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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /Γ is called the moduli

space of complex structures. Typically, it is very non-Hausdorff. Comp /Diff

corresponds bijectively to the set of isomorphism classes of complex struc-

tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and

manifolds with canonical polarization (Viehweg, Schumacher). The mod-

uli space exists as a non-Hausdorff algebraic space when M is Kähler and

H2(M) = H1,1(M): Calabi-Yau manifolds, generalized Enriques manifolds,

rational manifolds (Viehweg).

This talk is about an opposite situation, when Γ acts on Teich ergodi-

cally.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple if π1(M) =
0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-

fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

6



Ergodic complex structures M. Verbitsky

The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian

of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) = q(l+

l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R), the

quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line

is determined by orientation.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-

ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is

called the birational moduli space of M .
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Monodromy group and the birational moduli space

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected

component of its birational moduli space. Then W is isomorphic to Per/Γ,

where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and Γ is an arithmetic

group in O(H2(M,R), q), called the monodromy group.

REMARK: ΓI is a group generated by monodromy of the Gauss-Manin local

system on H2(M).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M,Z) determines the complex structure. For dimCM > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teichb.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on (M,µ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence

M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,

x ∈M\M ′. Therefore the set of such orbits has measure 0.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,

and Γ the mapping group acting on Teich An ergodic complex structure

is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-

phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the monodromy group action

The moduli space Per/ΓI is extremely non-Hausdorff.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H ⊂ G a non-compact
subgroup. Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the
orbit Γ ·L is dense (such points are called ergodic). Then Z := Per \Pere has
measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.

REMARK: This implies that “almost all” Γ-orbits in G/H are dense.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichb. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G a lattice. Then a closure of any H-orbit in G/Γ is an orbit of a

closed, connected subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-

metric form of signature (3, k), k > 0 G := SO+(V ) a connected component

of the isometry group, H ⊂ G a subgroup fixing a given positive 2-dimensional

plane, H ∼= SO+(1, k)×SO(2), and Γ ⊂ G an arithmetic lattice. Consider the

quotient Per := H\G. Then

A). A point J ∈ Per has dense Γ-orbit if and only if the orbit H · J in

the quotient G/Γ is closed.

B). A closure of H · J in G/Γ is an orbit of a closed connected Lie

group S ⊃ H:

H · J = S · J ⊂ Per .
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Characterization of ergodic complex structures

CLAIM: Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any
closed connected Lie subgroup S ⊂ G containing H coincides with G or
with H.

COROLLARY: Let J ∈ Per = G/H. Then either J is ergodic, or its
Γ-orbit is closed in Per.

REMARK: By Ratner’s theorem, in the latter case the H-orbit of J has finite
volume in G/Γ. Therefore, its intersection with Γ is a lattice in H. This
brings

COROLLARY: Let J ∈ Per be a point such that its Γ-orbit is closed in Per.
Consider its stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler
manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then
W is rational. Equivalently, this means that Pic(M) has maximal possible
dimension.

REMARK: This can be used to show that any hyperkähler manifold is
Kobayashi non-hyperbolic.
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Kobayashi hyperbolic manifolds

DEFINITION: An entire curve is a non-constant map C−→M .

DEFINITION: A compact complex manifold M is called Kobayashi hyper-

bolic, if there exist no entire curves C−→M .

THEOREM: (Brody, 1975)

Let Ii be a sequence of complex structures on M which are not hyperbolic,

and I its limit. Then (M, I) is also not hyperbolic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

REMARK: This conjecture would follow if we produce an ergodic com-

plex structure which is non-hyperbolic. Indeed, a closure of its orbit is

the whole Teich, and a limit of non-hyperbolic complex structures is non-

hyperbolic.

REMARK: For all known examples of hyperkähler manifolds this result is

already proven, due to L. Kamenova and M. V.
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Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let M be a hyperkähler manifold, and Tw(M)
π−→ CP1 its twistor projection.

Then there exists an entire curve in some fiber of π.

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not

ergodic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let Tw(M)−→ CP1 be a twistor family with all fibers ergodic. By

Campana’s theorem, one of these fibers, denoted (M, I), is non-hyperbolic.

Since any complex structure I ′ ∈ Teich lies in the closure of Diff(M) · I, all

complex structures I ′ ∈ Teich are non-hyperbolic.
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