lattice. Consider the quotient \mathbb{P} er := G/H. Then a closure of $\Gamma \cdot J$ in G/H is an orbit of a closed Lie subgroup $S \subset G$ containing H.

Classification of Γ -orbits on $\mathbb{P}er$

CLAIM: Let G = SO(3, k) be a group of oriented isometries of $V = \mathbb{R}^{3,k}$, and $H \cong SO(1,k) \subset G$. Denote by \mathfrak{h} , \mathfrak{g} their ie algebras. Then **any Lie algebra** \mathfrak{s} such that $\mathfrak{h} \subsetneq \mathfrak{s} \subsetneq \mathfrak{g}$ is isomorphic to $\mathfrak{so}(2,k)$. This is the Lie algebra of the Lie group S = SO(2,k) fixing a positive vector $v \in V$.

COROLLARY: Let $J \in \mathbb{P}$ er = G/H, and $\Gamma \subset G$ be an arithmetic lattice. **Then one of three things happens.**

(i) ether J has dense orbit,

(ii) or the closure of Γ -orbit of J is an orbit of S

or its connected component S^+ ,

(iii) or the orbit $\Gamma \cdot J$ is closed.

Characterization of ergodic complex structures

REMARK: By Ratner's theorem, the S^+ -orbit of J in (ii) and the H-orbit of J in (iii) has finite volume in G/Γ . Therefore, **its intersection with** Γ **is a lattice in** H. This brings

COROLLARY: Consider the action of the mapping class group Γ of a hyperkähler manifold on its period space \mathbb{P} er. Let $J \in \mathbb{P}$ er be a point such that its Γ -orbit is closed in \mathbb{P} er. Consider its stabilizer $St(J) \cong H \subset G$. Then $St(J) \cap \Gamma$ is a lattice in St(J).

COROLLARY: Let *J* be a complex structure with closed Γ -orbit on a hyperkähler manifold, Ω its holomorphic symplectic form, and $W \subset H^2(M,\mathbb{R})$ a plane generated by $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Then *W* is rational.

Similarly, one has

COROLLARY: Let *J* be a non-ergodic complex structure on a hyperkähler manifold, and $W \subset H^2(M, \mathbb{R})$ be a plane generated by $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Then *W* contains a rational vector.

Non-hyperbolic manifolds

DEFINITION: An entire curve in a complex manifold is an image of \mathbb{C} under a non-constant holomorphic map.

REMARK: Let (M, I_k) be a sequence of complex structures on M converging to I. Assume that all (M, I_k) contain an entire curve. Then (M, I) contains an entire curve. This result follows from Brody lemma.

DEFINITION: A complex manifold containing no entire curves is called **Kobayashi hyperbolic**. A complex manifold containing an entire curve is called **non-hyperbolic**.

Ergodicity implies the following result.

THEOREM: Hyperkähler manifolds are never Kobayashi hyperbolic.

Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{TW}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata).

Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let *M* be a hyperkähler manifold, and $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$ its twistor projection. Then there exists an entire curve in some fiber of π .

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: A twistor curve $\mathbb{C}P^1 \subset \mathbb{P}$ er associated with a 3-plane $W \subset H^2(M, \mathbb{R})$ without rational vectors does not contain any non-ergodic complex structures.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let $Tw(M) \rightarrow \mathbb{C}P^1$ be a twistor family with all fibers ergodic. By Campana's theorem, one of these fibers, denoted (M, I), is non-hyperbolic. Since any complex structure $I' \in T$ eich lies in the closure of Diff $(M) \cdot I$, all complex structures $I' \in T$ eich are non-hyperbolic.