

Exotic hypercomplex structures on complex tori

Misha Verbitsky

ICMS, Sofia, Bulgaria,

December 2, 2025

a joint work with Alberto Pipitone Federico.

HYPERCOMPLEX MANIFOLDS

DEFINITION: Let M be a smooth manifold equipped with endomorphisms $I, J, K : TM \rightarrow TM$, satisfying the quaternionic relation $I^2 = J^2 = K^2 = IJK = -\text{Id}$. Suppose that I, J, K are integrable almost complex structures. Then (M, I, J, K) is called a **hypercomplex manifold**.

THEOREM: (M. Obata, 1952)

Let (M, I, J, K) be a hypercomplex manifold. **Then M admits a unique torsion-free affine connection preserving I, J, K .**

REMARK: Converse is also true. Suppose that I, J, K are operators defining quaternionic structure on TM , and ∇ a torsion-free, affine connection preserving I, J, K . **Then I, J, K are integrable almost complex structures, and (M, I, J, K) is hypercomplex.**

Holonomy of Obata connection lies in $GL(n, \mathbb{H})$. Conversely, **a manifold equipped with an affine, torsion-free connection with holonomy in $GL(n, \mathbb{H})$ is hypercomplex.**

This can be used as a definition of a hypercomplex structure: a **hypercomplex manifold** (M, ∇, I, J, K) is a manifold equipped with a torsion-free connection such that its holonomy preserves a quaternionic structure on a tangent bundle.

Exotic hypercomplex structures on hyperkähler manifolds

DEFINITION: A hypercomplex manifold (M, ∇, I, J, K) is called **hyperkähler** if the holonomy $\mathcal{H}\text{ol}(\nabla)$ of ∇ is compact. In this case, $\mathcal{H}\text{ol}(\nabla)$ preserves a quaternionic invariant Riemannian metric g . Such metric is called **hyperkähler**. A **hyperkähler structure** is (M, ∇, I, J, K, g) ; in this situation, ∇ is the Levi-Civita connection.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume that (M, I) admits a Kähler structure **Then (M, I) admits a hyperkähler structure (I, J', K') .**

DEFINITION: Let (M, I, J, K) be a compact hypercomplex manifold. Assume that (M, I) admits a Kähler structure. The hypercomplex structure (I, J, K) is called **exotic** if it is not compatible with a hyperkähler metric, that is, if the holonomy of its Obata connection is non-compact.

The main result today

THEOREM: (Alberto Pipitone Federico, V.)

There are no exotic hypercomplex structures on a compact torus.

Exotic hypercomplex structures on K3

THEOREM: Exotic hypercomplex structures on K3 do not exist.

Proof. Step 1: Let (M, I, J, K) be a hypercomplex structure on a K3, and Θ the curvature of Obata connection on its canonical bundle $K_{M,I} = K_{M,J} = K_{M,K}$. Since Θ is of type $(1,1)$ for I, J, K , it is $SU(2)$ -invariant with respect to the $SU(2)$ -action on $\Lambda^*(M)$ generated by quaternions. However, for any $SU(2)$ -invariant form Θ , and any Hermitian metric g , one has $\Theta \wedge \Theta = -\|\Theta\|_g^2 \text{Vol}_g$. On the other hand, Θ is exact, because the canonical bundle of a K3 is trivial. **This implies that the Obata connection on the canonical bundle $K_{M,I}$ is flat.** Given that $\pi_1(K3) = 0$, **we obtain that $K_{M,I}$ is trivialized by an Obata-parallel section.**

Step 2: The Obata-parallel sections of the canonical bundle are closed 2-forms (any parallel differential form is closed, if the connection is torsion-free). Varying the complex structure, **we obtain a rank 3 space W of parallel differential forms**, $\omega_I, \omega_J, \omega_K$; the corresponding metric is hyperkähler, because its holonomy belongs to the stabilizer of $\omega_I, \omega_J, \omega_K$, that is, $\text{Sp}(1)$. ■

Twistor spaces for hypercomplex manifolds

DEFINITION: **Induced complex structures** on a hypercomplex manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, \quad a^2 + b^2 + c^2 = 1.\}$

They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c , (M, L) has no divisors (Fujiki).

