Teichmüller space and Ratner theory, lecture 2: Global Torelli theorem for hyperkähler manifolds

Misha Verbitsky

Hyperbolicity 2015 Holomorphic dynamics school Hyperbolicity in algebraic geometry conference

Ilhabela, 07.01.2015

The first lecture is available at:

http://verbit.ru/MATH/TALKS/Ergo/Ilhabela/ (with corrections)

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure op-erator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

DEFINITION: The space of almost complex structures is an infinitedimensional Fréchet manifold X_M of all tensors $I^2 = -\operatorname{Id}_{TM}$, equipped with the natural Fréchet topology.

CLAIM: The space Comp of integrable almost complex structures is a submanifold in X_M (also infinite-dimensional).

Teichmüller space

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves**.

REMARK: The topology of the moduli space Teich $/\Gamma$ is often bizzarre. However, its points are in bijective correspondence with equivalence classes of complex structures.

REMARK: To describe the moduli space, we shall compute Teich and Γ .

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K). Global Torelli Theorem

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^* \mathbb{C}P^n$ (Calabi).

REMARK: $T^* \mathbb{C}P^1$ is a resolution of a singularity $\mathbb{C}^2/\pm 1$.

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A complex surface is called **K3 surface** if it a deformation of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Fujiki, Beauville) **A Hilbert scheme of a hyperkähler surface is hyperkähler.**

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the three series:** tori, Hilbert schemes of K3, and generalized Kummer.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(b_2 - 3, 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkähler manifold, and $G \subset GL(H^*(M))$ a group of automorphisms of its cohomology algebra preserving the Pontryagin classes. Then G acts on $H^2(M)$ preserving the BBF form. Moreover, the map $G \longrightarrow O(H^2(M, \mathbb{R}), q)$ is surjective on a connected component, and has compact kernel.

Proof. Step 1: Fujiki formula $v^{2n} = q(v, v)^n$ implies that Γ_0 preserves the **Bogomolov-Beauville-Fujiki up to a sign.** The sign is fixed, if *n* is odd.

Step 2: For even *n*, the sign is also fixed. Indeed, *G* preserves $p_1(M)$, and (as Fujiki has shown) $v^{2n-2} \wedge p_1(M) = q(v,v)^{n-1}c$, for some $c \in \mathbb{R}$. The constant *c* is positive, **because the degree of** $c_2(B)$ **is positive** for any Yang-Mills bundle with $c_1(B) = 0$.

Step 3: $\mathfrak{o}(H^2(M,\mathbb{R}),q)$ acts on $H^*(M,\mathbb{R})$ by derivations preserving Pontryagin classes (V., 1995). Therefore Lie(G) surjects to $\mathfrak{o}(H^2(M,\mathbb{R}),q)$.

Step 4: The kernel *K* **of the map** $G \rightarrow G|_{H^2(M,\mathbb{R})}$ **is compact,** because it commutes with the Hodge decomposition and Lefschetz $\mathfrak{sl}(2)$ -action, hence preserves the Riemann-Hodge form, which is positive definite.

Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

Proof: Follows from Sullivan and a computation of $Aut(H^*(M, \mathbb{R}))$ done earlier.

REMARK: (Kollar-Matsusaka, Huybrechts) **There are only finitely many connected components** of Teich.

REMARK: The mapping class group acts on the set of connected components of Teich.

COROLLARY: Let Γ_I be the group of elements of mapping class group preserving a connected component of Teichmüller space containing $I \in$ Teich. **Then** Γ_I **is also arithmetic.** Indeed, **it has finite index in** Γ .

Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira) A small deformation of a compact Kähler manifold is again Kähler.

COROLLARY: A small deformation of a holomorphically symplectic Kähler manifold *M* is again holomorphically symplectic and Kähler.

Proof: A small deformation M' of M would satisfy $H^{2,0}(M') = H^{2,0}(M)$; however, a small deformation of a non-degenerate (2,0)-form remains non-degenerate.

DEFINITION: A compact complex manifold admitting holomorphically symplectic and Kähler structure is called a manifold of hyperkähler type

REMARK: By the **Teichmüller space** of hyperkähler manifolds we shall understand the deformation space of complex manifolds of hyperkähler type.

The period map

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK:
$$\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$$

THEOREM: Let M be a simple hyperkähler manifold, and Teich a component of its Teichmüller space. Then (i) (Bogomolov) **The period map** P: Teich $\longrightarrow \mathbb{P}er$ is etale. (ii) (Huybrechts) It is surjective.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-Hausdorff even in the simplest examples.

Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeomorphic to \mathbb{R}^n .

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (D. Huybrechts) If I_1 , $I_2 \in$ Teich are non-separable points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2)

DEFINITION: Let *M* be a topological space for which M/ \sim is Hausdorff. Then M/ \sim is called a Hausdorff reduction of *M*.

