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Teichmuller spaces

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group.

REMARK: Equivalence classes of complex structures on M are in bijective
correspondence with elements of the quotient set Teich /T".

To solve the moduli problem, one needs to describe Teich and [.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wpg is a holomorphic symplectic form on (M, 1I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkahler manifold M is called simple, or IHS,
if 71(M) =0, H>9(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple/IHS.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;17°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aq(n,m) = /Xn AnpAQI AT

1 _ —n—
_n (/ n/\Q”‘l/\Q”’) (/ nAQLAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff L (M )/ Diffp — "o has finite kernel, and its image has finite index
in lp.

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
(i) I‘O)HQ(MZ) is a finite index subgroup of O(H?(M,Z),q).
(ii) The map My — O(H?2(M,Z), q) has finite kernel.

DEFINITION: An arithmetic subgroup in a Lie group G defined over
rational numbers is a subgroup commensurable with the set GGy of its integer
points.

COROLLARY: The mapping class group of a hyperkahler manifold is an
arithmetic group.

REMARK: The Teichmiiller group (mapping class group of a Riemann sur-
face) is not an arithmetic group.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkdahler manifold,
hence H29(M, J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H29(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.
REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(l,1) =0,q(l,1) > 0}.
It is called the period space of M.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l € PH?(M,C) | q(l,1) =0,q(l,1) > 0}.

Is identified with SO(b,—3,3)/S0O(2) xSO(bo—3,1), which is a Grassmannian
of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given | € PH2(M,C), the space generated by Im!, Rel is
2-dimensional, because ¢(I,1) = 0, ¢(1,1) implies that N H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because g(Rel,Rel) = q(I+
LL+1) =21 > 0.

Step 3: Conversely, for any 2-dimensional positive plane V & HQ(M, R), the
quadric {{ e V®rC | q(,I) = 0} consists of two lines; a choice of a line
IS determined by orientation. =
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 z, U3y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I") which is
non-singular in codimension 2.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ﬂ Per 1s an isomorphism, for each

connected component of Teichy,.

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.



Ergodic complex structures M. Verbitsky

Monodromy group and the birational moduli space

THEOREM: Let (M,I) be a hyperkdahler manifold, and W the set of bira-
tional classes of complex structures (holomorphically symplectic, Kahler type)
in @ connected component of its deformation space. Then W is isomorphic
to Per/I";, where Per = SO(by — 3,3)/50(2) x SO(bp, —3,1) and I; is an
arithmetic subgroup in O(H2(M,R),q), called the monodromy group.

REMARK: ['; is a group generated by monodromy of the Gauss-Manin local
system on H2(M) (Markman).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on

H?(M,Z) determines the complex structure. For dim¢ M > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teich,.
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Ergodic complex structures

DEFINITION: Let (M, u) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ ¢ M satisfy u(M") =0 or u(M\M") = 0.

CLAIM: Let M be a manifold, n a Lebesgue measure, and G a group acting
on (M, ) ergodically. Then the set of non-dense orbits has measure O.

Proof: Consider a non-empty open subset U C M. Then u(U) > 0, hence
M' := G - U satisfies u(M\M’') = 0. For any orbit G -z not intersecting U,
r € M\M'. Therefore the set of such orbits has measure 0. =

DEFINITION: Let M be a complex manifold, Teich its Techmuller space,
and [ the mapping group acting on Teich An ergodic complex structure
IS a complex structure with dense [ -orbit.

CLAIM: Let (M,I) be a manifold with ergodic complex structure, and I’
another complex structure. Then there exists a sequence of diffeomor-
phisms v; such that v*(I) converges to I'.
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Ergodicity of the monodromy group action
The moduli space Per/I"; is extremely non-HausdorfT,

THEOREM: (Calvin C. Moore, 1966) Let I be an arithmetic subgroup in a
non-compact simple Lie group G with finite center, and H C G a non-compact
subgroup. Then the left action of ' on GG/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmduller space, and
[ its monodromy group. Let Per. be a set of all points L C Per such that the
orbit I - L is dense (such points are called ergodic). Then Z := Per\ Per. has
measure 0.

Proof. Step 1: Let G = SO(by —3,3), H = SO(2) x SO(bo —3,1). Then
[-action on G/H is ergodic, by Moore’'s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0. =
REMARK: This implies that “almost all” M-orbits in G/H are dense.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichy. This implies that almost all complex structures on M are
ergodic.
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Ratnher’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice I' C G is a discrete subgroup of finite covolume (that is, G/I"
has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in
a simple Lie group has finite covolume.

THEOREM: Let H C G be a Lie subroup generated by unipotents, and
[ C G a lattice. Then a closure of any H-orbit in G/I" is an orbit of a
closed, connected subgroup S C G, such that SNl C S is a lattice.

REMARK: Let x € G/H be a point in a homogeneous space, and I - z its
[-orbit, where I is an arithmetic lattice. Then its closure is an orbit of a
group S containing stabilizer of x. Moreover, S is a smallest group defined
over rationals and stabilizing =«.
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Characterization of ergodic complex structures

CLAIM: Let G = SOt (3,k), and H = SOt (1,k) x SO(2) c G. Then any
closed connected Lie subgroup S C G containing H coincides with G or
with H.

COROLLARY: Let J € Per = G/H. Then either J is ergodic, or its
[ -orbit iIs closed In Per.

REMARK: By Ratnher’'s theorem, in the latter case the H-orbit of J has finite
volume in G/I". Therefore, its intersection with " is a lattice in H. This
brings

COROLLARY: Let J € Per be a point such that its I-orbit is closed in Per.
Consider its stabilizer St(J) = H C G. Then St(J)NT is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkahler
manifold, and W C HQ(M,]R{) be a plane generated by Re2,Im<2. Then
W is rational. Equivalently, this means that Pic(M) has maximal possible
dimension.

REMARK: This can be used to show that any hyperkahler manifold is
Kobayashi non-hyperbolic.
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Kobayashi hyperbolic manifolds
DEFINITION: An entire curve is a non-constant map C — M.

DEFINITION: A compact complex manifold M is called Kobayashi hyper-
bolic, if there exist no entire curves C — M.

THEOREM: (Brody, 1975)
Let I, be a sequence of complex structures on M which are not hyperbolic,
and I its limit. Then (M, 1) is also not hyperbolic.

THEOREM: All hyperkahler manifolds are non-hyperbolic.
REMARK: This conjecture would follow if we produce an ergodic com-
plex structure which is non-hyperbolic. Indeed, a closure of its orbit is

the whole Teich, and a limit of non-hyperbolic complex structures is non-
hyperbolic.
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Twistor spaces and hyperkahler geometry

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S2 =2 {L :=al +bJ +cK, a’+b°+c*=1.}

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Ip, : TinM — T;nM on
M induced by J & S2 C H. Let I ; denote the complex structure on S2 = cpl.

The operator Iy = I;m®1j: Ty TW(M) — T, Tw(M) satisfies I-QI-W = —Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)
Let M be a hyperkdhler manifold, and Tw(M) = CP! its twistor projection.
Then there exists an entire curve in some fiber of .

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not
ergodic. =

THEOREM: All hyperkahler manifolds are non-hyperbolic.
Proof: Let Tw(M) — CPl be a twistor family with all fibers ergodic. By
Campana’s theorem, one of these fibers, denoted (M, I), is non-hyperbolic.

Since any complex structure I’ € Teich lies in the closure of Diff(M) - I, all
complex structures I’ € Teich are non-hyperbolic. =
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