Moduli spaces and the mapping class group

Misha Verbitsky

SCGP Weekly Talks

Simons Center For Geometry and Physics, 05.11.2013

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinitedimensional Fréchet manifold X_M of all tensors $I^2 = -\operatorname{Id}_{TM}$, equipped with the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a submanifold in X_M (also infinite-dimensional).

Teichmüller space

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves**.

REMARK: The topology of the "moduli space" Teich $/\Gamma$ is often bizzarre. However, its points are in bijective correspondence with equivalence classes of complex structures.

REMARK: To describe the moduli of complex structures: * we need to describe Teich (which is usually an OK complex space) * and the maping class group Γ (for dim_C M > 2, it is an arithmetic group, described explicitly in terms of cohomology).

Kähler manifolds

DEFINITION: An Riemannian metric g on a complex manifold (M, I) is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Kähler manifolds II.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

DEFINITION: The cohomology class of the Kähler form is called **the Kähler class** of a manifold.

Hodge theory for Kähler manifolds (first cohomology):

Let M be a compact Kähler manifold, and $\theta \in \Omega^1(M)$ a holomorphic differential. Then θ is closed, and its cohomology class is non-zero. This gives an injective map Ψ : $H^0(\Omega^1 M) \hookrightarrow H^1(M, \mathbb{C})$ from the space of holomorphic differentials to cohomology. Moreover, any $\alpha \in H^1(M, \mathbb{C})$ can be decomposed as $\alpha = \alpha^{1,0} + \alpha^{0,1}$, with $\alpha^{1,0} \in \operatorname{im} \Psi$ and $\overline{\alpha^{0,1}} \in \operatorname{im} \Psi$ represented by holomorphic differentials.

DEFINITION: The space im Ψ is denoted $H^{1,0}(M)$.

Teichmüller space for a compact torus

DEFINITION: Let $\mathbb{Z}^{2n} \subset \mathbb{C}^n$ be a cocompact lattice. Then $\mathbb{C}^n/\mathbb{Z}^{2n}$ is a complex manifold, called a (compact) complex torus.

REMARK: The space of complex structures on R^{2n} is naturally identified with $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$.

THEOREM: Any connected component of the Teichmüller space for a compact torus is identified with $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$.

Proof: Let the **period map** put (M, I) to $H^{1,0}(M) \subset H^1(M, \mathbb{C})$, considered as a point on $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$. Since $M = H^{1,0}(M)/H^1(M, \mathbb{Z})$, this map is invertible.

COROLLARY: Complex structures on a torus are in (1,1)-correspondence with $GL(2n,\mathbb{Z})\backslash GL(2n,\mathbb{R})/GL(n,\mathbb{C})$.

REMARK: Now I will prove that the action of $GL(2n, \mathbb{Z})$ on $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$ is ergodic.

Ergodic group action

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting $U, x \in M \setminus M'$. Therefore the set Z_U of such orbits has measure 0.

Proof. Step 2: Choose a countable base $\{U_i\}$ of topology on M. Then the set of points with dense orbits is $M \setminus \bigcup_i Z_{U_i}$.

Ergodic complex structures

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich **An ergodic complex structure** is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

REMARK: Existence of ergodic complex structures implies that **the moduli space does not exist**. Indeed, the quotient Comp / Diff is a worst topological space ever: **its topology is codiscrete**.

Ergodicity of the mapping class group action

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact semisimple Lie subgroup. Then the left action of Γ on G/H is ergodic.

COROLLARY: The action of $GL(2n,\mathbb{Z})$ on $GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ is ergodic.

Proof: Indeed, $SL(2n,\mathbb{Z})$ acts on $SL(2n,\mathbb{R})/SL(n,\mathbb{C})$ ergodically by Moore's theorem.

THEOREM: Let $M = \mathbb{C}^n / \Lambda$ be a compact torus. Then M is ergodic if and only if the lattice $\Lambda \cong \mathbb{Z}^{2n}$ is rational.

Its proof uses Ratner theory.

REMARK: The set of such tori is countable.

Further developments: hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

Ergodicity theorem is true for hyperkähler manifolds: A complex structure on a hyperkähler manifold is ergodic if and only if its Picard rank is maximal.

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold **admits a unique hyperkähler metric in any Kähler class.**

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called **a K3 surface** if it a deformation of a Kummer surface. K3 surface is also hyperkähler.

REMARK: Ergodicity theorem is new even for a K3.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic 2-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

REMARK: Usually, one says "hyperkähler manifold" meaning "a compact, Kähler, holomorphically symplectic manifold".

DEFINITION: A hyperkähler manifold M is called simple if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold **admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.**

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is simple and hyperkähler. Then $C \int_M \eta^{2n} = q(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$ and C > 0.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. It is defined by this relation uniquely, up to a sign.

Computation of the mapping class group

DEFINITION: An arithmetic lattice in a Lie group $G \subset GL(\mathbb{Q}^n)$ is a finite index subgroup in an intersection of G with $GL(\mathbb{Z}^n)$.

Theorem: (Sullivan) Let M be a compact simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then the natural map $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

COROLLARY: The mapping class group of a compact simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$, is an arithmetic lattice.

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is an arithmetic subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

COROLLARY: Let M be a simple hyperkähler manifold, and Γ its mapping class group. Then the natural map $\Gamma \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel and finite index in $O(H^2(M,\mathbb{Z}),q)$.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK:
$$\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$$

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then the period map P: Teich $\longrightarrow \mathbb{P}er$ is locally a diffeomorphism.

Global Torelli theorem

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: Let *M* be a hyperkähler manifold, Teich its Teichmüller space, and Teich_b the quotient of Teich by \sim . Then the period map *P* : Teich_b $\longrightarrow \mathbb{P}er$ induces a diffeomorphism on each connected component.

REMARK: The period space

 $\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0. \}$

is identified with $Gr_{+,+}(H^2(M,\mathbb{R})) = SO(b_2 - 3,3)/SO(2) \times SO(b_2 - 3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

COROLLARY: The mapping class group Γ is an arithmetic subgroup in $G = SO(b_2 - 3, 3)$ acting on $\mathbb{P}er = G/H$, where $H = SO(2) \times SO(b_2 - 3, 1)$. Therefore, its action is ergodic.