
Ergodic complex structures M. Verbitsky

Moduli of complex structures and Ratner theory

Misha Verbitsky

Hyperbolicity 2015

Holomorphic dynamics school

Hyperbolicity in algebraic geometry conference

Ilhabela, 06.01.2015

1



Ergodic complex structures M. Verbitsky

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinite-
dimensional Fréchet manifold XM of all tensors I2 = − IdTM , equipped with
the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a sub-
manifold in XM (also infinite-dimensional).
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Teichmüller space

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The moduli

space of complex structures on M is a connected component of Teich /Γ.

REMARK: This terminology is standard for curves.

REMARK: The topology of the moduli space Teich /Γ is often bizzarre.

However, its points are in bijective correspondence with equivalence

classes of complex structures.
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Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called

Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) = −g(y, Ix),

hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a

constant.
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Kähler manifolds II.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.

DEFINITION: The cohomology class of the Kähler form is called the Kähler

class of a manifold.

Hodge theory for Kähler manifolds (first cohomology):

Let M be a compact Kähler manifold, and θ ∈ Ω1(M) a holomorphic differ-

ential. Then θ is closed, and its cohomology class is non-zero. This gives

an injective map Ψ : H0(Ω1M) ↪→ H1(M,C). Moreover, any α ∈ H1(M,C)

can be decomposed as α = α1,0 + α0,1, with α1,0 ∈ im Ψ and α0,1 ∈ im Ψ

represented by holomorphic differentials holomorphic.

DEFINITION: The space im Ψ is denoted H1,0(M).
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Teichmüller space for a compact torus

DEFINITION: Let Z2n ⊂ Cn be a cocompact lattice. Then Cn/Z2n is a

complex manifold, called a (compact) complex torus.

REMARK: The space of complex structures on R2n is naturally identified

with GL(2n,R)/GL(n,C).

THEOREM: Any connected component of the Teichmüller space for

a compact torus is identified with GL(2n,R)/GL(n,C).

Proof: Let the period map put (M, I) to H1,0(M) ⊂ H1(M,C), considered

as a point on GL(2n,R)/GL(n,C). Since M = H1,0(M)/H1(M,Z), this map

is invertible.

COROLLARY: Complex structures on a torus are in (1,1)-correspondence

with GL(2n,Z)\GL(2n,R)/GL(n,C).

REMARK: Now I will prove that the action of GL(2n,Z) on GL(2n,R)/GL(n,C)

is ergodic.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on (M,µ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence

M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,

x ∈M\M ′. Therefore the set of such orbits has measure 0.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,

and Γ the mapping group acting on Teich. An ergodic complex structure

is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-

phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the mapping class group action

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a

non-compact simple Lie group G with finite center, and H ⊂ G a non-compact

semisimple Lie subgroup. Then the left action of Γ on G/H is ergodic.

COROLLARY: The action of GL(2n,Z) on GL(2n,R)/GL(n,C) is er-

godic.

Proof: Indeed, SL(2n,Z) acts on SL(2n,R)/SL(n,C) ergodically by Moore’s

theorem.

THEOREM: Let M = Cn/Λ be a compact torus. Then M is non-ergodic

if and only if the lattice Λ ∼= Z2n is rational.

Its proof uses Ratner theory.

REMARK: The set of such tori is countable.
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Ratner’s theorem: preparatory definitions

DEFINITION: A matrix is called unipotent if it is an exponent of a nilpotent,

and semisimple if it is conjugate to a diagonal matrix. An element g in an

algebraic group is called unipotent (semisimple) if it is represented by a

unipotent (algebraic) matrix for some algebraic representation.

THEOREM: (Chevalley-Jordan decomposition)

Any element g of a Lie algebra can be represented as g = s + u, where s

is semisimple, u nilpotent, and s, u commute. Moreover, such a decom-

position is unique.

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

THEOREM: (Borel and Harish-Chandra)

An arithmetic subgroup of a reductive algebraic group G, defined over Q, is

a lattice whenever G has no non-trivial characters over Q.
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Ratner’s theorem

THEOREM: (Ratner’s theorem) Let H ⊂ G be a Lie subroup generated by

unipotents, and Γ ⊂ G a lattice. Then a closure of any H-orbit Hx in G/Γ

is an orbit of a closed, connected subgroup S ⊂ G, such that Sx ∩Γ ⊂ S
is a lattice. Here Sx = xSx−1.

EXAMPLE: Let Λ ∈ Cn be a cocompact lattice. The corresponding complex

torus is non-ergodic if and only if there exists an intermediate Lie group

H = SL(n,C) ⊂ S ( SL(2n,R) such that S ∩ SL(Λ) is a lattice. This is

equivalent to S being a rational Lie group, with respect to the rational

structure induced by Λ.

CLAIM: Let n > 2, G = SL(2n,R), and H ∼= SL(n,C) ⊂ G. Then any closed

connected Lie subgroup S ⊂ G containing H coincides with G or with

H.

Proof: See the next slide.

COROLLARY: For any non-ergodic torus Cn/Λ, the intersection SL(n,C)∩
SL(Λ) is a lattice. This is equivalent to Λ being rational.
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Intermediate subgroups SL(n,C) ⊂ S ⊂ SL(2n,R)

CLAIM: Let n > 2. Then any closed, connected Lie subgroup S ⊂
GL(2n,R) containing GL(n,C) coincides with GL(2n,R) or with GL(n,C).

Proof. Step 0: dimRGL(n,C) = 2n2, and dimR SL(2n,R) = 4n2.

Step 1: It suffices to prove the same result for Lie algebras. Let h = gl(n,C) ⊂
s ⊂ gl(2n,R) = g. As a representation of h, the space g is a direct sum of h

(matrices commuting with I) and and the space g− of matrices anticommut-

ing with I. The later representation is isomorphic to h; the isomorphism is

provided by a−→ au, for any non-degenerate matrix u anticommuting with I.

Step 2: The subalgebra s must be h-invariant. Therefore, it is either h or

h⊕ g− = g.
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Further developments: hyperkähler manifolds

Ergodicity theorem is true for hyperkähler manifolds: A complex struc-
ture on a hyperkähler manifold is non-ergodic if and only if its Picard rank is
maximal.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

DEFINITION: A complex surface is called a K3 surface if it a deformation
of a Kummer surface. K3 surface is also hyperkähler.
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Further developments: Kobayashi non-hyperbolicity

DEFINITION: An entire curve is a non-constant map C−→M .

DEFINITION: A compact complex manifold M is called Kobayashi hyper-

bolic if there exist no entire curves C−→M .

Using ergodicity, the following longstanding conjecture was proven.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

REMARK: This is equivalent to having an entire curve C−→M (Brody).
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Exercises

EXERCISE: Let H ⊂ G be a subgroup. Prove that there are no closed,

connected subgroups S satisfying H ( S ( G when

a. H = SO(p, k)× SO(q − k), G = SO(p, q), p, q > 0

b. H = Sp(2n,R), G = SL(2n,R)

c. H = SL(n,H), G = SL(2n,C)

EXERCISE: Find all dense GZ-orbits in G/H for all these cases.

EXERCISE: Find a K3 surface with vanishing Kobayashi pseudodistance.
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