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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies 12 = —Idp,,.

The eigenvalues of this operator are =v/—1 . The corresponding eigenvalue
decomposition is denoted TM @ C = T%1 M @ T1.9(M).

DEFINITION: An almost complex structure is integrable if VX,Y € T1.0M
one has [X,Y] € T1.OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinite-
dimensional Fréchet manifold X,; of all tensors I? = —Idy,s, equipped with
the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a sub-
manifold in X,; (also infinite-dimensional).
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Teichmuller space

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

DEFINITION: Let Diffy (M) be the group of oriented diffeomorphisms of M.
We call I' := Diff . (M)/ Diffg(M) the mapping class group. The moduli
space of complex structures on M is a connected component of Teich /T.

REMARK: This terminology is standard for curves.

REMARK: The topology of the moduli space Teich /" is often bizzarre.
However, its points are in bijective correspondence with equivalence
classes of complex structures.
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Kahler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called
Hermitian if g(Iz, Iy) = g(z,vy). In this case, g(z, Iy) = g(Iz, I%y) = —g(y, Iz),
hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € ALL(M) is called the Hermitian
form of (M, 1,gq).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.

Definition: Let M = CP"™ be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1).

Remark: For any x € CP", the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on 7,CP"™ = C" is U(n)-invariant, hence unique up to a

constant.
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Kahler manifolds II.

Claim: Fubini-Study form is Kahler. Indeed, dw|;z is a U(n)-invariant 3-
form on C", but such a form must vanish, because —Id € U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CP") is
Kahler. Indeed, a restriction of a closed form is again closed.

DEFINITION: The cohomology class of the Kahler form is called the Kahler
class of a manifold.

Hodge theory for Kahler manifolds (first cohomology):

Let M be a compact Kihler manifold, and 6 € Q1(M) a holomorphic differ-
ential. Then 0 is closed, and its cohomology class is non-zero. This gives
an injective map W : HO(QIM) — HI(M,C). Moreover, any o € HY(M,C)
can be decomposed as a = o104+ 01, with o0 cimwv and a0l ¢ imw
represented by holomorphic differentials holomorphic.

DEFINITION: The space im WV is denoted HL.0(M).
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Teichmuller space for a compact torus

DEFINITION: Let Z2" C C" be a cocompact lattice. Then C"/Z2" is a
complex manifold, called a (compact) complex torus.

REMARK: The space of complex structures on R2" s naturally identified
with GL(2n,R)/GL(n,C).

THEOREM: Any connected component of the Teichmuller space for
a compact torus is identified with GL(2n,R)/GL(n,C).

Proof: Let the period map put (M,I) to H1.O0(M) ¢ H1(M,C), considered
as a point on GL(2n,R)/GL(n,C). Since M = HLO(M)/HY(M,7Z), this map
IS invertible. =

COROLLARY: Complex structures on a torus are in (1,1)-correspondence
with GL(2n,Z)\GL(2n,R)/GL(n,C).

REMARK: Now I will prove that the action of GL(2n,7Z) on GL(2n,R)/GL(n,C)
IS ergodic.
§)
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Ergodic complex structures

DEFINITION: Let (M, u) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ ¢ M satisfy u(M") =0 or u(M\M") = 0.

CLAIM: Let M be a manifold, n a Lebesgue measure, and G a group acting
on (M, ) ergodically. Then the set of non-dense orbits has measure O.

Proof: Consider a non-empty open subset U C M. Then u(U) > 0, hence
M' := G - U satisfies u(M\M’') = 0. For any orbit G -z not intersecting U,
r € M\M'. Therefore the set of such orbits has measure 0. =

DEFINITION: Let M be a complex manifold, Teich its Techmuller space,
and [ the mapping group acting on Teich. An ergodic complex structure
IS a complex structure with dense [ -orbit.

CLAIM: Let (M,I) be a manifold with ergodic complex structure, and I’
another complex structure. Then there exists a sequence of diffeomor-
phisms v; such that v*(I) converges to I'.
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Ergodicity of the mapping class group action

THEOREM: (Calvin C. Moore, 1966) Let I' be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H C G a non-compact
semisimple Lie subgroup. Then the left action of I on GG/H is ergodic. =

COROLLARY: The action of GL(2n,Z) on GL(2n,R)/GL(n,C) is er-
godic.

