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HYPERCOMPLEX MANIFOLDS

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =
IJK = − Id . Suppose that I, J, K are integrable almost complex structures.
Then (M, I, J,K) is called a hypercomplex manifold.

THEOREM: (M. Obata, 1952)
Let (M, I, J,K) be a hypercomplex manifold. Then M admits a unique
torsion-free affine connection preserving I, J,K.

REMARK: Converse is also true. Suppose that I, J,K are operators defin-
ing quaternionic structure on TM , and ∇ a torsion-free, affine connection
preserving I, J, K. Then I, J, K are integrable almost complex struc-
tures, and (M, I, J,K) is hypercomplex.

Holonomy of Obata connection lies in GL(n,H). Conversely, a mani-
fold equipped with an affine, torsion-free connection with holonomy in
GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure: a hyper-
complex manifold (M,∇, I, J,K) is a manifold equipped with a torsion-free
connection such that its holonomy preserves a quaternionic structure on a
tangent bundle.
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Exotic hypercomplex structures on hyperkähler manifolds

DEFINITION: A hypercomplex manifold (M,∇, I, J,K) is called hyperkähler

if the holonomy Hol(∇) of ∇ is compact. In this case, Hol(∇) preserves

a quaternionic invariant Riemannian metric g. Such metric is called hy-

perkähler. A hyperkähler structure is (M,∇, I, J,K, g); in this situation,

∇ is the Levi-Civita connection.

THEOREM: Let (M, I, J,K) be a compact hypercomplex manifold. Assume

that (M, I) admits a Kähler structure Then (M, I) admits a hyperkähler

structure (I, J ′,K′).

DEFINITION: Let (M, I, J,K) be a compact hypercomplex manifold. As-

sume that (M, I) admits a Kähler structure. The hypercomplex structure

(I, J,K) is called exotic if it is not compatible with a hyperkähler metric,

that is, if the holonomy of its Obata connection is non-compact.
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Exotic hypercomplex structures on K3

THEOREM: Exotic hypercomplex structures on K3 do not exist.

Proof. Step 1: Let (M, I, J,K) be a hypercomplex structure on a K3,

and Θ the curvature of Obata connection on its canonical bundle KM,I =

KM,J = KM,K. Since Θ is of type (1,1) for I, J,K, it is SU(2)-invariant

with respect to the SU(2)-action on Λ∗(M) generated by quaternions. How-

ever, for any SU(2)-invariant form Θ, and any Hermitian metric g, one has

Θ ∧Θ = −∥Θ∥2g Volg. On the other hand, Θ is exact, because the canonical

bundle of a K3 is trivial. This implies that the Obata connection on the

canonical bundle KM,I is flat. Given that π1(K3) = 0, we obtain that

KM,I is trivialized by an Obata-parallel section.

Step 2: The Obata-parallel sections of the canonical bundle are closed 2-

forms (any parallel differential form is closed, if the connection is torsion-free).

Varying the complex structure, we obtain a rank 3 space W of parallel dif-

ferential forms, ωI , ωJ , ωK; the corresponding metric is hyperkähler, because

its holonomy is in Sp(1).
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Twistor spaces for hypercomplex manifolds

DEFINITION: Induced complex structures on a hypercomplex manifold

are complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hypercomplex manifold is a

complex manifold obtained by gluing these complex structures into a

holomorphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, then Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1

k=1O(ik), with ik > 0. It is

called a quasiline if all ik = 1.

THEOREM: (“twistor spaces are rationally connected”)

Let M be a compact complex manifold containing a an ample rational line.

red any N points z1, ..., zN can be connected by an ample rational curve.

CLAIM: Let M be a hyperkähler manifold, Tw(M)
σ−→ M its twistor space,

m ∈ M a point, and Sm = CP1 × {m} the corresponding rational curve in

Tw(M). Then Sm is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2p) ∼= CP2p+1\CP2p−1, and Sm is a

section of O(1)⊕2p.
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The twistor data

Let τ̌ denote the central symmetry on CP1; if we identify CP1 with imaginary
unit quaternions, we have τ̌(L) = −L. It is an anticomplex involution
without fixed points.

DEFINITION: The twistor data is a complex manifold Tw equipped with
the following structures.

1. A holomorphic submersion π : Tw −→ CP1 and an anticomplex invo-
lution τ : Tw −→ Tw which makes this diagram commutative

Tw
τ−→ Tw

π

y yπ
CP1 τ̌−→ CP1

2. A connected component Hor in the set Secτ ⊂ Sec of τ-invariant
sections of π such that for each S ∈ Hor, the normal bundle to S is O(1)2n

and for each point x ∈ Tw there exists a unique S ∈ Hor passing through x.

