Exotic hypercomplex structures on complex tori

Misha Verbitsky

Estruturas geométricas em variedades,

April 3, 2025, IMPA

a joint work in progress with Alberto Pipitone.

HYPERCOMPLEX MANIFOLDS

DEFINITION: Let M be a smooth manifold equipped with endomorphisms $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation $I^2 = J^2 = K^2 = IJK = -\text{Id}$. Suppose that I, J, K are integrable almost complex structures. Then (M, I, J, K) is called a hypercomplex manifold.

THEOREM: (M. Obata, 1952)

Let (M, I, J, K) be a hypercomplex manifold. Then M admits a unique torsion-free affine connection preserving I, J, K.

REMARK: Converse is also true. Suppose that I, J, K are operators defining quaternionic structure on TM, and ∇ a torsion-free, affine connection preserving I, J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K) is hypercomplex.

Holonomy of Obata connection lies in $GL(n, \mathbb{H})$. Conversely, a manifold equipped with an affine, torsion-free connection with holonomy in $GL(n, \mathbb{H})$ is hypercomplex.

This can be used as a definition of a hypercomplex structure: a hypercomplex manifold (M, ∇, I, J, K) is a manifold equipped with a torsion-free connection such that its holonomy preserves a quaternionic structure on a tangent bundle.

Exotic hypercomplex structures on hyperkähler manifolds

DEFINITION: A hypercomplex manifold (M, ∇, I, J, K) is called **hyperkähler** if the holonomy $\mathcal{H}ol(\nabla)$ of ∇ is compact. In this case, $\mathcal{H}ol(\nabla)$ preserves a quaternionic invariant Riemannian metric g. Such metric is called **hyperkähler**. A **hyperkähler structure** is (M, ∇, I, J, K, g) ; in this situation, ∇ is the Levi-Civita connection.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume that (M, I) admits a Kähler structure **Then** (M, I) **admits a hyperkähler structure** (I, J', K').

DEFINITION: Let (M, I, J, K) be a compact hypercomplex manifold. Assume that (M, I) admits a Kähler structure. The hypercomplex structure (I, J, K) is called **exotic** if it is not compatible with a hyperkähler metric, that is, if the holonomy of its Obata connection is non-compact.

Exotic hypercomplex structures on K3

THEOREM: Exotic hypercomplex structures on K3 do not exist.

Proof. Step 1: Let (M, I, J, K) be a hypercomplex structure on a K3, and Θ the curvature of Obata connection on its canonical bundle $K_{M,I} = K_{M,J} = K_{M,K}$. Since Θ is of type (1,1) for I, J, K, it is SU(2)-invariant with respect to the SU(2)-action on $\Lambda^*(M)$ generated by quaternions. However, for any SU(2)-invariant form Θ , and any Hermitian metric g, one has $\Theta \wedge \Theta = -\|\Theta\|_g^2 \operatorname{Vol}_g$. On the other hand, Θ is exact, because the canonical bundle of a K3 is trivial. This implies that the Obata connection on the canonical bundle $K_{M,I}$ is flat. Given that $\pi_1(K3) = 0$, we obtain that $K_{M,I}$ is trivialized by an Obata-parallel section.

Step 2: The Obata-parallel sections of the canonical bundle are closed 2-forms (any parallel differential form is closed, if the connection is torsion-free). Varying the complex structure, we obtain a rank 3 space W of parallel differential forms, $\omega_I, \omega_J, \omega_K$; the corresponding metric is hyperkähler, because its holonomy is in Sp(1).

Twistor spaces for hypercomplex manifolds

DEFINITION: Induced complex structures on a hypercomplex manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hypercomplex manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{TW}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If
$$M = \mathbb{H}^n$$
, then $\mathsf{Tw}(M) = \mathsf{Tot}(\mathfrak{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, $\forall w(M)$ never admits a Kähler structure.

Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a smooth curve $S \cong \mathbb{C}P^1 \subset M$ such that $NS = \bigoplus_{k=1}^{n-1} \mathcal{O}(i_k)$, with $i_k > 0$. It is called a quasiline if all $i_k = 1$.

THEOREM: ("twistor spaces are rationally connected")

Let M be a compact complex manifold containing a an ample rational line. red any N points $z_1, ..., z_N$ can be connected by an ample rational curve.

