Ergodic complex structures and Kobayashi metric

Misha Verbitsky

Séminaire de géométrie algébrique

École Normale Supériore, 05/09/2013

Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is an endomorphism $I \in \text{End } TM$, $I^2 = -\text{Id}_{TM}$ such that the eigenspace bundles of I are **involutive**, that is, satisfy satisfy $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$.

REMARK: Let Comp be the space of such tensors equipped with a topology of convergence of all derivatives. **It is a Fréchet manifold**.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting on Comp in a natural way. A complex structure is called **ergodic** if its Difforbit is dense in Comp.

REMARK: The "moduli space" of complex structures (if it exists) is identified with Comp / Diff; existence of ergodic complex structures guarantees that the moduli space does not exist.

THEOREM: Let M be a compact torus, $\dim_{\mathbb{C}} M \ge 2$, or a simple hyperkähler manifold. A complex structure on M is ergodic if and only if Pic(M) is not of maximal rank.

Teichmüller spaces

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The coarse moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves.**

Moduli spaces

DEFINITION: The quotient Comp/Diff = Teich/ Γ is called **the moduli space** of complex structures. Typically, **it is very non-Hausdorff**. Comp corresponds bijectively to the set of isomorphism classes of complex structures.

REMARK: The moduli space exists, and is quasiprojective, for curves and manifolds with canonical polarization. The moduli space exists as a non-Hausdorff algebraic space when M is Kähler and $H^2(M) = H^{1,1}(M)$: Calabi-Yau manifolds, generalized Enriques manifolds, rational manifolds.

This talk is about an opposite situation, when Γ acts on Teich ergodically.

Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called **simple** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

Computation of the mapping class group

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

THEOREM: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

REMARK: Sullivan's theorem implies that the mapping class group for $\dim_{\mathbb{C}} M \ge 3$ is an arithmetic lattice. This is not true for curves.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by $\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \overline{l}) > 0.$

It is called **the period space** of M.

REMARK: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$

Birational Teichmüller moduli space

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (Huybrechts) Two points $I, I' \in$ Teich are non-separable if and only if there exists a bimeromorphism $(M, I) \longrightarrow (M, I')$ which is non-singular in codimension 2.

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}er$ is an isomorphism, for each connected component of Teich_b .

DEFINITION: Let M be a hyperkaehler manifold, Teich_b its birational Teichmüller space, and Γ the mapping class group. The quotient Teich_b/ Γ is called **the birational moduli space** of M.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected component of its birational moduli space. Then W is isomorphic to $\mathbb{P}er/\Gamma$, where $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ and Γ is a finite index subgroup in $O(H^2(M, \mathbb{Z}), q)$, called the monodromy group.

Ergodic complex structures

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting $U, x \in M \setminus M'$. Therefore the set Z_U of such orbits has measure 0.

Proof. Step 2: Choose a countable base $\{U_i\}$ of topology on M. Then the set of points in dense orbits is $M \setminus \bigcup_i Z_{U_i}$.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich **An ergodic complex structure** is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup $\Gamma \subset G$ such that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. **Then the left action of** Γ **on** G/H **is ergodic.**

THEOREM: Let \mathbb{P} er be a component of a birational Teichmüller space, and Γ its monodromy group. Let \mathbb{P} er_e be a set of all points $L \subset \mathbb{P}$ er such that the orbit $\Gamma \cdot L$ is dense (such points are called **ergodic**). Then $Z := \mathbb{P}$ er \ \mathbb{P} er_e has measure 0.

Proof. Step 1: Let $G = SO(b_2 - 3, 3)$, $H = SO(2) \times SO(b_2 - 3, 1)$. Then **Γ-action on** G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.

REMARK: Generic deformation of M has no rational curves, and no nontrivial birational models. Therefore, **outside of a measure zero subset**, Teich = Teich_b. This implies that **almost all complex structures on** M **are ergodic**.

