Ratner's theorem

and ergodic complex structures on hyperkaehler manifolds

Misha Verbitsky

Workshop on Deformation and Moduli in Complex Geometry

March 27, 2013, KIAS, Seoul

Teichmüller spaces

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The coarse moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

REMARK: This terminology is **standard for curves.**

Moduli spaces

DEFINITION: The quotient Comp / Diff = Teich / Γ is called **the moduli space** of complex structures. Typically, **it is very non-Hausdorff**. Comp / Diff corresponds bijectively to the set of isomorphism classes of complex structures. tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and manifolds with canonical polarization (Viehweg, Schumacher). The moduli space exists as a non-Hausdorff algebraic space when M is Kähler and $H^2(M) = H^{1,1}(M)$: Calabi-Yau manifolds, generalized Enriques manifolds, rational manifolds (Viehweg).

This talk is about an opposite situation, when Γ acts on Teich ergodically.

Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold **admits a unique hyperkähler metric in any Kähler class.**

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called **simple** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ map J to a line $H^{2,0}(M, J) \in \mathbb{P}H^2(M, \mathbb{C})$. The map P : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

is identified with $SO(b_2-3,3)/SO(2) \times SO(b_2-3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

Proof. Step 1: Given $l \in \mathbb{P}H^2(M, \mathbb{C})$, the space generated by Im l, Re l is **2-dimensional**, because q(l, l) = 0, $q(l, \overline{l})$ implies that $l \cap H^2(M, \mathbb{R}) = 0$.

Step 2: This 2-dimensional plane is positive, because $q(\text{Re}l, \text{Re}l) = q(l + \overline{l}, l + \overline{l}) = 2q(l, \overline{l}) > 0$.

Step 3: Conversely, for any 2-dimensional positive plane $V \in H^2(M, \mathbb{R})$, **the quadric** $\{l \in V \otimes_{\mathbb{R}} \mathbb{C} \mid q(l, l) = 0\}$ consists of two lines; a choice of a line is determined by orientation.

Birational Teichmüller moduli space

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (Huybrechts) Two points $I, I' \in$ Teich are non-separable if and only if there exists a bimeromorphism $(M, I) \longrightarrow (M, I')$ which is non-singular in codimension 2.

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}er$ is an isomorphism, for each connected component of Teich_b .

DEFINITION: Let M be a hyperkaehler manifold, Teich_b its birational Teichmüller space, and Γ the mapping class group. The quotient Teich_b/ Γ is called **the birational moduli space** of M.

Monodromy group and the birational moduli space

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected component of its birational moduli space. Then W is isomorphic to $\mathbb{P}er/\Gamma$, where $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ and Γ is an arithmetic group in $O(H^2(M, \mathbb{R}), q)$, called the monodromy group.

REMARK: Γ_I is a group generated by monodromy of the Gauss-Manin local system on $H^2(M)$.

A CAUTION: Usually "the global Torelli theorem" is understood as a theorem about Hodge structures. For K3 surfaces, the Hodge structure on $H^2(M,\mathbb{Z})$ determines the complex structure. For dim_C M > 2, it is false.

REMARK: Further on, **I shall freely identify** \mathbb{P} er and Teich_b.

Ergodic complex structures

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let *M* be a manifold, μ a Lebesgue measure, and *G* a group acting on (M, μ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting U, $x \in M \setminus M'$. Therefore the set of such orbits has measure 0.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich **An ergodic complex structure** is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

Ergodicity of the monodromy group action

The moduli space $\mathbb{P}er/\Gamma_I$ is extremely non-Hausdorff.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. Then the left action of Γ on G/H is ergodic.

THEOREM: Let \mathbb{P} er be a component of a birational Teichmüller space, and Γ its monodromy group. Let \mathbb{P} er_e be a set of all points $L \subset \mathbb{P}$ er such that the orbit $\Gamma \cdot L$ is dense (such points are called **ergodic**). Then $Z := \mathbb{P}$ er \ \mathbb{P} er_e has measure 0.