CLAIM: Let M be a hyperkähler manifold, $\mathsf{Tw}(M) \xrightarrow{\sigma} M$ its twistor space, $m \in M$ a point, and $S_m = \mathbb{C}P^1 \times \{m\}$ the corresponding rational curve in $\mathsf{Tw}(M)$. Then S_m is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when M is flat. Then $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus 2p}) \cong \mathbb{C}P^{2p+1} \setminus \mathbb{C}P^{2p-1}$, and S_m is a section of $\mathcal{O}(1)^{\oplus 2p}$.

The twistor data

Let $\check{\tau}$ denote the central symmetry on $\mathbb{C}P^1$; if we identify $\mathbb{C}P^1$ with imaginary unit quaternions, we have $\check{\tau}(L) = -L$. It is an anticomplex involution without fixed points.

DEFINITION: The **twistor data** is a complex manifold Tw equipped with the following structures.

1. A holomorphic submersion π : $Tw \longrightarrow \mathbb{C}P^1$ and an anticomplex involution τ : $Tw \longrightarrow Tw$ which makes this diagram commutative

2. A connected component Hor in the set $Sec^{\tau} \subset Sec$ of τ -invariant sections of π such that for each $S \in$ Hor, the normal bundle to S is $\mathcal{O}(1)^{2n}$ and for each point $x \in Tw$ there exists a unique $S \in$ Hor passing through x.

REMARK: With any twistor space Tw(M) of a hypercomplex manifold, one associates the twistor data in a natural way: $\tau(I,m) = (-I,m)$, and Hor(M) the space of all sections S_m taking $I \in \mathbb{C}P^1$ to $(I,m) \in Tw(M)$, where $m \in M$ is a fixed point.

Hypercomplex structures defined in terms of twistor data

THEOREM: (HKLR)

Let M be a hypercomplex manifold. Then the twistor data on Tw(M) can be used to recover the hypercomplex structure on M, which is identified with Hor. Moreoved, for any twistor data (Tw, τ, Hor) , there exists a hypercomplex structure (I, J, K) on Hor such that these twistor data are associated with (I, J, K).

Proof: N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. **108** (1987), 535-589. ■

Complex tori

DEFINITION: A complex torus is a complex manifold M such that its Albanese map Alb : $M \longrightarrow \frac{H^0(\Omega^1 M)^*}{H^1(M,\mathbb{Z})}$ is an isomorphism.

REMARK: Any Kähler-type complex structure on a manifold diffeomorphic to a torus has this nature; there are **non-Kähler complex structures on a torus**, not well understood yet. These complex structures don't give "complex torus", because the Albanese map for such manifolds is never an isomorphism.

THEOREM: (F. Catanese)

Let \mathcal{X} be a connected, continuous family of complex structures on a manifold M diffeomorphic to a torus. Assume that for some $I \in \mathcal{X}$, the manifold (M, I) is a complex storus. Then (M, I_1) is a torus for all $I' \in \mathcal{X}$.

Proof: Fabrizio M.E. Catanese, *Deformation types of real and complex manifolds*, arXiv:math/0111245, Theorem 4.1. ■

Translations and flat structures on complex tori

REMARK: Let $\theta_1, ..., \theta_n$ be holomorphic differentials on a complex torus M. Their antiderivatives define a flat affine chart on M; the corresponding flat affine structure on M is canonically defined. This also defines a holomorphic flat affine connection on M.

REMARK: Also, each complex torus M is a torsor over the corresponding group manifold, identified with a connected component $Aut_0(M)$ of Aut(M), and its action on M is canonically defined. Since $Aut_0(M)$ is (non-canonically) identified with M, this action is called **the action of the torus on itself by translations**.

Exotic holomorphic structures on a torus are flat

Theorem 1: Let (I, J, K) be a hypercomplex structure on a complex torus (M, I), and ∇ its Obata connection. Then ∇ is flat.

Proof. Step 1: Any anticomplex involution of a torus exchanges holomorphic and antiholomorphic differentials, hence preserves the flat structure. Since the fibers of π : $\operatorname{Tw}(M) \longrightarrow \mathbb{C}P^1$ are flat, the universal covering $\widetilde{\operatorname{Tw}}(M)$ is an affine bundle, and the anticomplex involution preserves the affine structure. Fixing a horizontal section, we identify $\widetilde{\operatorname{Tw}}(M)$ with $\operatorname{Tot}(\mathcal{O}(1)^{2n})$; the anticomplex involution also preserves the vector bundle structure.