REMARK: With any twistor space Tw(M) of a hypercomplex manifold, one
associates the twistor data in a natural way: τ(I,m) = (−I,m), and
Hor(M) the space of all sections Sm taking I ∈ CP1 to (I,m) ∈ Tw(M),
where m ∈ M is a fixed point.
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Hypercomplex structures defined in terms of twistor data

THEOREM: (HKLR)

Let M be a hypercomplex manifold. Then the twistor data on Tw(M)

can be used to recover the hypercomplex structure on M, which is

identified with Hor. Moreoved, for any twistor data (Tw, τ,Hor), there

exists a hypercomplex structure (I, J,K) on Hor such that these twistor

data are associated with (I, J,K).

Proof: N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyperkähler

metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
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Complex tori

DEFINITION: A complex torus is a complex manifold M such that its

Albanese map Alb : M −→ H0(Ω1M)∗

H1(M,Z) is an isomorphism.

REMARK: Any Kähler-type complex structure on a manifold diffeomorphic

to a torus has this nature; there are non-Kähler complex structures on a

torus, not well understood yet. These complex structures don’t give “com-

plex torus”, because the Albanese map for such manifolds is never an isomor-

phism.

THEOREM: (F. Catanese)

Let X be a connected, continuous family of complex structures on a manifold

M diffeomorphic to a torus. Assume that for some I ∈ X, the manifold (M, I)

is a complex storus. Then (M, I1) is a torus for all I ′ ∈ X.

Proof: Fabrizio M.E. Catanese, Deformation types of real and complex man-

ifolds, arXiv:math/0111245, Theorem 4.1.
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Translations and flat structures on complex tori

REMARK: Let θ1, ...θn be holomorphic differentials on a complex torus M .

Their antiderivatives define a flat affine chart on M ; the corresponding flat

affine structure on M is canonically defined. This also defines a holomor-

phic flat affine connection on M .

REMARK: Also, each complex torus M is a torsor over the corresponding

group manifold, identified with a connected component Aut0(M) of Aut(M),

and its action on M is canonically defined. Since Aut0(M) is (non-canonically)

identified with M , this action is called the action of the torus on itself by

translations.
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Exotic holomorphic structures on a torus are flat

Theorem 1: Let (I, J,K) be a hypercomplex structure on a complex torus

(M, I), and ∇ its Obata connection. Then ∇ is flat.

Proof. Step 1: Any anticomplex involution of a torus exchanges holomorphic

and antiholomorphic differentials, hence preserves the flat structure. Since

the fibers of π : Tw(M)−→ CP1 are flat, the universal covering T̃w(M) is

an affine bundle, and the anticomplex involution preserves the affine struc-

ture. Fixing a horizontal section, we identify T̃w(M) with Tot(O(1)2n); the

anticomplex involution also preserves the vector bundle structure.

Step 2: Since the hypercomplex structure on Tot(O(1)2n) = T̃w(M) is

linear, it gives a hypercomplex structure, compatible with the vector bundle

operation (addition and multiplication). Such a hypercomplex structure is

flat. We obtain that (M, I, J,K) is a quotient of a flat hypercomplex

manifold Hn by an affine action of Z4n.

REMARK: If the holonomy of Obata connection on M is trivial (or just com-

pact), it would immediately follow that M is a hyperkähler torus. However,

this is false, even for a torus obtained as a compact quotient of Hn by Z4n.
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Flat affine structures and the development map

DEFINITION: A flat affine structure on a manifold M is a flat torsion-free

connection.

DEFINITION: Let M be a simply connected flat affine manifold, and θ1, ..., θn ∈
Λ1M a basis of parallel 1-forms. Since a parallel 1-form is closed and H1(M,R) =

0, the forms θi are exact. Then θi = dxi. The map δ : M → Rn taking m to

(x1(m), ..., xn(m)) is called the development map. We consider Rn as a flat

affine manifold, with the standard flat affine structure.

CLAIM: The development map δ : M → Rn is compatible with the flat

affine connections.

Proof: It takes the coordinate 1-forms dx1, ..., dxn ∈ Λ1(M) to θ1, ..., θn ∈
Λ1M . However, these 1-forms are parallel.
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Linear and affine holonomy

DEFINITION: Linear holonomy (or holonomy) of a flat affine connection
∇ is its monodromy in TM ; by definition, the holonomy group belongs to
GL(TxM), where x ∈ M is a base point.