Proof. Step 1: Let $G = SO(b_2 - 3, 3)$, $H = SO(2) \times SO(b_2 - 3, 1)$. Then Γ -action on G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0. ■

REMARK: This implies that "almost all" Γ -orbits in G/H are dense.

REMARK: Generic deformation of M has no rational curves, and no nontrivial birational models. Therefore, **outside of a measure zero subset**, Teich = Teich_b. This implies that **almost all complex structures on** M **are ergodic**.

Ratner's theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

THEOREM: Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then a closure of any *H*-orbit in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap \Gamma \subset S$ is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear symmetric form of signature (3, k), k > 0 $G := SO^+(V)$ a connected component of the isometry group, $H \subset G$ a subgroup fixing a given positive 2-dimensional plane, $H \cong SO^+(1, k) \times SO(2)$, and $\Gamma \subset G$ an arithmetic lattice. Consider the quotient $\mathbb{P}er := H \setminus G$. Then

A). A point $J \in \mathbb{P}$ er has dense Γ -orbit if and only if the orbit $H \cdot J$ in the quotient G/Γ is closed.

B). A closure of $H \cdot J$ in G/Γ is an orbit of a closed connected Lie group $S \supset H$:

$$\overline{H \cdot J} = S \cdot J \subset \mathbb{P}er.$$

Characterization of ergodic complex structures

CLAIM: Let $G = SO^+(3,k)$, and $H \cong SO^+(1,k) \times SO(2) \subset G$. Then any closed connected Lie subgroup $S \subset G$ containing H coincides with G or with H.

COROLLARY: Let $J \in \mathbb{P}$ er = G/H. Then either J is ergodic, or its Γ -orbit is closed in \mathbb{P} er.

REMARK: By Ratner's theorem, in the latter case the *H*-orbit of *J* has finite volume in G/Γ . Therefore, **its intersection with** Γ **is a lattice in** *H*. This brings

COROLLARY: Let $J \in \mathbb{P}$ er be a point such that its Γ -orbit is closed in \mathbb{P} er. Consider its stabilizer $St(J) \cong H \subset G$. Then $St(J) \cap \Gamma$ is a lattice in St(J).

COROLLARY: Let *J* be a non-ergodic complex structure on a hyperkähler manifold, and $W \subset H^2(M, \mathbb{R})$ be a plane generated by $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Then *W* is rational. Equivalently, this means that Pic(M) has maximal possible dimension.

REMARK: This can be used to show that **any hyperkähler manifold is Kobayashi non-hyperbolic.**

Kobayashi hyperbolic manifolds

DEFINITION: An entire curve is a non-constant map $\mathbb{C} \longrightarrow M$.

DEFINITION: A compact complex manifold M is called **Kobayashi hyper-bolic**, if there exist no entire curves $\mathbb{C} \longrightarrow M$.

THEOREM: (Brody, 1975)

Let I_i be a sequence of complex structures on M which are not hyperbolic, and I its limit. Then (M, I) is also not hyperbolic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

REMARK: This conjecture would follow if we produce an ergodic complex structure which is non-hyperbolic. Indeed, a closure of its orbit is the whole Teich, and a limit of non-hyperbolic complex structures is nonhyperbolic.

REMARK: For all **known** examples of hyperkähler manifolds this result is already proven, due to L. Kamenova and M. V.

Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{TW}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata).

Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let *M* be a hyperkähler manifold, and $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$ its twistor projection. Then there exists an entire curve in some fiber of π .

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not ergodic. ■

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let $Tw(M) \rightarrow \mathbb{C}P^1$ be a twistor family with all fibers ergodic. By Campana's theorem, one of these fibers, denoted (M, I), is non-hyperbolic. Since any complex structure $I' \in$ Teich lies in the closure of $Diff(M) \cdot I$, all complex structures $I' \in$ Teich are non-hyperbolic.