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Geometric structures

DEFINITION: “Geometric structure” on a manifold is a collection of

tensors satisfying a certain set of differential equations.

Let me give some examples.

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

DEFINITION: Symplectic form on a manifold is a non-degenerate differ-

ential 2-form ω satisfying dω = 0.
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Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex, or

symplectic. We put topology of uniform convergence with all derivatives on

C. Let Diff0(M) be the connected component of its diffeomorphism group

Diff(M) (the group of isotopies).

DEFINITION: The quotient C/Diff0 is called Teichmüller space of geo-

metric strictures of this type.

DEFINITION: The group Γ := Diff(M)/Diff0(M) is called the mapping

class group of M . It acts on Teich by homeomorphisms.

DEFINITION: The orbit space C/Diff = Teich /Γ is called the moduli space

of geometric structure of this type.

Today I will describe Teich and Γ for complex structures on holomorphically

symplectic manifolds and explain some important concepts, such as ergod-

icity of Γ-action.
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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on
M is an endomorphism I ∈ EndTM , I2 = − IdTM , such that the eigenspace
bundles of I are involutive, that is, satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

Let Comp be the space of such tensors equipped with a topology of conver-
gence of all derivatives on all compact subsets.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting
on Comp in a natural way. A complex structure is called ergodic if its Diff-
orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-
fied with Comp /Diff; existence of ergodic complex structures guarantees
that the quotient Comp /Diff has no Hausdorff open subsets, because
all open sets of the quotient intersect.

THEOREM: Let M be a compact torus, dimCM > 2. A complex structure
on M is ergodic if and only if Pic(M) is not of maximal rank.

REMARK: Similar result is true for hyperkähler manifolds.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space

(Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: A Calabi-Yau manifold is a compact, Kähler manifold M

with c1(M) = 0.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold

when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M . We call

Γ := Diff(M)/Diff0(M) the mapping class group. The quotient Teich /Γ

is identified with the set of equivalence classes of complex structures.

REMARK: This terminology is standard for curves.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphic symplectic form is a non-degenerate, closed,

holomorphic 2-form.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This produces a triple of symplectic forms on M : ωI(·, ·) =

g(·, I·), ωJ(·, ·) = g(·, J ·), ωK(·, ·) = g(·,K·).

CLAIM: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

Proof: It’s closed and has Hodge type (2,0), hence holomorphic. It is non-

degenerate because ωJ and ωK are non-degenerate.

REMARK: Converse is also true: any holomorphic symplectic compact

Kähler manifold is hyperkähler.
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Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple, or IHS,

or maximal holonomy, if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be compact and

of maximal holonomy.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)

Let M be a compact complex surface which is hyperkähler. Then M is either

a torus or a K3 surface.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-

sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has

dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities

of the symmetric power SymnM .

THEOREM: (Beauville) A Hilbert scheme of a hyperkähler surface is

hyperkähler.
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EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is of maximal holonomy and hy-

perkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely

and properly by translations. For n = 2, the quotient T [n]/T is a Kummer

K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized

Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler

manifolds, constructed by K. O’Grady. All known maximal holonomy hy-

perkaehler manifolds are these 2 and two series: Hilbert schemes of K3,

and generalized Kummer.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkähler type, that is, holomor-

phically symplectic and Kähler. It is open in the usual Teichmüller space.

We shall use this notation further on.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-
perkähler. Then

∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It
has signature (3, b2−3), positive on 〈ωI , ωJ , ωK〉, and negative on the primitive
(1,1)-classes.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler man-
ifold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Γ := Diff(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

THEOREM: Let M be a simple hyperkähler manifold, and Γ its mapping
class group. Then
(i) Γ

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ−→O(H2(M,Z), q) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for com-
pact Kähler M with dimCM > 3, π1(M) = 0, is an arithmetic lattice. Very
much unlike the Teichmüller group!
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The period map

REMARK: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

DEFINITION: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

THEOREM: (Bogomolov) For any hyperkähler manifold, period map is

locally a diffeomorphism.

11



Ergodic complex structures M. Verbitsky

Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian

of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) =

q(l + l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R),

the quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a

line is determined by orientation.
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General hyperkähler manifolds are non-algebraic

REMARK: Let W ⊂ H2(M,R) be a 2-plane associated with a manifold (M, I).

Then W⊥ = H
1,1
I (M,R). Since Per is locally a diffeomorphism, H1,1

I (M) ∩
H2(M,Z) is generally empty.