DEFINITION: Let Aff(Rn) denote the group of affine transforms of Rn.
Clearly, Aff(Rn) is a semidirect product, Aff(Rn) = GL(n,R)⋊Rn. The natural
map Aff(Rn)−→GL(n,R) is called the linearization.

DEFINITION: Let M be a flat affine n-manifold, Aff(Rn) M̃ its universal
cover δ : M̃ → Rn the development map, and a : π1(M)−→ Aff(Rn) the map
taking γ ∈ π1(M) to an element of Aff(Rn) making the following diagram
commutative:

M̃
δ−→ Rn

γ

y ya
M̃

δ−→ Rn.

The map a : π1(M)−→ Aff(Rn) is called the affine holonomy map.

REMARK: The linear holonomy of a manifold is the linearization if its
affine holonomy.
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Non-standard flat affine structures on a torus

REMARK: A flat affine structure on a torus is called standard if its linear

holonomy is trivial.

Remark 1: Let (M,∇) be a flat affine torus with the standard flat affine

structure. Then π1(M) acts on M̃ by translations, hence M̃ = Rn and M is

isomorphic to Rn/Zn with the standard flat affine structure.

REMARK: In Sullivan, Dennis; Thurston, William Manifolds with canonical

coordinate charts: some examples. Enseign. Math. (2) 29 (1983), no. 1-

2, 15-25. Thurston and Sullivan gave examples of non-standard flat affine

structures on a torus.

EXAMPLE: Consider the quotient M := R2\0
Z , where Z acts by homotheties.

Clearly, the holonomy of M is Z acting on TM by homotheties.

Example 1: Consider Z2-action ρ on R2 generated by (x, y) → (x+1, y) and

(x, y) → (x+ y, y+1). The projection to the second component maps R2

im ρ to

S1, with the fiber S1, hence R2

im ρ is a torus; its (linear) holonomy is generated

by A(x, y) := (x+ y, y).
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Exotic hypercomplex structures on a torus: examples

Corollary 1: Let (M, I, J,K) be a hypercomplex manifold, and ∇ its Obata

connection. Assume that (M, I) is a compact complex torus. Then ∇ is

flat, and the hypercomplex structure is exotic if and only if the (linear)

holonomy of ∇ is non-trivial.

Proof: The connection ∇ is flat by Theorem 1. If its holonomy is trivial, M

is a quotient of Hn by translations, as follows from Remark 1.

EXAMPLE: Let e1, ..., e4 ∈ H be a basis in quaternions. Consider the fol-

lowing action of Z8 = ⟨t1, ..., t8⟩ on H2: for i = 1, ...,4, we have ti(h, h
′) =

(h + ei, h
′) for i = 5,6,7, we have ti(h, h

′) = (h, h′ + ei−4), and t8(h, h
′) =

(h+ h′, h′ + e4). The quotient H2

Z8 is diffeomorphic to an 8-torus by the same

reason as in Example 1. The action of Z8 on H2 is H-linear, hence the

quotient is hypercomplex, with Obata connection ∇ induced by the flat con-

nection on H2. However, the linear holonomy of ∇ contains the map

A(h, h′) := (h + h′, h), hence it is non-standard and the hypercomplex

structure is exotic (Corollary 1).
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Frid-Goldman-Hirsch theorem

DEFINITION: A flat affine manifold (M,∇) is called complete if M = Rn

Γ ,

where Γ = π1(M), with its action factorized through Aff(Rn).

CONJECTURE: (“Marcus conjecture”) A compact flat affine manifold

is complete if and only if it admits a parallel volume form.

THEOREM: Let (M,∇) be a compact flat affine manifold with affine holon-

omy group nilpotent. Then the following are equivalent:

(a) (M,∇) is complete,

(b) (M,∇) admits a paralell volume form, and

(c) its linear holonomy action is unipotent.

Proof: Theorem A in Fried, D., Goldman, W., Hirsch, M.W., Affine manifolds

with nilpotent holonomy, Commentarii Mathematici Helvetici 56, 487-523

(1981), https://doi.org/10.1007/BF02566225
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Frid-Goldman-Hirsch theorem for exotic hypercomplex structures

COROLLARY: Let W := Hn, (M, I, J,K) an exotic hypercomplex structure

on a torus, and ∇ its Obata connection. Then (M,∇) satisfies (a)-(c) of

Frid-Goldman-Hirsch theorem.

