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Plan of the talk

1. Introduce Teichmuller spaces and mapping class group. Consider the case
of elliptic curve and curve of genus > 1.

2. Compute the Teichmiller space and mapping class group for a complex
torus of dimension > 1.

3. Define ergodic actions. Show that the action of the mapping class group of
a complex torus of dimension > 1 on its Teichmuller space is ergodic. Relate
ergodic actions and dense orbits. Show the density of orbits for complex
torus.

4. Introduce hyperkahler manifolds and their moduli. Define the bira-
tional moduli space as a quotient of a Teichmuller space Per = SO(by —
3,3)/S0(2) x SO(bp — 3,1) by an arithmetic group I;.

2. EXxplore the non-Hausdorff properties of the birational moduli. Explain
how the Moore’s ergodic theorem is relevant. Construct an ergodic complex
structure on a K3 surface explicitly.
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Teichmuller spaces

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /" is called the moduli
space of complex structures. Typically, it iIs very non-Hausdorff. Comp
corresponds bijectively to the set of isomorphism classes of complex struc-

tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and
manifolds with canonical polarization (Calabi-Yau, Viehweg, Schumacher).
The moduli space exists as a non-Hausdorff algebraic space when M is Kahler
and H2(M) = HYI(M): Calabi-Yau manifolds, generalized Enriques mani-
folds, rational manifolds (Viehweg).
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Kahler manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies I2 = —Idp;,.

T he eigenvalues of this operator are +v/—1. The corresponding eigenvalue
decomposition is denoted TM = T91M ¢ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TLOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

DEFINITION: An Riemannian metric ¢ on a complex manifold (M,I) is
called Hermitian if g(Iz, Iy) = g(z,vy). In this case, g(z,Iy) = g(Iz, I%y) =
—qg(y, Iz), hence w(x,y) := g(x, [y) is skew-symmetric.

DEFINITION: The differential form w € ALLI(M) is called the Hermitian
form of (M, 1,gq).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Examples of Kahler manifolds.

Definition: Let M = CP"™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1).

Remark: For any x € CP"™, the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T, CP™ = C" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish, because —1Id € U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CP") is
Kahler. Indeed, a restriction of a closed form is again closed.
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Sullivan’s theorem on the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p,(M). Then the natural map
Diff L (M )/ Diffp — g has finite kernel, and its image has finite index
in |_Q.

DEFINITION: An algebraic group over a field k is an algebraic variety G
of finite type over k equipped with an algebraic map G x G — G satisfying
group axioms. A Lie group over integers is the group of integer points in
an algebraic group over Q.

DEFINITION: Two groups G,G’ are called commensurable if G projects
with finite kernel to a subgroup of finite index in G’. An arithmetic group is
a group which is commensurable to a Lie group over integers.

COROLLARY: Let ' be a mapping class group of a Kahler manifold M,
dimc M > 3. Then I is an arithmetic group.

REMARK: Mapping class group of a curve of genus g > 1 is not an arithmetic
group. Moreover, none of its normal subgroups is arithmetic (Nikolai Ivanov).
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Conformal structures in complex dimension 1

DEFINITION: Let CTM be the group of positive smooth functions on M,
and R(M) the set of all Riemannian metrics. Clearly, Ct M acts on R(M) by
multilication A conformal structure on M is a class ¢ € R(M)/CTM.

THEOREM: Let X be a real manifold of dimension 2. There is a bijection
between complex structures on X and conformal structures.

THEOREM: (Riemann) For any conformal structure on X, dimp X = 2,
there exists a unique, up to a constant multiplier, metric of constant
Gaussian curvature in the same conformal class.
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Teichmuller space for dim. =1

COROLLARY: The Teichmuller space for X is a space of metrics of con-
stant Gaussian curvature and volume 1, up to isotopies.

COROLLARY: For g(X) > 1, Teich is identified with the space of
homomorphisms 71(X) -2 Iso(A), where A is a Poincare disc, im ¢ acts
on A properly, and the quotient has volume 1.

COROLLARY: For g(X) = 1, Teich = GL(1,C)\GL(2,R)/GL(2,7).

I will continue with explanation of this construction for a complex torus of
any dimension. This is done using the Calabi-Yau theorem.
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Ricci form and curvature

REMARK: When speaking of a *‘‘curvature of a holomorphic bundle’,
one usually means the curvature of its Chern connection.