Step 2: Since the hypercomplex structure on $\operatorname{Tot}(\mathcal{O}(1)^{2n}) = \operatorname{Tw}(M)$ is linear, it gives a hypercomplex structure, compatible with the vector bundle operation (addition and multiplication). Such a hypercomplex structure is flat. We obtain that (M, I, J, K) is a quotient of a flat hypercomplex manifold \mathbb{H}^n by an affine action of \mathbb{Z}^{4n} .

REMARK: If the holonomy of Obata connection on M is trivial (or just compact), it would immediately follow that M is a hyperkähler torus. However, **this is false**, even for a torus obtained as a compact quotient of \mathbb{H}^n by \mathbb{Z}^{4n} .

Flat affine structures and the development map

DEFINITION: A flat affine structure on a manifold *M* is a flat torsion-free connection.

DEFINITION: Let M be a simply connected flat affine manifold, and $\theta_1, ..., \theta_n \in \Lambda^1 M$ a basis of parallel 1-forms. Since a parallel 1-form is closed and $H^1(M, \mathbb{R}) = 0$, the forms θ_i are exact. Then $\theta_i = dx_i$. The map $\delta : M \to \mathbb{R}^n$ taking m to $(x_1(m), ..., x_n(m))$ is called **the development map.** We consider \mathbb{R}^n as a flat affine manifold, with the standard flat affine structure.

CLAIM: The development map δ : $M \to \mathbb{R}^n$ is compatible with the flat affine connections.

Proof: It takes the coordinate 1-forms $dx_1, ..., dx_n \in \Lambda^1(M)$ to $\theta_1, ..., \theta_n \in \Lambda^1 M$. However, these 1-forms are parallel.

Linear and affine holonomy

DEFINITION: Linear holonomy (or **holonomy**) of a flat affine connection ∇ is its monodromy in TM; by definition, the holonomy group belongs to $GL(T_xM)$, where $x \in M$ is a base point.

DEFINITION: Let $Aff(\mathbb{R}^n)$ denote the group of affine transforms of \mathbb{R}^n . Clearly, $Aff(\mathbb{R}^n)$ is a semidirect product, $Aff(\mathbb{R}^n) = GL(n,\mathbb{R}) \rtimes \mathbb{R}^n$. The natural map $Aff(\mathbb{R}^n) \longrightarrow GL(n,\mathbb{R})$ is called **the linearization**.

DEFINITION: Let M be a flat affine n-manifold, $Aff(\mathbb{R}^n)$ \tilde{M} its universal cover $\delta : \tilde{M} \to \mathbb{R}^n$ the development map, and $a : \pi_1(M) \longrightarrow Aff(\mathbb{R}^n)$ the map taking $\gamma \in \pi_1(M)$ to an element of $Aff(\mathbb{R}^n)$ making the following diagram commutative:

The map $a : \pi_1(M) \longrightarrow Aff(\mathbb{R}^n)$ is called **the affine holonomy map**.

REMARK: The linear holonomy of a manifold is the linearization if its affine holonomy.

Non-standard flat affine structures on a torus

REMARK: A flat affine structure on a torus is called **standard** if its linear holonomy is trivial.

Remark 1: Let (M, ∇) be a flat affine torus with the standard flat affine structure. Then $\pi_1(M)$ acts on \tilde{M} by translations, hence $\tilde{M} = \mathbb{R}^n$ and M is isomorphic to $\mathbb{R}^n/\mathbb{Z}^n$ with the standard flat affine structure.

REMARK: In Sullivan, Dennis; Thurston, William Manifolds with canonical coordinate charts: some examples. Enseign. Math. (2) 29 (1983), no. 1-2, 15-25. Thurston and Sullivan gave examples of non-standard flat affine structures on a torus.

EXAMPLE: Consider the quotient $M := \frac{\mathbb{R}^2 \setminus 0}{\mathbb{Z}}$, where \mathbb{Z} acts by homotheties. Clearly, the holonomy of M is \mathbb{Z} acting on TM by homotheties.