DEFINITION: A **twistor space** $\text{Tw}(M)$ of a hypercomplex manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\text{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \rightarrow T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\text{Tw}} = I_m \oplus I_J : T_x \text{Tw}(M) \rightarrow T_x \text{Tw}(M)$ satisfies $I_{\text{Tw}}^2 = -\text{Id}$. It defines an almost complex structure on $\text{Tw}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If $M = \mathbb{H}^n$, then $\text{Tw}(M) = \text{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For M compact, $\text{Tw}(M)$ never admits a Kähler structure.

Rational curves on $\text{Tw}(M)$.

DEFINITION: An ample rational curve on a complex manifold M is a smooth curve $S \cong \mathbb{C}P^1 \subset M$ such that $NS = \bigoplus_{k=1}^{n-1} \mathcal{O}(i_k)$, with $i_k > 0$. It is called a **quasiline** if all $i_k = 1$.

THEOREM: (“twistor spaces are rationally connected”)

Let M be a compact complex manifold containing a an ample rational line. **red any N points z_1, \dots, z_N can be connected by an ample rational curve.**

CLAIM: Let M be a hyperkähler manifold, $\text{Tw}(M) \xrightarrow{\sigma} M$ its twistor space, $m \in M$ a point, and $S_m = \mathbb{C}P^1 \times \{m\}$ the corresponding rational curve in $\text{Tw}(M)$. **Then S_m is a quasiline.**

Proof: Since the claim is essentially infinitesimal, it suffices to check it when M is flat. **Then $\text{Tw}(M) = \text{Tot}(\mathcal{O}(1)^{\oplus 2p}) \cong \mathbb{C}P^{2p+1} \setminus \mathbb{C}P^{2p-1}$, and S_m is a section of $\mathcal{O}(1)^{\oplus 2p}$.** ■

The twistor data

Let $\check{\tau}$ denote the central symmetry on $\mathbb{C}P^1$; if we identify $\mathbb{C}P^1$ with imaginary unit quaternions, we have $\check{\tau}(L) = -L$. It is **an anticomplex involution without fixed points**.

DEFINITION: The **twistor data** is a complex manifold Tw equipped with the following structures.

1. **A holomorphic submersion** $\pi : \text{Tw} \rightarrow \mathbb{C}P^1$ **and an anticomplex involution** $\tau : \text{Tw} \rightarrow \text{Tw}$ which makes this diagram commutative

$$\begin{array}{ccc} \text{Tw} & \xrightarrow{\tau} & \text{Tw} \\ \pi \downarrow & & \downarrow \pi \\ \mathbb{C}P^1 & \xrightarrow{\check{\tau}} & \mathbb{C}P^1 \end{array}$$

2. **A connected component** Hor **in the set** $\text{Sec}^\tau \subset \text{Sec}$ **of** τ -**invariant sections of** π such that for each $S \in \text{Hor}$, the normal bundle to S is $\mathcal{O}(1)^{2n}$ and for each point $x \in \text{Tw}$ there exists a unique $S \in \text{Hor}$ passing through x .

REMARK: With any twistor space $\text{Tw}(M)$ of a hypercomplex manifold, **one associates the twistor data in a natural way:** $\tau(I, m) = (-I, m)$, and $\text{Hor}(M)$ the space of all sections S_m taking $I \in \mathbb{C}P^1$ to $(I, m) \in \text{Tw}(M)$, where $m \in M$ is a fixed point.

Hypercomplex structures defined in terms of twistor data

THEOREM: (HKLR)

Let M be a hypercomplex manifold. Then **the twistor data on $\text{Tw}(M)$ can be used to recover the hypercomplex structure on M , which is identified with Hor** . Moreover, **for any twistor data $(\text{Tw}, \tau, \text{Hor})$, there exists a hypercomplex structure (I, J, K) on Hor such that these twistor data are associated with (I, J, K)** .