DEFINITION: Let M be a Kahler manifold, dimg M =mn, and K(M) := Q"M
its canonical bundle (bundle of holomorphic volume forms). Consider the
Chern connection on K(M), and let O € A2(M) ® End(K(M)) = A2(M)
be its curvature. The form ©y is called the Ricci form of M, and its
cohomology class the first Chern class of M.

DEFINITION: A manifold is called Ricci-flat if its Ricci curvature vanishes.
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Calabi-Yau theorem

DEFINITION: Let (M,w) be a Kahler manifold, w its Kahler form. Coho-
mology class of w is called the Kahler class of (M, w).

THEOREM: (Calabi-Yau)
Let (M, I,qg) be Calabi-Yau manifold. Then there exists a Ricci-flat Kaehler
metric on M in any given Kaehler class. Moreover, such a metric is unique.

THEOREM: (“Lubke vanishing”)
Let g be a Ricci-flat metric on a compact complex torus. Then g is flat,
that is, the Levi-Civita connection of g is flat.

Of course, g depends on the choice of Kahler class in HQ(M, R).
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Flat affine structures

DEFINITION: A manifold with flat torsion-free connection V is called a flat
affine manifold. If V preserves a complex structure, it is called a flat affine
complex manifold.

THEOREM: A connected, compact flat affine manifold is a quotient of
U C R" by a group of affine automorphisms acting on U properly.

COROLLARY: Any flat affine torus is a quotient of R"™ by Z"™ acting
by parallel transport.

EXAMPLE: Let T = (C”/ZQ" be a flat complex torus, and w a Kahler form.
Taking average of w with respect to the action T, we obtain a flat Kahler
metric in the same cohomology class. It is obviously flat, hence Ricci-flat.

CLAIM: Let (T,1) be a compact complex torus, and g1, go — Ricci-flat metrics
associated with two different Kahler classes. Then the corresponding Levi-
Civita connections are equal.
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Teichmuller space for a torus

Proof. Step 1: Chose any flat affine connection V on (7T,1), compatible
with the complex structure, and take the average of g7 and g»> with respect
to T acting on itself. We obtain two Ricci-flat metrics g’1 and g’2 in the
same Kahler classes, preserved by V.

Step 2: Then V is the Levi-Civita connection for g} and g5 by definition of
Levi-Civita connection.

Step 3: Finally, g1 = ¢4, 92 = g5, because Ricci-flat metric is unique in its
Kahler class. =

COROLLARY: Let (T,1) be a torus. Then there exists a diffeomorphism
from (7,1) to a flat torus.

REMARK: Using the Ricci flow, these diffeomorphisms can be chosen
continuously on Comp.

COROLLARY: The Teichmuller space of complex structures on T = RQ”/ZQ”
is identified with the space of flat complex structures:

Teich(T) = GL(2n,R)/GL(n,C)
13
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Ergodic complex structures

DEFINITION: Let (M, u) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ ¢ M satisfy u(M") =0 or u(M\M") = 0.

CLAIM: Let M be a manifold, n a Lebesgue measure, and G a group acting
on M ergodically. Then the set of hon-dense orbits has measure O.

Proof: Consider a non-empty open subset U C M. Then u(U) > 0, hence
M' := G - U satisfies u(M\M’') = 0. For any orbit G -z not intersecting U,
r € M\M'. Therefore the set of such orbits has measure 0. =

DEFINITION: Let M be a complex manifold, Teich its Techmuller space,
and [ the mapping group acting on Teich An ergodic complex structure
IS a complex structure with dense [ -orbit.

CLAIM: Let (M,I) be a manifold with ergodic complex structure, and I’
another complex structure. Then there exists a sequence of diffeomor-
phisms v; such that v*(I) converges to I'.
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Ergodic action on homogeneous spaces

THEOREM: (Calvin C. Moore, 1966) Let I' be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H C G a non-compact
subgroup. Then the left action of ' on G/H is ergodic, that is, for all -
invariant measurable subsets 7 C G/H, either Z has measure 0, or
G/H\Z has measure 0.

EXAMPLE: GL(2n,Z)-action on GL(2n,R)/GL(n,C) is ergodic.

COROLLARY: Let T be a complex compact torus of dimension n, n > 1,
Teich = GL(2n,R)/GL(n,C) its Teichmiller space, and ' = GL(2n,Z) the
mapping class group. Then any two [ -invariant orbits intersect.

QUESTION: Existence of dense GL(2n,Z)-orbits in GL(2n,R)/GL(n,C) is
established. How to produce an explicit dense orbit?

