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Teichmüller spaces

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

REMARK: Let Comp be the space of such tensors equipped with a topology

of convergence of all derivatives. It is a Fréchet manifold.

REMARK: The diffeomorphism group Diff is a Fréchet Lie group acting on

a Fréchet manifold Comp in a natural way.

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Let Teich := Comp /Diff0(M). We call it the Teichmüller space.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /Γ is called the moduli

space of complex structures. It can be very non-Hausdorff. Comp /Diff

parametrizes the set of equivalence classes of complex structures.

REMARK: The moduli space exists, and is quasiprojective, for curves and

projective manifolds with canonical or anticanonical polarization. Its topol-

ogy is extremely non-Hausdorff for complex tori of higher dimension, hy-

perkähler manifolds, rational surfaces with b2 > 10, and other varieties without

a natural polarization.

REMARK: Teich is a complex space, possibly non-Hausdorff for a wide

class of manifolds, including all Calabi-Yau (F. Catanese).
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: Let ωI , ωJ , ωK be the Kähler symplectic forms associated with
I, J,K. A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1ωK is a holomorphic symplectic form on (M, I). Converse is also true:

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called maximal holon-
omy manifold, or simple, or IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: (Bogomolov, 1974) Any hyperkähler mani-
fold admits a finite covering which is a product of a torus and several maximal
holonomy (simple) hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-
perkähler. Then

∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It
has signature (3, b2 − 3).

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler man-
ifold, dimCM > 3. Denote by Γ0 = Aut(H∗(M,Z), p1, ..., pn) the group of au-
tomorphisms of an algebra H∗(M,Z) preserving the Pontryagin classes pi(M).
Then the image of the natural map Diff+(M)/Diff0 −→ Γ0 has finite
index in Γ0.

THEOREM: (V., 1996, 2009) Let M be a simple hyperkähler manifold, and
Γ0 = Aut(H∗(M,Z), p1, ..., pn). Then
(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for a
Kähler manifold M with dimCM > 3, π1(M) = 0 is an arithmetic group.
Contrast that with the mapping class group of a Riemannian surface.
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-

perkähler manifolds, admitting only complex structures of Kähler type. Since

the Hodge numbers are constant in families of Kähler manifolds, for any

J ∈ Teich, (M,J) is also a simple hyperkähler manifold, hence H2,0(M,J)

is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts, 2001) Two points I, I ′ ∈ Teich are non-separable

if and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have belong to

a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: (V., 2009) The period map Teichb
Per−→ Per is an isomor-

phism, for each connected component of Teichb.

7



Ergodic complex structures M. Verbitsky

The Hodge-theoretic Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold. One says that the

Hodge-theoretic Torelli theorem holds for M if the map

Teich /ΓI −→ Per /O+(H2(M,Z), q),

is bijective, where O+(H2(M,Z), q) is a subgroup of O(H2(M,Z), q) preserving

orientation on positive 3-planes. Equivalently, it is true if M is uniquely

determined by its Hodge structure.

REMARK: “Hodge-theoretic Torelli theorem” means that the Hodge struc-

ture on H2(M) determines an isomorphism class of the manifold.

REMARK: The Hodge-theoretic Torelli theorem is true for K3 surfaces.

It is false for all other known examples of hyperkaehler manifolds.

Obstructions to Hodge-theoretic Torelli:

1. There exist bimeromorphic hyperkähler manifolds which are non-isomorphic,

but have the same Hodge structures (Debarre, 1984).

2. The covering Teichb /ΓI −→ Per /O+(H2(M,Z), q) is non-trivial, because

ΓI ( O+(H2(M,Z), q) (Namikawa, 2002).
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting
on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,
hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting
U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the
set of points in dense orbits is M\

⋃
iZUi.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,
and Γ the mapping group acting on Teich. An ergodic complex structure
is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-
phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such
that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact
simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all orgodic L ⊂ Per. Then
Z := Per \Pere has measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichb. Then, Moore’s theorem implies that almost all complex
structures on M are ergodic.
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Teichmüller space for a compact torus

DEFINITION: Let Z2n ⊂ Cn be a cocompact lattice. Then Cn/Z2n is a

complex manifold, called a (compact) complex torus.

REMARK: The space of complex structures on R2n is naturally identified

with GL(2n,R)/GL(n,C).

CLAIM: Any connected component of the Teichmüller space for a

compact torus is identified with GL(2n,R)/GL(n,C).

CLAIM: The action of GL(2n,Z) on GL(2n,R)/GL(n,C) is ergodic.

Proof: Indeed, SL(2n,Z) acts on SL(2n,R)/SL(n,C) ergodically by Moore’s

theorem.

THEOREM: (V., 2013) Let M = Cn/Λ be a compact torus. Then M is

ergodic if and only if the lattice Λ ∼= Z2n is rational.

Its proof uses Ratner theory.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G an arithmetic lattice. Then the closure of any Γ-orbit Γ · x in G/H

is an orbit of a Lie subgroup S ⊂ G, such that S ∩ Γx
−1

is a lattice in S.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-

metric form of signature (3, k), k > 0, G := SO+(V ) a connected component

of the isometry group, H ⊂ G a subgroup fixing a given positive 2-dimensional

plane, H ∼= SO+(1, k)×SO(2), and Γ ⊂ G an arithmetic lattice. Consider the

quotient Per := G/H. Then a closure of Γ ·J in G/H is an orbit of a closed

connected Lie group S ⊃ H.

12



Ergodic complex structures M. Verbitsky

Characterization of ergodic complex structures

CLAIM: Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any
closed connected Lie subgroup S ⊂ G containing H coincides with G or
with H.

COROLLARY: Let J ∈ Per = G/H. Then either J is ergodic, or its
Γ-orbit is closed in Per.

REMARK: By Ratner’s theorem, in the latter case the H-orbit of J has finite
volume in G/Γ. Therefore, its intersection with Γ is a lattice in H. This
brings

COROLLARY: Let J ∈ Per be a point, such that its Γ-orbit is closed in Per.
Consider its stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler
manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then W

is rational.

THEOREM: (V., 2013) Let M be a compact torus, dimCM > 2, or a simple
hyperkähler manifold. A complex structure on M is ergodic if and only
if Pic(M) is not of maximal rank.
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Kobayashi hyperbolic manifolds

DEFINITION: An entire curve is a non-constant holomorphic map C−→M .

DEFINITION: A compact complex manifold M is called Kobayashi hyper-

bolic, if there exist no entire curves C−→M .

THEOREM: (Brody, 1975)

Let Ii be a sequence of complex structures on M which are not hyperbolic,

and I its limit. Then (M, I) is also not hyperbolic.

THEOREM: (V., 2013) All hyperkähler manifolds are non-hyperbolic.

REMARK: This result would follow if we produce an ergodic complex

structure which is non-hyperbolic. Indeed, a closure of its orbit is the whole

Teich, and a limit of non-hyperbolic complex structures is non-hyperbolic.

REMARK: For all known examples of hyperkähler manifolds, this result was

already proven, due to L. Kamenova and M. V.
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Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let M be a hyperkähler manifold, and Tw(M)
π−→ CP1 its twistor projection.

Then there exists an entire curve in some fiber of π.

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not

ergodic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let Tw(M)−→ CP1 be a twistor family with all fibers ergodic. By

Campana’s theorem, one of these fibers, denoted (M, I), is non-hyperbolic.

Since any complex structure I ′ ∈ Teich lies in the closure of Diff(M) · I, all

complex structures I ′ ∈ Teich are non-hyperbolic.
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