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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinite-
dimensional Fréchet manifold XM of all tensors I2 = − IdTM , equipped with
the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a sub-
manifold in XM (also infinite-dimensional).
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Teichmüller space

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The moduli

space of complex structures on M is a connected component of Teich /Γ.

REMARK: This terminology is standard for curves.

REMARK: The topology of the moduli space Teich /Γ is often bizzarre.

However, its points are in bijective correspondence with equivalence

classes of complex structures.

REMARK: To describe the moduli space, we shall compute Teich and Γ.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and
let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic
to the Kummer surface ˜T/±1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkähler. Then M is either
a torus or a K3 surface.
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Hilbert schemes

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized
Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkähler manifold, and G ⊂ GL(H∗(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on H2(M) preserving the BBF form. Moreover, the
map G−→O(H2(M,R), q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2n = q(v, v)n implies that Γ0 preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1(M), and (as
Fujiki has shown) v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant
c is positive, because the degree of c2(B) is positive for any Yang-Mills
bundle with c1(B) = 0.

Step 3: o(H2(M,R), q) acts on H∗(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R), q).

Step 4: The kernel K of the map G−→G
∣∣∣H2(M,R) is compact, because it

commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-
fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then
(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

Proof: Follows from Sullivan and a computation of Aut(H∗(M,R)) done
earlier.

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

REMARK: The mapping class group acts on the set of connected compo-
nents of Teich.

COROLLARY: Let ΓI be the group of elements of mapping class group
preserving a connected component of Teichmüller space containing I ∈ Teich.
Then ΓI is also arithmetic. Indeed, it has finite index in Γ.
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Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira) A small deformation of a compact Kähler man-

ifold is again Kähler.

COROLLARY: A small deformation of a holomorphically symplectic Kähler

manifold M is again holomorphically symplectic and Kähler.

Proof: A small deformation M ′ of M would satisfy H2,0(M ′) = H2,0(M);

however, a small deformation of a non-degenerate (2,0)-form remains non-

degenerate.

DEFINITION: A compact complex manifold admitting holomorphically sym-

plectic and Kähler structure is called a manifold of hyperkähler type

REMARK: By the Teichmüller space of hyperkähler manifolds we shall

understand the deformation space of complex manifolds of hyperkähler type.
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The period map

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

THEOREM: Let M be a simple hyperkähler manifold, and Teich a compo-

nent of its Teichmüller space. Then

(i) (Bogomolov) The period map P : Teich −→ Per is etale.

(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-

Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to Rn.

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-
separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separable points, then
P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)

DEFINITION: Let M be a topological space for which M/ ∼ is Hausdorff.
Then M/ ∼ is called a Hausdorff reduction of M .

Problems:
Generally speaking,
1. ∼ is not always an equivalence relation.
2. Even if ∼ is equivalence, the M/ ∼ is not always Hausdorff.

REMARK: Huybrechts’s theorem implies that ∼ is in fact an equivalence
relation; the quotient is mapped to the period space by etale map, hence it
is Hausdorff.
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Global Torelli theorem

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

The proof is based on metric geometry and twistor construction.
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Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and B ⊂ TM a sub-bundle.

A horizontal path is a piecewise smooth path γ : [b, a]−→M tangent to B

everywhere. A sub-Riemannian, or Carno-Carathéodory metric M is

dB(x, y) := inf
γ horizontal

L(γ) :

the infimum of the length L(γ) for all horizontal paths connecting x to y.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Consider the Frobenius form Φ : Λ2B −→ TM/B mapping vector fields

X,Y ∈ B to an image of [X,Y ] modulo B. Suppose that Φ is surjective.

Then any two points can be connected by a horizontal path, and the

sub-Riemannian metric dB is finite.
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Properties of sub-Riemannian metrics

Let (M,B, g) be a sub-Riemannian manifold.

CLAIM: Every two points x, y ∈ M are connected by a smooth, hor-

izontal path γ. Moreover, dB(x, y) = infγ horizontal, smoothL(γ): the sub-

Riemannian distance can be taken as infimum of the length for smooth hori-

zontal paths connecting x to y.

THEOREM: (ball-box theorem) An ε-ball in dB is asymptotically equiv-

alent to a product of ε-ball in direction of B and ε2-ball in orthogonal

direction.

COROLLARY: The sub-Riemannian metric induces the standard topol-

ogy on M.

COROLLARY: The Hausdorff dimension of a sub-Riemannian manifold is

integer, and strictly bigger than dimM.
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Subtwistor metric

Let H be a real vector space with non-degenerate scalar product of signature
(3, b− 3), and Gr++(H) the Grassmannian of 2-dimensional positive oriented
planes in H. The space Gr++(H) is in fact a complex manifold, and it is
called the period space of weight 2 Hodge structures on H.

DEFINITION: Let W ⊂ V be a positive 3-dimensional subspace, and SW =
Gr++(W ) ⊂ Gr++(H) a 2-dimensional sphere consisting all 2-dimensional
oriented planes in W . Then Sw is called a twistor line.

CLAIM: Each pair x, y ∈ Gr++(H) can be connected by an intersecting
chain SW1

, SW2
, ..., SWn of twistor lines; moreover, n 6 3.

DEFINITION: A twistor path on Gr++(H) is a piecewise smooth path
γ : [a, b]−→ Gr++(H) with each smooth component sitting on a twistor line.