CLAIM: (Dmitry Kleinbock) Not all orbits of GL(4,7Z)-orbits in GL(4,R)/GL(2,C)
are dense.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wg is a holomorphic symplectic form on (M, 1I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkahler manifold M is called simple if 711 (M) =
0, H29(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Beauville) A Hilbert scheme of a hyperkahler surface is
hyperkahler.
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EXAMPLES.
EXAMPLE: A Hilbert scheme of K3 is simple and hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T iIs a Kummer
K3-surface. For n > 2, a universal covering of T1"/T is called a generalized
Kummer variety.

REMARK: There are 2 more ‘“sporadic’ examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known simple hyperkaehler
manifolds are these 2 and two series: Hilbert schemes of K3, and gener-
alized Kummer.

REMARK: For hyperkahler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkahler type, that is, holomor-
phically symplectic and Kahler. It is open in the usual Teichmtuller space.

18
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;17°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aq(n,m) = /Xn AnpAQI AT

1 _ —n—
_n (/ n/\Q”‘l/\Q”’) (/ nAQLAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff L (M )/ Diffp — "o has finite kernel, and its image has finite index
in lp.

Theorem: Let M be a simple hyperkahler manifold, and o as above. Then

(i) I‘O)HQ(MZ) is a finite index subgroup of O(H?2(M,7Z),q).
(ii) The map My — O(H?2(M,Z), q) has finite kernel.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH?(M,C) map J to a line H%9(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(by — 3,1)
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 z, U3y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I") which is
non-singular in codimension 2.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ﬂ Per 1s an isomorphism, for each

connected component of Teichy,.
DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-

ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

22



Ergodic complex structures M. Verbitsky

Monodromy group and the birational moduli space

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I",
where Per = SO(by — 3,3)/S0(2) x SO(bo, — 3,1) and I is an arithmetic
group in O(H?%(M,R),q), called the monodromy group.

REMARK: ['; is a group generated by monodromy of the Gauss-Manin local
system on H2(M).

A CAUTION: Usually “the global Torelli theorem”™ is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?2(M,7) determines the complex structure. For dimg M > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teich,.
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Ergodicity of the monodromy group action
The moduli space Per/I"; is extremely non-HausdorfT,

THEOREM: Let Per be a component of a birational Teichmuller space, and
[ its monodromy group. Let Per. be a set of all points L C Per such that the
orbit I - L is dense (such points are called ergodic). Then Z := Per\ Per. has
measure 0.

Proof. Step 1: Let G = SO(bo — 3,3), H = SO(2) x SO(bo —3,1). Then
[-action on G/H is ergodic, by Moore’'s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0. =
REMARK: This implies that “almost all” M-orbits in G/H are dense.
REMARK: Generic deformation of M has no rational curves, and no non-

trivial birational models. Therefore, outside of a measure zero subset, Teich =
Teichy. This implies that almost all complex structures on M are ergodic.
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Construction of ergodic complex structures on K3 surfaces

PROPOSITION: Let I be an ergodic complex structure on a 2-dimensional
torus, and let (X, 1) be its Kummer surface. Then (X,I) is ergodic.

Proof: Let Per be the period space of K3, I its mapping class group, and
Peryr C Per the period space of Kummer surfaces (we take a connected com-
ponent, so that it is identified with the Torelli space of a torus). Shafarevich—
Pyatetsky-Shapiro proved that I - Perg is dense in Per.

The mapping class group I i of a torus is embedded to I, fixing Perg, and
[ - I C Perg is dense in Perg, because I is ergodic. Therefore, I - I is dense
in [ - Perge which is dense in Per. m
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Construction of ergodic complex structures

DEFINITION: Let M be hyperkahler, and n € HQ(M, 7)) be a non-zero class.
Denote by Pery the set of all [ € Per such that [1ln. This is equivalent to
n being of type (1,1) with respect to the corresponding complex structure.
When ¢(n,n) > 0, Pery is called the polarized birational Teichmiiller space,
and classifies manifolds with a given big cohomology class up to birational
correspondence.

THEOREM: (Anan’in-V.)
For each n, the orbit I - Pery is dense in Per.

COROLLARY: Let I be an ergodic complex structure on a K3 surface or
a torus X. Then its Hilbert scheme M := X"l is ergodic (for a K3), and
the corresponding generalized Kummer M := X["l/X is ergodic when X
IS a torus.

Proof: The birational Teichmuller space for Hilbert schemes or tori is em-
bedded to Teich(M) as Per, — Per(M), where n € H?(M,Z) is cohomology
class of the exceptional divisor. Since the orbit of I is dense in Per(X), it is
dense in Pery, and I Pery is dense in Per. m
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