Proof: Indeed, SL(2n,7Z) acts on SL(2n,R)/SL(n,C) ergodically by Moore's
theorem. =

THEOREM: Let M = C"/A\ be a compact torus. Then M is non-ergodic
if and only if the lattice A = 72" is rational.

Its proof uses Ratner theory.

REMARK: The set of such tori is countable.
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Ratnher’s theorem: preparatory definitions

DEFINITION: A matrix is called unipotent if it is an exponent of a nilpotent,
and semisimple if it is conjugate to a diagonal matrix. An element g in an
algebraic group is called unipotent (semisimple) if it is represented by a
unipotent (algebraic) matrix for some algebraic representation.

THEOREM: (Chevalley-Jordan decomposition)

Any element g of a Lie algebra can be represented as g = s + u, where s
Is semisimple, u nilpotent, and s, commute. Moreover, such a decom-
position is unique.

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice ' C G is a discrete subgroup of finite covolume (that is, G/I
has finite volume).

THEOREM: (Borel and Harish-Chandra)
An arithmetic subgroup of a reductive algebraic group G, defined over Q, is
a lattice whenever G has no non-trivial characters over Q.
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Ratner’s theorem

THEOREM: (Ratner’s theorem) Let H C G be a Lie subroup generated by
unipotents, and I' C G a lattice. Then a closure of any H-orbit Hx in G /I
iIs an orbit of a closed, connected subgroup S C G, such that S*NnlC C S
is a lattice. Here S* = xSz~ 1.

EXAMPLE: Let A € C" be a cocompact lattice. The corresponding complex
torus is non-ergodic if and only if there exists an intermediate Lie group
H = SL(n,C) Cc S € SL(2n,R) such that SN SL(A) is a lattice. This is
equivalent to S being a rational Lie group, with respect to the rational
structure induced by A.

CLAIM: Letn>2, G =SL(2n,R), and H = SL(n,C) C G. Then any closed
connected Lie subgroup S C G containing H coincides with G or with
H.

Proof: See the next slide. m

COROLLARY: For any non-ergodic torus C™/A, the intersection SL(n,C)N
SL(A) is a lattice. This is equivalent to A being rational.
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Intermediate subgroups SL(n,C) C S C SL(2n,R)

CLAIM: Let n > 2. Then any closed, connected Lie subgroup S C
GL(2n,R) containing GL(n,C) coincides with GL(2n,R) or with GL(n,C).

Proof. Step 0: dimg GL(n,C) = 2n?, and dimg SL(2n,R) = 4n2.

Step 1: It suffices to prove the same result for Lie algebras. Let h = gl(n,C) C
s C gl(2n,R) = g. As a representation of h, the space g is a direct sum of §
(matrices commuting with I) and and the space g_ of matrices anticommut-
ing with I. The later representation is isomorphic to §;, the isomorphism is
provided by a — au, for any non-degenerate matrix v anticommuting with 1.

Step 2: The subalgebra s must be h-invariant. Therefore, it is either § or
h&g- =g =
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Further developments: hyperkahler manifolds

Ergodicity theorem is true for hyperkahler manifolds: A complex struc-
ture on a hyperkahler manifold is non-ergodic if and only if its Picard rank is
maximal.

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations oJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: w4
vV—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

EXAMPLE: Take a 2-dimensional complex torus T', then the singular locus
of T/+1 is of form (C2/+1) x T. TIts resolution T/+1 is called a Kummer
surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called a K3 surface if it a deformation
of a Kummer surface. K3 surface is also hyperkahler.
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Further developments: Kobayashi non-hyperbolicity

DEFINITION: An entire curve is a non-constant map C — M.

DEFINITION: A compact complex manifold M is called Kobayashi hyper-
bolic if there exist no entire curves C — M.

Using ergodicity, the following longstanding conjecture was proven.

THEOREM: All hyperkahler manifolds are non-hyperbolic.

REMARK: This is equivalent to having an entire curve C — M (Brody).
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EXxercises

EXERCISE: Let H C G be a subgroup. Prove that there are no closed,
connected subgroups S satisfying H C S C G when

a. H= SO(p,k) x SO(qg—k), G=S0O(p,q), p,g>0

b. H= Sp(2n,R), G = SL(2n,R)

c. H=SL(n,H), G= SL(2n,C)

EXERCISE: Find all dense Gy-orbits in G/H for all these cases.

EXERCISE: Find a K3 surface with vanishing Kobayashi pseudodistance.
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