Problems:

Generally speaking,

- 1. \sim is not always an equivalence relation.
- 2. Even if \sim is equivalence, the M/\sim is not always Hausdorff.

REMARK: Huybrechts's theorem implies that \sim is in fact an equivalence relation; the quotient is mapped to the period space by etale map, hence it is Hausdorff.

Global Torelli theorem

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}$ er is an isomorphism, for each connected component of Teich_b .

The proof is based on metric geometry and twistor construction.

Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and $B \subset TM$ a sub-bundle. A **horizontal path** is a piecewise smooth path γ : $[b, a] \longrightarrow M$ tangent to B everywhere. A **sub-Riemannian**, or **Carno-Carathéodory** metric M is

$$d_B(x,y) := \inf_{\gamma \text{ horizontal}} L(\gamma) :$$

the infimum of the length $L(\gamma)$ for all horizontal paths connecting x to y.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Consider the Frobenius form Φ : $\Lambda^2 B \longrightarrow TM/B$ mapping vector fields $X, Y \in B$ to an image of [X, Y] modulo B. Suppose that Φ is surjective. Then any two points can be connected by a horizontal path, and the sub-Riemannian metric d_B is finite.

Properties of sub-Riemannian metrics

Let (M, B, g) be a sub-Riemannian manifold.

CLAIM: Every two points $x, y \in M$ are connected by a smooth, horizontal path γ . Moreover, $d_B(x, y) = \inf_{\gamma \text{ horizontal, smooth }} L(\gamma)$: the sub-Riemannian distance can be taken as infimum of the length for smooth horizontal paths connecting x to y.

THEOREM: (ball-box theorem) An ε -ball in d_B is asymptotically equivalent to a product of ε -ball in direction of B and ε^2 -ball in orthogonal direction.

COROLLARY: The sub-Riemannian metric induces the standard topology on M.

COROLLARY: The Hausdorff dimension of a sub-Riemannian manifold is integer, and strictly bigger than $\dim M$.

Subtwistor metric

Let *H* be a real vector space with non-degenerate scalar product of signature (3, b-3), and $Gr_{++}(H)$ the Grassmannian of 2-dimensional positive oriented planes in *H*. The space $Gr_{++}(H)$ is in fact a complex manifold, and it is called **the period space of weight 2 Hodge structures on** *H*.

DEFINITION: Let $W \subset V$ be a positive 3-dimensional subspace, and $S_W = Gr_{++}(W) \subset Gr_{++}(H)$ a 2-dimensional sphere consisting all 2-dimensional oriented planes in W. Then S_w is called a twistor line.

CLAIM: Each pair $x, y \in Gr_{++}(H)$ can be connected by an intersecting chain $S_{W_1}, S_{W_2}, ..., S_{W_n}$ of twistor lines; moreover, $n \leq 3$.

DEFINITION: A twistor path on $Gr_{++}(H)$ is a piecewise smooth path $\gamma : [a,b] \longrightarrow Gr_{++}(H)$ with each smooth component sitting on a twistor line.

DEFINITION: Fix a Euclidean structure on H, and let g be the corresponding Riemannian metric on $\operatorname{Gr}_{++}(H)$. Subtwistor metric $d_{tw}(x,y)$ on $\operatorname{Gr}_{++}(H)$ is defined as $d_{tw}(x,y) := \inf_{\gamma} L(\gamma)$ where $L(\gamma)$ is a length of the path γ taken with respect to g, and infimum is taken over all subtwistor paths connecting x to y.

Properties of subtwistor metric

QUESTION: Can we connect any pair $x, y \in Gr_{++}(H)$ with a smooth path tangent to twistor line at each point? Would the infimum of its length give the same metric?

QUESTION: What about the ball-box theorem? What is a shape of a small ε -ball in d_{tw} ?

QUESTION: What us the Hausdorff dimension $(Gr_{++}(H), d_{tw})$?

Theorem 1: The subtwistor metric d_{tw} induces the standard topology on $Gr_{++}(H)$.

REMARK: Global Torelli theorem immediately follows from this (non-trivial) statement.

Twistor lines

REMARK: The period space

$$\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0. \}$$

is identified with $Gr_{++}(H^2(M,\mathbb{R})) = SO(b_2 - 3,3)/SO(2) \times SO(b_2 - 3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

DEFINITION: Given a hyperkähler structure (M, I, J, K) on a hyperkähler manifold, and $a, b, c \in \mathbb{R}$, $a^2+b^2+c^2=1$, the operator L := aI+bJ+cK defines a complex structure on M. We call L an induced compex structure. The set of all induced complex structures defines a deformation of the complex structure on M, called the twistor deformation, and its total space is the twistor space.

REMARK: Image of a twistor deformation in \mathbb{P} er is a twistor line.

Kähler cone and Hodge decomposition

REMARK: Let (M, I) be a hyperkähler manifold with $Per(I) = V \in Gr_{++}(H^2(M, \mathbb{R}))$. Then $H^{1,1}(M, I) = V^{\perp}$.