Example 1: Consider \mathbb{Z}^2 -action ρ on \mathbb{R}^2 generated by $(x, y) \to (x + 1, y)$ and $(x, y) \to (x + y, y + 1)$. The projection to the second component maps $\frac{\mathbb{R}^2}{\operatorname{im} \rho}$ to S^1 , with the fiber S^1 , hence $\frac{\mathbb{R}^2}{\operatorname{im} \rho}$ is a torus; its (linear) holonomy is generated by A(x, y) := (x + y, y).

Exotic hypercomplex structures on a torus: examples

Corollary 1: Let (M, I, J, K) be a hypercomplex manifold, and ∇ its Obata connection. Assume that (M, I) is a compact complex torus. Then ∇ is flat, and the hypercomplex structure is exotic if and only if the (linear) holonomy of ∇ is non-trivial.

Proof: The connection ∇ is flat by Theorem 1. If its holonomy is trivial, M is a quotient of \mathbb{H}^n by translations, as follows from Remark 1.

EXAMPLE: Let $e_1, ..., e_4 \in \mathbb{H}$ be a basis in quaternions. Consider the following action of $\mathbb{Z}^8 = \langle t_1, ..., t_8 \rangle$ on \mathbb{H}^2 : for i = 1, ..., 4, we have $t_i(h, h') = (h + e_i, h')$ for i = 5, 6, 7, we have $t_i(h, h') = (h, h' + e_{i-4})$, and $t_8(h, h') = (h + h', h' + e_4)$. The quotient $\frac{\mathbb{H}^2}{\mathbb{Z}^8}$ is diffeomorphic to an 8-torus by the same reason as in Example 1. The action of \mathbb{Z}^8 on \mathbb{H}^2 is \mathbb{H} -linear, hence the quotient is hypercomplex, with Obata connection ∇ induced by the flat connection on \mathbb{H}^2 . However, the linear holonomy of ∇ contains the map A(h, h') := (h + h', h), hence it is non-standard and the hypercomplex structure is exotic (Corollary 1).

Frid-Goldman-Hirsch theorem

DEFINITION: A flat affine manifold (M, ∇) is called **complete** if $M = \frac{\mathbb{R}^n}{\Gamma}$, where $\Gamma = \pi_1(M)$, with its action factorized through Aff (\mathbb{R}^n) .

CONJECTURE: ("Marcus conjecture") A compact flat affine manifold is complete if and only if it admits a parallel volume form.

THEOREM: Let (M, ∇) be a compact flat affine manifold with affine holonomy group nilpotent. Then the following are equivalent:

- (a) (M, ∇) is complete,
- (b) (M, ∇) admits a paralell volume form, and
- (c) its linear holonomy action is unipotent.

Proof: Theorem A in Fried, D., Goldman, W., Hirsch, M.W., Affine manifolds with nilpotent holonomy, Commentarii Mathematici Helvetici 56, 487-523 (1981), https://doi.org/10.1007/BF02566225 ■

Frid-Goldman-Hirsch theorem for exotic hypercomplex structures

COROLLARY: Let $W := \mathbb{H}^n$, (M, I, J, K) an exotic hypercomplex structure on a torus, and ∇ its Obata connection. Then (M, ∇) satisfies (a)-(c) of **Frid-Goldman-Hirsch theorem.**

Proof: Since (M, I) is Kähler, it is HKT; since its canonical bundle is trivial and (M, I, J, K) is HKT, the Obata holonomy is contained in $SL(n, \mathbb{H})$ and ∇ fixes a volume form, as shown in *M. Verbitsky, Hyperkähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. of Math., Vol. 6 (4), December 2002).*

Category of flat affine tori

Consider the category of flat affine tori, with the morphisms smooth maps $X \longrightarrow Y$ compatible with the flat affine connection (that is, mapping parallel forms, local in Y, to parallel forms on X).

DEFINITION: An exact sequence of flat affine tori is a sequence

$$0 \longrightarrow M_1 \xrightarrow{a} M_2 \xrightarrow{b} M_3 \longrightarrow 0$$

where all M_i are flat affine tori, all maps are morphisms, the map b is submersive, and a injectively mapping M_1 to a fiber of b.

REMARK: Exact sequences of flat affine tori correspond to exact sequences of \mathbb{Z}^n -action on \mathbb{R}^n factorizing through $Aff(\mathbb{R}^n)$.