Ratner's theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

THEOREM: Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ an arithmetic lattice. Then a closure of any *H*-orbit in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap \Gamma \subset S$ is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear symmetric form of signature (3, k), k > 0, $G := SO^+(V)$ a connected component of the isometry group, $H \subset G$ a subgroup fixing a given positive 2-dimensional plane, $H \cong SO^+(1, k) \times SO(2)$, and $\Gamma \subset G$ an arithmetic lattice. Consider the quotient $\mathbb{P}er := G/H$. Then

A). A point $J \in \mathbb{P}$ er has dense Γ -orbit if and only if the orbit $H \cdot J$ in the quotient $\Gamma \setminus G$ is closed.

B). A closure of $H \cdot J$ in $\Gamma \setminus G$ is an orbit of a closed connected Lie group $S \supset H$.

Characterization of ergodic complex structures

CLAIM: Let $G = SO^+(3,k)$, and $H \cong SO^+(1,k) \times SO(2) \subset G$. Then any closed connected Lie subgroup $S \subset G$ containing H coincides with G or with H.

COROLLARY: Let $J \in \mathbb{P}$ er = G/H. Then either J is ergodic, or its Γ -orbit is closed in \mathbb{P} er.

REMARK: By Ratner's theorem, in the latter case the *H*-orbit of *J* has finite volume in G/Γ . Therefore, **its intersection with** Γ **is a lattice in** *H*. This brings

COROLLARY: Let $J \in \mathbb{P}$ er be a point, such that its Γ -orbit is closed in \mathbb{P} er. Consider its stabilizer $St(J) \cong H \subset G$. Then $St(J) \cap \Gamma$ is a lattice in St(J).

COROLLARY: Let *J* be a non-ergodic complex structure on a hyperkähler manifold, and $W \subset H^2(M, \mathbb{R})$ be a plane generated by $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Then *W* is rational.

REMARK: This can be used to show that **any hyperkähler manifold is Kobayashi non-hyperbolic.**

Kobayashi pseudometric

REMARK: The results further on are from a joint paper arXiv:1308.5667 by Ljudmila Kamenova, Steven Lu, Misha Verbitsky.

DEFINITION: Pseudometric on M is a function $d: M \times M \longrightarrow \mathbb{R}^{\geq 0}$ which is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality $d(x,y) + d(y,z) \geq d(x,z)$.

REMARK: Let \mathfrak{D} be a set of pseudometrics. Then $d_{\max}(x, y) := \sup_{d \in \mathfrak{D}} d(x, y)$ is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is d_{max} for the set \mathfrak{D} of all pseudometrics such that any holomorphic map from the Poincaré disk to M is distance-decreasing.

THEOREM: Let $\pi : \mathcal{M} \longrightarrow X$ be a smooth holomorphic family, which is trivialized as a smooth manifold: $\mathcal{M} = M \times X$, and d_x the Kobayashi metric on $\pi^{-1}(x)$. Then $d_x(m, m')$ is upper continuous on x.

COROLLARY: Denote the diameter of the Kobayashi pseudometric by $\operatorname{diam}(d_x) := \sup_{m,m'} d_x(m,m')$. Then diam : $X \longrightarrow \mathbb{R}^{\geq 0}$ is upper continuous.

Vanishing of Kobayashi pseudometric

THEOREM: Let (M, I) be a complex manifold with vanishing Kobayashi pseudometric. Then **the Kobayashi pseudometric vanishes for all ergodic complex structures in the same deformation class.**

Proof: Let diam : Comp $\longrightarrow \mathbb{R}^{\geq 0}$ map a complex structure J to the diameter of the Kobayashi pseudodistance on (M, J). Let J be an ergodic complex structure. The set of points $J' = \nu(J) \in$ Comp such that (M, J') is biholomorphic to (M, J) is dense, because J is ergodic. By upper semi-continuity, $0 = \operatorname{diam}(I) \geq \inf_{J'=\nu(J)} \operatorname{diam}(J)$.

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric on M vanishes. **Since all non-projective K3 are ergodic,** the Kobayashi metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkähler manifold. Assume that a deformation of M admits a holomorphic Lagrangian fibration and the Picard rank of M is not maximal. Then the Kobayashi pseudometric on M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi pseudometric on M vanishes.