Proof: Since (M, I) is Kähler, it is HKT; since its canonical bundle is trivial

and (M, I, J,K) is HKT, the Obata holonomy is contained in SL(n,H) and ∇
fixes a volume form, as shown in M. Verbitsky, Hyperkähler manifolds with

torsion, supersymmetry and Hodge theory, Asian J. of Math., Vol. 6 (4),

December 2002).
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Category of flat affine tori

Consider the category of flat affine tori, with the morphisms smooth maps

X −→ Y compatible with the flat affine connection (that is, mapping parallel

forms, local in Y , to parallel forms on X).

DEFINITION: An exact sequence of flat affine tori is a sequence

0−→M1
a−→ M2

b−→ M3 −→ 0

where all Mi are flat affine tori, all maps are morphisms, the map b is sub-

mersive, and a injectively mapping M1 to a fiber of b.

REMARK: Exact sequences of flat affine tori correspond to exact se-

quences of Zn-action on Rn factorizing through Aff(Rn).
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Integer lattice preserved by the holonomy

PROPOSITION: Let (M,∇) be a flat affine connection on a torus M = W
Zn,

satisfying the Frid-Goldman-Hirsch conditions (a)-(c). Denote by Wlin the
linearization of W , and let ρ : Γ−→GL(Wlin) be the linear holonomy. Then
ρ(Γ) preserves a cocompact integer lattice Λ ⊂ Wlin.

Proof: Since ρ is unipotent, there exists a filtration 0 = W0 ⊂ ... ⊂ Wk = Wlin
preserved by ρ which acts trivially on each subquotient Wi/Wi−1. Then Γ acts
on Wlin/Wk−1 by parallel transport, which defines a morphism of flat affine

manifolds (M,∇) = −→ Wlin/Wk−1
Λk

, where Λk is a cocompact lattice. This

gives an exact sequence of flat affine tori 0−→M ′ −→M −→ Wlin/Wk−1
Λk

. Using

induction in dimM , we may assume that M ′ = W ′

Zn′ , with W ′
lin admitting a

ρ(Zn′)-invariant lattice. The leftmost and rightmost terms of the exact se-
quence 0−→W ′

lin −→Wlin −→Wlin/Wk−1 −→ 0 are equipped with a holonomy-
invariant lattice, hence Wlin also admits a holonomy-invariant lattice.

COROLLARY: Let (M, I, J,K) be an exotic hypercomplex structure on a
torus, and ∇ its Obata connection. Then (M,∇) is a flat affine torus
admitting an exact sequence 0−→M ′ −→M −→ T −→ 0, where M ′ is a
hypercomplex flat affine torus, and T is a hypercomplex (and, therefore,
hyperkähler) torus with trivial linear holonomy.

19



Exotic hypercomplex structures on tori M. Verbitsky

Twistor space of an exotic hypercomplex torus

THEOREM: Let (M, I, J,K) be an exotic hypercomplex structure on a com-

pact complex torus, and Tw(M)
π−→ CP1 its twistor space. Then Tw(M)

is isomorphic to the twistor space of a hyperkähler torus.

Proof. Step 1: The twistor projection Tw(M)
π−→ CP1 is a smooth holo-

morphic fibration, its fibers are complex tori. Consider the variation of Hodge

structures over CP1 associated with the first cohomology of the fibers of

Tw(M). Since any torus bundle possessing a section is determined by its

variation of Hodge structures, it suffices to show that this variation of

Hodge structures is isomorphic to one associated with a hyperkäler

structure on a torus.

Step 2: Let s : CP1 −→ Tw(M) be a horizontal section associated with

m ∈ M . Then the normal bundle Ns of s is O(1)2n (this is always true

for twistor spaces of hypercomplex manifolds). For any I ∈ CP1, we have

H1,0(π−1(I)) = (Ns
∣∣∣
I
)∗, because Ω1(π−1(I)) is a trivial vector bundle on the

torus π−1(I). This identifies the bundle R1π∗(C) with Ns ⊗R C. This bundle

is trivial with the fiber TmM ⊗R C, and its Hodge decomposition in I ′ ∈ CP1
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is determined by the action of the quaternion I ′ on TmM . This implies

that the variation of Hodge structures on R1π∗(C) is determined by the

quaternionic structure on TmM , hence this variation of Hodge structure

coincides with one obtained from (TmM/Z4n, I, J,K).

REMARK: The exotic hypercomplex structure can be recovered from

the twistor data: the twistor space, anticomplex involution and a compo-

nent in the space of real sections. The twistor space itself is standard as we

have just shown. The space of twistor section is identified with H0(O(1)2n)

by homotopy lifting lemma. Therefore, the exotic properties of the hyper-

complex structure are born by the anticomplex involution on its twistor

space.
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