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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

REMARK: Let Comp be the space of such tensors equipped with a topology

of convergence of all derivatives. It is a Fréchet manifold.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting

on Comp in a natural way. A complex structure is called ergodic if its Diff-

orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-

fied with Comp /Diff; existence of ergodic complex structures guarantees

that the moduli space does not exist.

THEOREM: Let M be a compact torus, dimCM > 2, or a simple hyperkähler

manifold. A complex structure on M is ergodic if and only if Pic(M) is

not of maximal rank.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /Γ is called the moduli

space of complex structures. Typically, it is very non-Hausdorff. Comp

corresponds bijectively to the set of isomorphism classes of complex struc-

tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and

manifolds with canonical polarization. The moduli space exists as a non-

Hausdorff algebraic space when M is Kähler and H2(M) = H1,1(M): Calabi-

Yau manifolds, generalized Enriques manifolds, rational manifolds.

This talk is about an opposite situation, when Γ acts on Teich ergodi-

cally.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple if π1(M) =
0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler man-

ifold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

THEOREM: Let M be a simple hyperkähler manifold, and Γ0 as above.

Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for

dimCM > 3 is an arithmetic lattice. This is not true for curves.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

7



Ergodic complex structures M. Verbitsky

Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-
separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if
and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is
non-singular in codimension 2.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-
ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-
ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is
called the birational moduli space of M .

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/Γ,
where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and Γ is a finite index
subgroup in O(H2(M,Z), q), called the monodromy group.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting
on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,
hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting
U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the
set of points in dense orbits is M\

⋃
iZUi.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,
and Γ the mapping group acting on Teich An ergodic complex structure
is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-
phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such
that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact
simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the
orbit Γ ·L is dense (such points are called ergodic). Then Z := Per \Pere has
measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichb. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G an arithmetic lattice. Then a closure of any H-orbit in G/Γ is an

orbit of a closed, connected subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a

lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-

metric form of signature (3, k), k > 0, G := SO+(V ) a connected component

of the isometry group, H ⊂ G a subgroup fixing a given positive 2-dimensional

plane, H ∼= SO+(1, k)×SO(2), and Γ ⊂ G an arithmetic lattice. Consider the

quotient Per := G/H. Then

A). A point J ∈ Per has dense Γ-orbit if and only if the orbit H · J in

the quotient Γ\G is closed.

B). A closure of H · J in Γ\G is an orbit of a closed connected Lie

group S ⊃ H.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any
closed connected Lie subgroup S ⊂ G containing H coincides with G or
with H.

COROLLARY: Let J ∈ Per = G/H. Then either J is ergodic, or its
Γ-orbit is closed in Per.

REMARK: By Ratner’s theorem, in the latter case the H-orbit of J has finite
volume in G/Γ. Therefore, its intersection with Γ is a lattice in H. This
brings

COROLLARY: Let J ∈ Per be a point, such that its Γ-orbit is closed in Per.
Consider its stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler
manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then W

is rational.

REMARK: This can be used to show that any hyperkähler manifold is
Kobayashi non-hyperbolic.

12



Ergodic complex structures M. Verbitsky

Kobayashi pseudometric

REMARK: The results further on are from a joint paper arXiv:1308.5667 by
Ljudmila Kamenova, Steven Lu, Misha Verbitsky.

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

THEOREM: Let π : M−→X be a smooth holomorphic family, which is
trivialized as a smooth manifold: M = M ×X, and dx the Kobayashi metric
on π−1(x). Then dx(m,m′) is upper continuous on x.

COROLLARY: Denote the diameter of the Kobayashi pseudometric by
diam(dx) := supm,m′ dx(m,m′). Then diam : X −→ R>0 is upper continu-
ous.
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M, I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam : Comp −→ R>0 map a complex structure J to the diameter
of the Kobayashi pseudodistance on (M,J). Let J be an ergodic complex
structure. The set of points J ′ = ν(J) ∈ Comp such that (M,J ′) is biholo-
morphic to (M,J) is dense, because J is ergodic. By upper semi-continuity,
0 = diam(I) > infJ ′=ν(J) diam(J).

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkähler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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