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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is
an endomorphism I € EndTM, I?2 = —1Id7j, such that the eigenspace bundles
of I are involutive, that is, satisfy satisfy [71:9M, 710M] c T1.0M.

REMARK: Let Comp be the space of such tensors equipped with a topology
of convergence of all derivatives. It is a Fréchet manifold.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting
on Comp in a natural way. A complex structure is called ergodic if its Diff-
orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-
fied with Comp / Diff; existence of ergodic complex structures guarantees
that the moduli space does not exist.

THEOREM: Let M be a compact torus, dimgc M > 2, or a simple hyperkahler
manifold. A complex structure on M is ergodic if and only if Pic(M) is
not of maximal rank.
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Teichmuller spaces

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /" is called the moduli
space of complex structures. Typically, it is very non-Hausdorff. Comp
corresponds bijectively to the set of isomorphism classes of complex struc-
tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and
manifolds with canonical polarization. The moduli space exists as a non-
Hausdorff algebraic space when M is Kihler and H2(M) = HY1(M): Calabi-
Yau manifolds, generalized Enriques manifolds, rational manifolds.

This talk is about an opposite situation, when [ acts on Teich ergodi-
cally.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wg is a holomorphic symplectic form on (M, 1I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkahler manifold M is called simple if 711 (M) =
0, H29(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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Computation of the mapping class group

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)", for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

THEOREM: (Sullivan) Let M be a compact, simply connected Kahler man-
ifold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff L (M )/ Diffp — "o has finite kernel, and its image has finite index
in FO.

THEOREM: Let M be a simple hyperkahler manifold, and g as above.
Then

() I‘O)HQ(M,Z) is a finite index subgroup of O(H?%(M,Z),q).

(ii) The map Mg — O(H?2(M,Z),q) has finite kernel.

REMARK: Sullivan's theorem implies that the mapping class group for
dimc M > 3 is an arithmetic lattice. This is not true for curves.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH?(M,C) map J to a line H%9(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(by — 3,1)
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by = ~ y) if for any open sets Vo xz, U3y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I’) which is
non-singular in codimension 2.

DEFINITION: The space Teichy := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ﬂ Per 1s an isomorphism, for each

connected component of Teichy,.

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiller space, and I the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I",
where Per = SO(by — 3,3)/S0O(2) x SO(bp — 3,1) and I is a finite index
subgroup in O(H?(M,Z),q), called the monodromy group.
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Ergodic complex structures

DEFINITION: Let (M, ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ C M satisfy u(M") =0 or u(M\M") = 0.

CLAIM: Let M be a manifold, n a Lebesgue measure, and G a group acting
on M ergodically. Then the set of hon-dense orbits has measure O.

Proof. Step 1: Consider a non-empty open subset U C M. Then u(U) > 0,
hence M’ := G - U satisfies u(M\M') = 0. For any orbit G -z not intersecting
U, € M\M'. Therefore the set Z;; of such orbits has measure O.

Proof. Step 2: Choose a countable base {U;} of topology on M. Then the
set of points in dense orbits is M\ U; Zy,. =

DEFINITION: Let M be a complex manifold, Teich its Techmtuller space,
and [ the mapping group acting on Teich An ergodic complex structure
IS @ complex structure with dense [ -orbit.

CLAIM: Let (M,I) be a manifold with ergodic complex structure, and I’
another complex structure. Then there exists a sequence of diffeomor-
phisms v; such that v*(I) converges to I'.
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Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup I' C &G such
that G/I" has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let I' be a lattice in a non-compact
simple Lie group G with finite center, and H C G a non-compact subgroup.
Then the left action of ' on GG/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmuller space, and
[T its monodromy group. Let Per. be a set of all points L C Per such that the
orbit I - L is dense (such points are called ergodic). Then Z := Per\ Per. has
measure 0.

Proof. Step 1: Let G = SO(by — 3,3), H = SO(2) x SO(bp — 3,1). Then
[-action on G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0. =

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichy. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice ' C G is a discrete subgroup of finite covolume (that is, G/I
has finite volume).

THEOREM: Let H C G be a Lie subroup generated by unipotents, and
[ C G an arithmetic lattice. Then a closure of any H-orbit in G/I" is an
orbit of a closed, connected subgroup S C G, such that SNl C Sis a
lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-
metric form of signature (3,k), k> 0, G := SOT(V) a connected component
of the isometry group, H C G a subgroup fixing a given positive 2-dimensional
plane, H =& SOT(1,k) x SO(2), and ' C G an arithmetic lattice. Consider the
quotient Per := G/H. Then

A). A point J € Per has dense -orbit if and only if the orbit H-J in
the quotient M\G is closed.

B). A closure of H-J in N'\G is an orbit of a closed connected Lie
group S D H.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+ (3,k), and H = SO+ (1,k) x SO(2) c G. Then any
closed connected Lie subgroup S C G containing H coincides with G or
with H.

COROLLARY: Let J € Per = G/H. Then either J is ergodic, or its
[ -orbit is closed in Per.

REMARK: By Ratner’'s theorem, in the latter case the H-orbit of J has finite
volume in G/I". Therefore, its intersection with I is a lattice in H. This
brings

COROLLARY: Let J € Per be a point, such that its -orbit is closed in Per.
Consider its stabilizer St(J) = H C G. Then St(J)NT is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkahler
manifold, and W C H?(M,R) be a plane generated by ReQ,ImQ. Then W
IS rational.

REMARK: This can be used to show that any hyperkahler manifold is
Kobayashi non-hyperbolic.
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Kobayashi pseudometric

REMARK: The results further on are from a joint paper arXiv:1308.5667 by
Ljudmila Kamenova, Steven Lu, Misha Verbitsky.

DEFINITION: Pseudometric on M is a function d: M x M —s R=Y which
is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality d(z,y) +
d(y, z) = d(z, z).

REMARK: Let © be a set of pseudometrics. Then dmax(z,y) := Supgep d(z,y)
IS also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set ® of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

THEOREM: Let 71 : M — X be a smooth holomorphic family, which is
trivialized as a smooth manifold: M = M x X, and d; the Kobayashi metric
on 7~ 1(z). Then dz(m,m’') is upper continuous on z. =

COROLLARY: Denote the diameter of the Kobayashi pseudometric by
diam(dz) 1= SUP,, ;y dz(m,m’). Then diam : X — R-0 is upper continu-
ous.
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M,I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam: Comp s R>0 map a complex structure J to the diameter
of the Kobayashi pseudodistance on (M,J). Let J be an ergodic complex
structure. The set of points J' = v(J) € Comp such that (M, J") is biholo-
morphic to (M, J) is dense, because J is ergodic. By upper semi-continuity,
0 = diam([/) > inf y—,n diam(J). m

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkahler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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