Moduli of complex structures and Ratner theory

Misha Verbitsky

Hyperbolicity 2015 Holomorphic dynamics school Hyperbolicity in algebraic geometry conference

Ilhabela, 06.01.2015

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinitedimensional Fréchet manifold X_M of all tensors $I^2 = -\operatorname{Id}_{TM}$, equipped with the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a submanifold in X_M (also infinite-dimensional).

Teichmüller space

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves**.

REMARK: The topology of the moduli space Teich $/\Gamma$ is often bizzarre. However, its points are in bijective correspondence with equivalence classes of complex structures.

Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

M. Verbitsky

Kähler manifolds II.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

DEFINITION: The cohomology class of the Kähler form is called **the Kähler class** of a manifold.

Hodge theory for Kähler manifolds (first cohomology):

Let M be a compact Kähler manifold, and $\theta \in \Omega^1(M)$ a holomorphic differential. Then θ is closed, and its cohomology class is non-zero. This gives an injective map Ψ : $H^0(\Omega^1 M) \hookrightarrow H^1(M, \mathbb{C})$. Moreover, any $\alpha \in H^1(M, \mathbb{C})$ can be decomposed as $\alpha = \alpha^{1,0} + \alpha^{0,1}$, with $\alpha^{1,0} \in \operatorname{im} \Psi$ and $\overline{\alpha^{0,1}} \in \operatorname{im} \Psi$ represented by holomorphic differentials holomorphic.

DEFINITION: The space im Ψ is denoted $H^{1,0}(M)$.

Teichmüller space for a compact torus

DEFINITION: Let $\mathbb{Z}^{2n} \subset \mathbb{C}^n$ be a cocompact lattice. Then $\mathbb{C}^n/\mathbb{Z}^{2n}$ is a complex manifold, called a (compact) complex torus.

REMARK: The space of complex structures on R^{2n} is naturally identified with $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$.

THEOREM: Any connected component of the Teichmüller space for a compact torus is identified with $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$.

Proof: Let the **period map** put (M, I) to $H^{1,0}(M) \subset H^1(M, \mathbb{C})$, considered as a point on $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$. Since $M = H^{1,0}(M)/H^1(M, \mathbb{Z})$, this map is invertible.

COROLLARY: Complex structures on a torus are in (1,1)-correspondence with $GL(2n,\mathbb{Z})\backslash GL(2n,\mathbb{R})/GL(n,\mathbb{C})$.

REMARK: Now I will prove that the action of $GL(2n, \mathbb{Z})$ on $GL(2n, \mathbb{R})/GL(n, \mathbb{C})$ is ergodic.

Ergodic complex structures

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let *M* be a manifold, μ a Lebesgue measure, and *G* a group acting on (M, μ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting U, $x \in M \setminus M'$. Therefore the set of such orbits has measure 0.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich. An ergodic complex structure is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

Ergodicity of the mapping class group action

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact semisimple Lie subgroup. Then the left action of Γ on G/H is ergodic.

COROLLARY: The action of $GL(2n,\mathbb{Z})$ on $GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ is ergodic.

Proof: Indeed, $SL(2n,\mathbb{Z})$ acts on $SL(2n,\mathbb{R})/SL(n,\mathbb{C})$ ergodically by Moore's theorem.

THEOREM: Let $M = \mathbb{C}^n / \Lambda$ be a compact torus. Then M is non-ergodic if and only if the lattice $\Lambda \cong \mathbb{Z}^{2n}$ is rational.

Its proof uses Ratner theory.

REMARK: The set of such tori is countable.

Ratner's theorem: preparatory definitions

DEFINITION: A matrix is called **unipotent** if it is an exponent of a nilpotent, and **semisimple** if it is conjugate to a diagonal matrix. An element *g* in an algebraic group is called **unipotent (semisimple)** if it is represented by a unipotent (algebraic) matrix for some algebraic representation.

THEOREM: (Chevalley-Jordan decomposition)

Any element g of a Lie algebra can be represented as g = s + u, where s is semisimple, u nilpotent, and s, u commute. Moreover, such a decomposition is unique.

