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Plan of the talk

1. Introduce Teichmüller spaces and mapping class group. Consider the case

of elliptic curve and curve of genus > 1.

2. Compute the Teichmüller space and mapping class group for a complex

torus of dimension > 1.

3. Define ergodic actions. Show that the action of the mapping class group of

a complex torus of dimension > 1 on its Teichmüller space is ergodic. Relate

ergodic actions and dense orbits. Show the density of orbits for complex

torus.

4. Introduce hyperkähler manifolds and their moduli. Define the bira-

tional moduli space as a quotient of a Teichmüller space Per = SO(b2−
3,3)/SO(2)× SO(b2 − 3,1) by an arithmetic group ΓI.

2. Explore the non-Hausdorff properties of the birational moduli. Explain

how the Moore’s ergodic theorem is relevant. Construct an ergodic complex

structure on a K3 surface explicitly.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

REMARK: This terminology is standard for curves.
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Moduli spaces

DEFINITION: The quotient Comp /Diff = Teich /Γ is called the moduli

space of complex structures. Typically, it is very non-Hausdorff. Comp

corresponds bijectively to the set of isomorphism classes of complex struc-

tures.

REMARK: The moduli space exists, and is quasiprojective, for curves and

manifolds with canonical polarization (Calabi-Yau, Viehweg, Schumacher).

The moduli space exists as a non-Hausdorff algebraic space when M is Kähler

and H2(M) = H1,1(M): Calabi-Yau manifolds, generalized Enriques mani-

folds, rational manifolds (Viehweg).
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Kähler manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

DEFINITION: An Riemannian metric g on a complex manifold (M, I) is
called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian
form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if
dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler
class of M , and ω the Kähler form.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Sullivan’s theorem on the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-
fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

DEFINITION: An algebraic group over a field k is an algebraic variety G

of finite type over k equipped with an algebraic map G × G−→G satisfying
group axioms. A Lie group over integers is the group of integer points in
an algebraic group over Q.

DEFINITION: Two groups G,G′ are called commensurable if G projects
with finite kernel to a subgroup of finite index in G′. An arithmetic group is
a group which is commensurable to a Lie group over integers.

COROLLARY: Let Γ be a mapping class group of a Kähler manifold M ,
dimCM > 3. Then Γ is an arithmetic group.

REMARK: Mapping class group of a curve of genus g > 1 is not an arithmetic
group. Moreover, none of its normal subgroups is arithmetic (Nikolai Ivanov).

7



Ergodic complex structures M. Verbitsky

Conformal structures in complex dimension 1

DEFINITION: Let C+M be the group of positive smooth functions on M ,

and R(M) the set of all Riemannian metrics. Clearly, C+M acts on R(M) by

multilication A conformal structure on M is a class c ∈ R(M)/C+M .

THEOREM: Let X be a real manifold of dimension 2. There is a bijection

between complex structures on X and conformal structures.

THEOREM: (Riemann) For any conformal structure on X, dimRX = 2,

there exists a unique, up to a constant multiplier, metric of constant

Gaussian curvature in the same conformal class.
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Teichmüller space for dimc = 1

COROLLARY: The Teichmüller space for X is a space of metrics of con-

stant Gaussian curvature and volume 1, up to isotopies.

COROLLARY: For g(X) > 1, Teich is identified with the space of

homomorphisms π1(X)
ϕ−→ Iso(∆), where ∆ is a Poincare disc, imϕ acts

on ∆ properly, and the quotient has volume 1.

COROLLARY: For g(X) = 1, Teich = GL(1,C)\GL(2,R)/GL(2,Z).

I will continue with explanation of this construction for a complex torus of

any dimension. This is done using the Calabi-Yau theorem.
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Ricci form and curvature

REMARK: When speaking of a “curvature of a holomorphic bundle”,

one usually means the curvature of its Chern connection.

DEFINITION: Let M be a Kähler manifold, dimCM = n, and K(M) := ΩnM

its canonical bundle (bundle of holomorphic volume forms). Consider the

Chern connection on K(M), and let ΘK ∈ Λ2(M) ⊗ End(K(M)) = Λ2(M)

be its curvature. The form ΘK is called the Ricci form of M , and its

cohomology class the first Chern class of M .

DEFINITION: A manifold is called Ricci-flat if its Ricci curvature vanishes.
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Calabi-Yau theorem

DEFINITION: Let (M,ω) be a Kähler manifold, ω its Kähler form. Coho-

mology class of ω is called the Kähler class of (M,ω).

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a Ricci-flat Kaehler

metric on M in any given Kaehler class. Moreover, such a metric is unique.

THEOREM: (“Lübke vanishing”)

Let g be a Ricci-flat metric on a compact complex torus. Then g is flat,

that is, the Levi-Civita connection of g is flat.

Of course, g depends on the choice of Kähler class in H2(M,R).
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Flat affine structures

DEFINITION: A manifold with flat torsion-free connection ∇ is called a flat

affine manifold. If ∇ preserves a complex structure, it is called a flat affine

complex manifold.

THEOREM: A connected, compact flat affine manifold is a quotient of

U ⊂ Rn by a group of affine automorphisms acting on U properly.

COROLLARY: Any flat affine torus is a quotient of Rn by Zn acting

by parallel transport.

EXAMPLE: Let T = Cn/Z2n be a flat complex torus, and ω a Kähler form.

Taking average of ω with respect to the action T , we obtain a flat Kähler

metric in the same cohomology class. It is obviously flat, hence Ricci-flat.