DEFINITION: Fix a Euclidean structure on H, and let g be the corresponding
Riemannian metric on Gr++(H). Subtwistor metric dtw(x, y) on Gr++(H)
is defined as dtw(x, y) := infγ L(γ) where L(γ) is a length of the path γ taken
with respect to g, and infimum is taken over all subtwistor paths connecting
x to y.
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Properties of subtwistor metric

QUESTION: Can we connect any pair x, y ∈ Gr++(H) with a smooth path

tangent to twistor line at each point? Would the infimum of its length give

the same metric?

QUESTION: What about the ball-box theorem? What is a shape of a small

ε-ball in dtw?

QUESTION: What us the Hausdorff dimension (Gr++(H), dtw)?

Theorem 1: The subtwistor metric dtw induces the standard topology

on Gr++(H).

REMARK: Global Torelli theorem immediately follows from this (non-trivial)

statement.
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Twistor lines

REMARK: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.}

is identified with Gr++(H2(M,R)) = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1),

which is a Grassmannian of positive oriented 2-planes in H2(M,R).

DEFINITION: Given a hyperkähler structure (M, I, J,K) on a hyperkähler

manifold, and a, b, c ∈ R, a2+b2+c2 = 1, the operator L := aI+bJ+cK defines

a complex structure on M . We call L an induced compex structure. The

set of all induced complex structures defines a deformation of the complex

structure on M , called the twistor deformation, and its total space is the

twistor space.

REMARK: Image of a twistor deformation in Per is a twistor line.
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Kähler cone and Hodge decomposition

REMARK: Let (M, I) be a hyperkähler manifold with Per(I) = V ∈ Gr++(H2(M,R)).

Then H1,1(M, I) = V ⊥.

CLAIM: (Huybrechts, Boucksom)

Let (M, I) be a hyperkaehler manifold with NS(M, I) := H
1,1
I (M,Z) = 0. Then

the Kahler cone of (M, I) is one of two components of the positive cone

in H
1,1
I (M).

DEFINITION: Let S ⊂ Teich be a CP1 associated with a twistor family. It

is called generic if it passes through a point I ∈ Teich with NS(M, I) = 0.

DEFINITION: A hyperkähler 3-plane W ⊂ H2(M,R) is called generic if

W⊥ ∩ H2(M,Z) = 0. The corresponding CP1 ⊂ Per in the period space is

called a GHK line.

REMARK: These two notions are equivalent.
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Lifting property for GHK lines

REMARK: Consider a 3-plane W = 〈ωI , ωJ , ωK〉 associated with a hyperkähler

structure, and let S be the set of oriented 2-planes in W . Denote by Sng the

set of x ∈ S satisfying x⊥ ∩ H2(M,Z) 6= 0. If W is generic, then Sng is

countable.

THEOREM: (A lifting property for GHK lines)

Let W ⊂ H2(M,R) be a generic 3-plane, and S ⊂ Per the corresponding GHK

line. Consider the period map P : Teich −→ Per. Then P−1(S) is a union

of a countable set mapped to Sng, and a disconnected set of rational

curves bijectively mapped to S.

Proof. Step 1: Let x /∈ Sng We are going to prove that for all I ∈ P−1(x), y

is contained in a connected component of P−1(S), bijectively mapped

to S.

Step 2: Notice that NS(I) = x⊥ ∩H2(M,Z) = 0. Therefore the Kähler cone

of (M, I) is one of two components of the set {ω ∈ P (I)⊥ | q(ω, ω) > 0}..
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Step 3: For each positive 3-plane W ⊂ H2(M,R), W = 〈ωI , ωJ , ωK〉 for some

hyperkähler structure I, J,K. Then the twistor family associated with

I, J,K is mapped to S.

COROLLARY: Any connected sequence of twistor lines in Per intersecting

in points Ik with NS(Ik) = 0 can be lifted to a connected sequence in Per.
We call twistor paths on these sequences GHK twistor paths.
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Subtwistor metric on the Teichmüller space

DEFINITION: Subtwistor metric on Teich is a metric induced from Per.

CLAIM: Per : Teich −→ Per is a surjective isometry.

Proof: For any irrational 3-dimensional space W ∈ Gr+++(H2(M,R), the

corresponding twistor line SW is lifted wholly to Per; for each irrational point

I ∈ SW , this lifting is determined by a preimage I1 ∈ Per−1(I) uniquely. Any

twistor path can be approximated by one which is obtained from irrational

W ∈ Gr+++(H2(M,R), hence the map Per : Teich −→ Per is an isometry.

Global Torelli theorem follows immediately. Indeed, by Theorem 1, any

twistor paths in Per can be approximated by GHK twistor paths in usual, and

hence in subtwistor, topology. The latter are liftable to Teich. This implies

that the subtwistor distance in Teich is equal to that in Per.
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Exercises

EXERCISE: Let Symp be the set of all symplectic structures on a sym-

plectic manifold, and Teichs = Symp /Diff0. Consider the period map Pers :

Teichs −→H2(M,R). Prove that Pers is locally a diffeomorphism.

EXERCISE: Let Hyp be the set of all hyperkäher structures (I, J,K, g) on

a symplectic manifold, and Teichh = Hyp /Diff0. Consider the period map

Perh : Teichh −→H2(M,R)3 mapping (I, J,K, g) to the cohomology classes

of ωI , ωJ , ωK. Prove that Perh is locally a diffeomorphism from Teichh
to the set of pairwise orthogonal triples x, y, z ∈ H2(M,R) satisfying

q(x, x) = q(y, y) = q(z, z) > 0.

EXERCISE: Show that Teichh /Γ is Hausdorff.
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