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

THEOREM: (Borel and Harish-Chandra)

An arithmetic subgroup of a reductive algebraic group G, defined over \mathbb{Q} , is a lattice whenever G has no non-trivial characters over \mathbb{Q} .

Ratner's theorem

THEOREM: (Ratner's theorem) Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then a closure of any *H*-orbit Hx in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S^x \cap \Gamma \subset S$ is a lattice. Here $S^x = xSx^{-1}$.

EXAMPLE: Let $\Lambda \in \mathbb{C}^n$ be a cocompact lattice. The corresponding complex torus is non-ergodic if and only if there exists an intermediate Lie group $H = SL(n,\mathbb{C}) \subset S \subsetneq SL(2n,\mathbb{R})$ such that $S \cap SL(\Lambda)$ is a lattice. This is equivalent to S being a rational Lie group, with respect to the rational structure induced by Λ .

CLAIM: Let $n \ge 2$, $G = SL(2n, \mathbb{R})$, and $H \cong SL(n, \mathbb{C}) \subset G$. Then any closed connected Lie subgroup $S \subset G$ containing H coincides with G or with H.

Proof: See the next slide. ■

COROLLARY: For any non-ergodic torus \mathbb{C}^n/Λ , the intersection $SL(n,\mathbb{C}) \cap$ $SL(\Lambda)$ is a lattice. This is equivalent to Λ being rational. Intermediate subgroups $SL(n, \mathbb{C}) \subset S \subset SL(2n, \mathbb{R})$

CLAIM: Let $n \ge 2$. Then any closed, connected Lie subgroup $S \subset GL(2n,\mathbb{R})$ containing $GL(n,\mathbb{C})$ coincides with $GL(2n,\mathbb{R})$ or with $GL(n,\mathbb{C})$.

Proof. Step 0: dim_{\mathbb{R}} $GL(n,\mathbb{C}) = 2n^2$, and dim_{\mathbb{R}} $SL(2n,\mathbb{R}) = 4n^2$.

Step 1: It suffices to prove the same result for Lie algebras. Let $\mathfrak{h} = \mathfrak{gl}(n, \mathbb{C}) \subset \mathfrak{s} \subset \mathfrak{gl}(2n, \mathbb{R}) = \mathfrak{g}$. As a representation of \mathfrak{h} , the space \mathfrak{g} is a direct sum of \mathfrak{h} (matrices commuting with I) and and the space \mathfrak{g}_{-} of matrices anticommuting with I. The later representation is isomorphic to \mathfrak{h} ; the isomorphism is provided by $a \longrightarrow au$, for any non-degenerate matrix u anticommuting with I.

Step 2: The subalgebra \mathfrak{s} must be \mathfrak{h} -invariant. Therefore, it is either \mathfrak{h} or $\mathfrak{h} \oplus \mathfrak{g}_{-} = \mathfrak{g}$.

Further developments: hyperkähler manifolds

Ergodicity theorem is true for hyperkähler manifolds: A complex structure on a hyperkähler manifold is non-ergodic if and only if its Picard rank is maximal.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called **a K3 surface** if it a deformation of a Kummer surface. K3 surface is also hyperkähler.

Further developments: Kobayashi non-hyperbolicity

DEFINITION: An entire curve is a non-constant map $\mathbb{C} \longrightarrow M$.

DEFINITION: A compact complex manifold M is called **Kobayashi hyper-bolic** if there exist no entire curves $\mathbb{C} \longrightarrow M$.

Using ergodicity, the following longstanding conjecture was proven.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

REMARK: This is equivalent to having an entire curve $\mathbb{C} \longrightarrow M$ (Brody).

Exercises

EXERCISE: Let $H \subset G$ be a subgroup. Prove that there are no closed, connected subgroups S satisfying $H \subsetneq S \subsetneq G$ when

- a. $H = SO(p,k) \times SO(q-k), G = SO(p,q), p,q > 0$
- b. $H = Sp(2n, \mathbb{R}), G = SL(2n, \mathbb{R})$
- c. $H = SL(n, \mathbb{H}), G = SL(2n, \mathbb{C})$

EXERCISE: Find all dense $G_{\mathbb{Z}}$ -orbits in G/H for all these cases.

EXERCISE: Find a K3 surface with vanishing Kobayashi pseudodistance.