CLAIM: Let (T, I) be a compact complex torus, and g1, g2 – Ricci-flat metrics

associated with two different Kähler classes. Then the corresponding Levi-

Civita connections are equal.
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Teichmüller space for a torus

Proof. Step 1: Chose any flat affine connection ∇ on (T, I), compatible
with the complex structure, and take the average of g1 and g2 with respect
to T acting on itself. We obtain two Ricci-flat metrics g′1 and g′2 in the
same Kähler classes, preserved by ∇.

Step 2: Then ∇ is the Levi-Civita connection for g′1 and g′2 by definition of
Levi-Civita connection.

Step 3: Finally, g1 = g′1, g2 = g′2, because Ricci-flat metric is unique in its
Kähler class.

COROLLARY: Let (T, I) be a torus. Then there exists a diffeomorphism
from (T, I) to a flat torus.

REMARK: Using the Ricci flow, these diffeomorphisms can be chosen
continuously on Comp.

COROLLARY: The Teichmüller space of complex structures on T = R2n/Z2n

is identified with the space of flat complex structures:

Teich(T ) = GL(2n,R)/GL(n,C)
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence

M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,

x ∈M\M ′. Therefore the set of such orbits has measure 0.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,

and Γ the mapping group acting on Teich An ergodic complex structure

is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-

phisms νi such that ν∗i (I) converges to I ′.
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Ergodic action on homogeneous spaces

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a

non-compact simple Lie group G with finite center, and H ⊂ G a non-compact

subgroup. Then the left action of Γ on G/H is ergodic, that is, for all Γ-

invariant measurable subsets Z ⊂ G/H, either Z has measure 0, or

G/H\Z has measure 0.

EXAMPLE: GL(2n,Z)-action on GL(2n,R)/GL(n,C) is ergodic.

COROLLARY: Let T be a complex compact torus of dimension n, n > 1,

Teich = GL(2n,R)/GL(n,C) its Teichmüller space, and Γ = GL(2n,Z) the

mapping class group. Then any two Γ-invariant orbits intersect.

QUESTION: Existence of dense GL(2n,Z)-orbits in GL(2n,R)/GL(n,C) is

established. How to produce an explicit dense orbit?

CLAIM: (Dmitry Kleinbock) Not all orbits of GL(4,Z)-orbits in GL(4,R)/GL(2,C)

are dense.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple if π1(M) =
0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

16



Ergodic complex structures M. Verbitsky

Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)

Let M be a compact complex surface which is hyperkähler. Then M is either

a torus or a K3 surface.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-

sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has

dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities

of the symmetric power SymnM .

THEOREM: (Beauville) A Hilbert scheme of a hyperkähler surface is

hyperkähler.
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EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is simple and hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely

and properly by translations. For n = 2, the quotient T [n]/T is a Kummer

K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized

Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler

manifolds, constructed by K. O’Grady. All known simple hyperkaehler

manifolds are these 2 and two series: Hilbert schemes of K3, and gener-

alized Kummer.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkähler type, that is, holomor-

phically symplectic and Kähler. It is open in the usual Teichmüller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-

fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-

ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is

called the birational moduli space of M .
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Monodromy group and the birational moduli space

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected

component of its birational moduli space. Then W is isomorphic to Per/Γ,

where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and Γ is an arithmetic

group in O(H2(M,R), q), called the monodromy group.

REMARK: ΓI is a group generated by monodromy of the Gauss-Manin local

system on H2(M).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M,Z) determines the complex structure. For dimCM > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teichb.
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Ergodicity of the monodromy group action

The moduli space Per/ΓI is extremely non-Hausdorff.

THEOREM: Let Per be a component of a birational Teichmüller space, and

Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the

orbit Γ ·L is dense (such points are called ergodic). Then Z := Per \Pere has

measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then

Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.

REMARK: This implies that “almost all” Γ-orbits in G/H are dense.

REMARK: Generic deformation of M has no rational curves, and no non-

trivial birational models. Therefore, outside of a measure zero subset, Teich =

Teichb. This implies that almost all complex structures on M are ergodic.
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Construction of ergodic complex structures on K3 surfaces

PROPOSITION: Let I be an ergodic complex structure on a 2-dimensional

torus, and let (X, I) be its Kummer surface. Then (X, I) is ergodic.

Proof: Let Per be the period space of K3, Γ its mapping class group, and

PerK ⊂ Per the period space of Kummer surfaces (we take a connected com-

ponent, so that it is identified with the Torelli space of a torus). Shafarevich–

Pyatetsky-Shapiro proved that Γ · PerK is dense in Per.

The mapping class group ΓK of a torus is embedded to Γ, fixing PerK, and

ΓK · I ⊂ PerK is dense in PerK, because I is ergodic. Therefore, Γ · I is dense

in Γ · PerK which is dense in Per.
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Construction of ergodic complex structures

DEFINITION: Let M be hyperkähler, and η ∈ H2(M,Z) be a non-zero class.

Denote by Perη the set of all l ∈ Per such that l⊥η. This is equivalent to

η being of type (1,1) with respect to the corresponding complex structure.

When q(η, η) > 0, Perη is called the polarized birational Teichmüller space,

and classifies manifolds with a given big cohomology class up to birational

correspondence.

THEOREM: (Anan′in-V.)

For each η, the orbit Γ · Perη is dense in Per.

COROLLARY: Let I be an ergodic complex structure on a K3 surface or

a torus X. Then its Hilbert scheme M := X[n] is ergodic (for a K3), and

the corresponding generalized Kummer M := X[n]/X is ergodic when X

is a torus.

Proof: The birational Teichmuller space for Hilbert schemes or tori is em-

bedded to Teich(M) as Perη ↪→ Per(M), where η ∈ H2(M,Z) is cohomology

class of the exceptional divisor. Since the orbit of I is dense in Per(X), it is

dense in Perη, and ΓPerη is dense in Per.
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