COROLLARY: A general deformation of a given hyperkähler manifold has

no complex curves and no divisors.

Proof: The corresponding cohomology groups H1,1
I (M) ∩H2(M,Z)

and H
2n−1,2n−1
I (M) ∩H2(M,Z) are trivial.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have curves

belong to a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: (Torelli theorem for hyperkähler manifolds)

The period map Teichb
Per−→ Per is a diffeomorphism, for each connected

component of Teichb.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting
on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,
hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting
U , x ∈M\M ′. Therefore, the set ZU of such orbits has measure 0.

Step 2: Choose a countable base {Ui} of topology on M . Then the
set of points in dense orbits is M\

⋃
iZUi.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,
and Γ the mapping group acting on Teich An ergodic complex structure
is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-
phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such
that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact
simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the
orbit Γ ·L is dense (such points are called ergodic). Then Z := Per \Pere has
measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic
orbits has measure 0.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichb. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in

a simple Lie group has finite covolume.

DEFINITION: Unipotent element in a Lie group G ⊂ GL(V ) is an exponent

of a nilpotent element in its Lie algebra.

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G an arithmetic lattice. Then the closure of any Γ-orbit in G/H is an

orbit of a Lie subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear

symmetric form of signature (3, k), k > 0, G := SO+(V ) a connected com-

ponent of the isometry group, H ⊂ G a subgroup acting trivially on a given

positive 2-dimensional plane, H ∼= SO+(1, k), and Γ ⊂ G an arithmetic lattice.

Consider the quotient Per := G/H. Then a closure of Γ · J in G/H is an

orbit of a closed Lie subgroup S ⊂ G containing H.
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Classification of Γ-orbits on Per

CLAIM: Let G = SO(3, k) be a group of oriented isometries of V = R3,k, and

H ∼= SO(1, k) ⊂ G. Denote by h, g their ie algebras. Then any Lie algebra s

such that h ( s ( g is isomorphic to so(2, k). This is the Lie algebra of the

Lie group S = SO(2, k) fixing a positive vector v ∈ V .

COROLLARY: Let J ∈ Per = G/H, and Γ ⊂ G be an arithmetic lattice.

Then one of three things happens.

(i) ether J has dense orbit,

(ii) or the closure of Γ-orbit of J is an orbit of S

or its connected component S+,

(iii) or the orbit Γ · J is closed.
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Characterization of ergodic complex structures

REMARK: By Ratner’s theorem, the S+-orbit of J in (ii) and the H-orbit

of J in (iii) has finite volume in G/Γ. Therefore, its intersection with Γ is

a lattice in H. This brings

COROLLARY: Consider the action of the mapping class group Γ of a hy-

perkähler manifold on its period space Per. Let J ∈ Per be a point such that

its Γ-orbit is closed in Per. Consider its stabilizer St(J) ∼= H ⊂ G. Then

St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a complex structure with closed Γ-orbit on a hy-

perkähler manifold, Ω its holomorphic symplectic form, and W ⊂ H2(M,R) a

plane generated by Re Ω, Im Ω. Then W is rational.

Similarly, one has

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler

manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then W

contains a rational vector.
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Non-hyperbolic manifolds

DEFINITION: An entire curve in a complex manifold is an image of C
under a non-constant holomorphic map.

REMARK: Let (M, Ik) be a sequence of complex structures on M converging

to I. Assume that all (M, Ik) contain an entire curve. Then (M, I) contains

an entire curve. This result follows from Brody lemma.

DEFINITION: A complex manifold containing no entire curves is called

Kobayashi hyperbolic. A complex manifold containing an entire curve is

called non-hyperbolic.

Ergodicity implies the following result.

THEOREM: Hyperkähler manifolds are never Kobayashi hyperbolic.
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Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let M be a hyperkähler manifold, and Tw(M)
π−→ CP1 its twistor projection.

Then there exists an entire curve in some fiber of π.

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: A twistor curve CP1 ⊂ Per associated with a 3-plane W ⊂ H2(M,R)

without rational vectors does not contain any non-ergodic complex structures.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let Tw(M)−→ CP1 be a twistor family with all fibers ergodic. By

Campana’s theorem, one of these fibers, denoted (M, I), is non-hyper-

bolic. Since any complex structure I ′ ∈ Teich lies in the closure of Diff(M) ·I,

all complex structures I ′ ∈ Teich are non-hyperbolic.
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