CLAIM: (Huybrechts, Boucksom)

Let (M, I) be a hyperkaehler manifold with $NS(M, I) := H_I^{1,1}(M, \mathbb{Z}) = 0$. Then the Kahler cone of (M, I) is one of two components of the positive cone in $H_I^{1,1}(M)$.

DEFINITION: Let $S \subset$ Teich be a $\mathbb{C}P^1$ associated with a twistor family. It is called **generic** if it passes through a point $I \in$ Teich with NS(M, I) = 0.

DEFINITION: A hyperkähler 3-plane $W \subset H^2(M, \mathbb{R})$ is called **generic** if $W^{\perp} \cap H^2(M, \mathbb{Z}) = 0$. The corresponding $\mathbb{C}P^1 \subset \mathbb{P}$ er in the period space is called a **GHK line**.

REMARK: These two notions are equivalent.

Lifting property for GHK lines

REMARK: Consider a 3-plane $W = \langle \omega_I, \omega_J, \omega_K \rangle$ associated with a hyperkähler structure, and let S be the set of oriented 2-planes in W. Denote by S_{ng} the set of $x \in S$ satisfying $x^{\perp} \cap H^2(M,\mathbb{Z}) \neq 0$. If W is generic, then S_{ng} is countable.

THEOREM: (A lifting property for GHK lines)

Let $W \subset H^2(M, \mathbb{R})$ be a generic 3-plane, and $S \subset \mathbb{P}$ er the corresponding GHK line. Consider the period map P: Teich $\longrightarrow \mathbb{P}$ er. Then $P^{-1}(S)$ is a union of a countable set mapped to S_{ng} , and a disconnected set of rational curves bijectively mapped to S.

Proof. Step 1: Let $x \notin S_{ng}$ We are going to prove that for all $I \in P^{-1}(x)$, y is contained in a connected component of $P^{-1}(S)$, bijectively mapped to S.

Step 2: Notice that $NS(I) = x^{\perp} \cap H^2(M, \mathbb{Z}) = 0$. Therefore the Kähler cone of (M, I) is one of two components of the set $\{\omega \in P(I)^{\perp} \mid q(\omega, \omega) > 0\}$.

Step 3: For each positive 3-plane $W \subset H^2(M, \mathbb{R})$, $W = \langle \omega_I, \omega_J, \omega_K \rangle$ for some hyperkähler structure I, J, K. Then the twistor family associated with I, J, K is mapped to S.

COROLLARY: Any connected sequence of twistor lines in \mathbb{P} er intersecting in points I_k with $NS(I_k) = 0$ can be lifted to a connected sequence in \mathbb{P} er. We call twistor paths on these sequences **GHK twistor paths**.

Subtwistor metric on the Teichmüller space

DEFINITION: Subtwistor metric on Teich is a metric induced from Per.

CLAIM: Per : Teich \longrightarrow Per is a surjective isometry.

Proof: For any irrational 3-dimensional space $W \in \text{Gr}_{+++}(H^2(M,\mathbb{R}))$, the corresponding twistor line S_W is lifted wholly to $\mathbb{P}\text{er}$; for each irrational point $I \in S_W$, this lifting is determined by a preimage $I_1 \in \text{Per}^{-1}(I)$ uniquely. Any twistor path can be approximated by one which is obtained from irrational $W \in \text{Gr}_{+++}(H^2(M,\mathbb{R}))$, hence the map Per: Teich $\longrightarrow \mathbb{P}\text{er}$ is an isometry.

Global Torelli theorem follows immediately. Indeed, by Theorem 1, any twistor paths in \mathbb{P} er can be approximated by GHK twistor paths in usual, and hence in subtwistor, topology. The latter are liftable to Teich. This implies that **the subtwistor distance in** Teich **is equal to that in** \mathbb{P} er.

Exercises

EXERCISE: Let Symp be the set of all symplectic structures on a symplectic manifold, and Teich_s = Symp / Diff₀. Consider the period map Per_s : Teich_s $\longrightarrow H^2(M, \mathbb{R})$. **Prove that** Per_s **is locally a diffeomorphism.**

EXERCISE: Let Hyp be the set of all hyperkäher structures (I, J, K, g) on a symplectic manifold, and Teich_h = Hyp/Diff₀. Consider the period map Per_h : Teich_h $\longrightarrow H^2(M, \mathbb{R})^3$ mapping (I, J, K, g) to the cohomology classes of $\omega_I, \omega_J, \omega_K$. Prove that Per_h is locally a diffeomorphism from Teich_h to the set of pairwise orthogonal triples $x, y, z \in H^2(M, \mathbb{R})$ satisfying q(x, x) = q(y, y) = q(z, z) > 0.

EXERCISE: Show that Teich_h / Γ is Hausdorff.