Integer lattice preserved by the holonomy

PROPOSITION: Let (M, ∇) be a flat affine connection on a torus $M = \frac{W}{\mathbb{Z}^n}$, satisfying the Frid-Goldman-Hirsch conditions (a)-(c). Denote by W_{lin} the linearization of W, and let $\rho : \Gamma \longrightarrow GL(W_{\text{lin}})$ be the linear holonomy. Then $\rho(\Gamma)$ preserves a cocompact integer lattice $\Lambda \subset W_{\text{lin}}$.

Proof: Since ρ is unipotent, there exists a filtration $0 = W_0 \subset ... \subset W_k = W_{\text{lin}}$ preserved by ρ which acts trivially on each subquotient W_i/W_{i-1} . Then Γ acts on W_{lin}/W_{k-1} by parallel transport, which defines a morphism of flat affine manifolds $(M, \nabla) = \longrightarrow \frac{W_{\text{lin}}/W_{k-1}}{\Lambda_k}$, where Λ_k is a cocompact lattice. This gives an exact sequence of flat affine tori $0 \longrightarrow M' \longrightarrow M \longrightarrow \frac{W_{\text{lin}}/W_{k-1}}{\Lambda_k}$. Using induction in dim M, we may assume that $M' = \frac{W'}{\mathbb{Z}^{n'}}$, with W'_{lin} admitting a $\rho(\mathbb{Z}^{n'})$ -invariant lattice. The leftmost and rightmost terms of the exact sequence $0 \longrightarrow W'_{\text{lin}} \longrightarrow W_{\text{lin}}/W_{k-1} \longrightarrow 0$ are equipped with a holonomyinvariant lattice, hence W_{lin} also admits a holonomy-invariant lattice.

COROLLARY: Let (M, I, J, K) be an exotic hypercomplex structure on a torus, and ∇ its Obata connection. Then (M, ∇) is a flat affine torus admitting an exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow T \longrightarrow 0$, where M' is a hypercomplex flat affine torus, and T is a hypercomplex (and, therefore, hyperkähler) torus with trivial linear holonomy.

Twistor space of an exotic hypercomplex torus

THEOREM: Let (M, I, J, K) be an exotic hypercomplex structure on a compact complex torus, and $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$ its twistor space. Then Tw(M) is isomorphic to the twistor space of a hyperkähler torus.

Proof. Step 1: The twistor projection $\mathsf{Tw}(M) \xrightarrow{\pi} \mathbb{C}P^1$ is a smooth holomorphic fibration, its fibers are complex tori. Consider the variation of Hodge structures over $\mathbb{C}P^1$ associated with the first cohomology of the fibers of $\mathsf{Tw}(M)$. Since any torus bundle possessing a section is determined by its variation of Hodge structures, it suffices to show that this variation of Hodge structures is isomorphic to one associated with a hyperkäler structure on a torus.

Step 2: Let $s : \mathbb{C}P^1 \longrightarrow \mathsf{Tw}(M)$ be a horizontal section associated with $m \in M$. Then the normal bundle Ns of s is $\mathcal{O}(1)^{2n}$ (this is always true for twistor spaces of hypercomplex manifolds). For any $I \in \mathbb{C}P^1$, we have $H^{1,0}(\pi^{-1}(I)) = (Ns|_I)^*$, because $\Omega^1(\pi^{-1}(I))$ is a trivial vector bundle on the torus $\pi^{-1}(I)$. This identifies the bundle $R^1\pi_*(\mathbb{C})$ with $Ns \otimes_{\mathbb{R}} \mathbb{C}$. This bundle is trivial with the fiber $T_m M \otimes_{\mathbb{R}} \mathbb{C}$, and its Hodge decomposition in $I' \in \mathbb{C}P^1$

is determined by the action of the quaternion I' on $T_m M$. This implies that the variation of Hodge structures on $R^1\pi_*(\mathbb{C})$ is determined by the quaternionic structure on $T_m M$, hence this variation of Hodge structure coincides with one obtained from $(T_m M/\mathbb{Z}^{4n}, I, J, K)$.

REMARK: The exotic hypercomplex structure can be recovered from the twistor data: the twistor space, anticomplex involution and a component in the space of real sections. The twistor space itself is standard as we have just shown. The space of twistor section is identified with $H^0(\mathcal{O}(1)^{2n})$ by homotopy lifting lemma. Therefore, the exotic properties of the hypercomplex structure are born by the anticomplex involution on its twistor space.