Proof: *N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. **108** (1987), 535-589.* ■

Complex tori

DEFINITION: A **complex torus** is a complex manifold M such that its Albanese map $\text{Alb} : M \longrightarrow \frac{H^0(\Omega^1 M)^*}{H^1(M, \mathbb{Z})}$ is an isomorphism.

REMARK: Any Kähler-type complex structure on a manifold diffeomorphic to a torus has this nature; there are **non-Kähler complex structures on a torus**, not well understood yet. These complex structures don't give "complex torus", because the Albanese map for such manifolds is never an isomorphism.

THEOREM: (F. Catanese)

Let \mathcal{X} be a connected, continuous family of complex structures on a manifold M diffeomorphic to a torus. Assume that for some $I \in \mathcal{X}$, the manifold (M, I) is a complex torus. **Then (M, I_1) is a torus for all $I' \in \mathcal{X}$.**

Proof: Fabrizio M.E. Catanese, *Deformation types of real and complex manifolds*, arXiv:math/0111245, Theorem 4.1. ■

Translations and flat structures on complex tori

REMARK: Let $\theta_1, \dots, \theta_n$ be holomorphic differentials on a complex torus M . Their antiderivatives define a flat affine chart on M ; the corresponding flat affine structure on M is canonically defined. **This also defines a holomorphic flat affine connection on M .**

REMARK: Also, each complex torus M is a torsor over the corresponding group manifold, identified with a connected component $\text{Aut}_0(M)$ of $\text{Aut}(M)$, and its action on M is canonically defined. Since $\text{Aut}_0(M)$ is (non-canonically) identified with M , this action is called **the action of the torus on itself by translations**.

Exotic hypercomplex structures on a torus are flat

Theorem 1: Let (I, J, K) be a hypercomplex structure on a complex torus (M, I) , and ∇ its Obata connection. **Then ∇ is flat.**

Proof. **Step 1:** Any anticomplex involution of a torus exchanges holomorphic and antiholomorphic differentials, hence preserves the standard flat structure induced by the complex structure as above. Since the fibers of $\pi : \text{Tw}(M) \rightarrow \mathbb{C}P^1$ are flat, the universal covering $\widetilde{\text{Tw}}(M)$ is an affine bundle, and the anticomplex involution preserves the affine structure. Fixing a horizontal section, **we identify $\widetilde{\text{Tw}}(M)$ with $\text{Tot}(\mathcal{O}(1)^{2n})$; the anticomplex involution also preserves the vector bundle structure.**

Step 2: Since the hypercomplex structure on $\text{Tot}(\mathcal{O}(1)^{2n}) = \widetilde{\text{Tw}}(M)$ is compatible with the vector space structure on fibers, it gives a hypercomplex structure, compatible with the vector bundle operation (addition and multiplication). Such a hypercomplex structure is translation-invariant, hence flat.

We obtain that (M, I, J, K) is a quotient of a flat hypercomplex manifold \mathbb{H}^n by an affine action of \mathbb{Z}^{4n} . ■

REMARK: If the monodromy of Obata connection on M is trivial (or just compact), **it would immediately follow that M is a hyperkähler torus.**

In the rest of this talk, I would discuss **torsion-free flat connections on complex tori.**

Flat affine structures and the development map

DEFINITION: A **flat affine structure** on a manifold M is a flat torsion-free connection.

DEFINITION: Let M be a simply connected flat affine manifold, and $\theta_1, \dots, \theta_n \in \Lambda^1 M$ a basis of parallel 1-forms. Since a parallel 1-form is closed and $H^1(M, \mathbb{R}) = 0$, the forms θ_i are exact. Then $\theta_i = dx_i$. The map $\delta : M \rightarrow \mathbb{R}^n$ taking m to $(x_1(m), \dots, x_n(m))$ is called **the development map**. We consider \mathbb{R}^n as a flat affine manifold, with the standard flat affine structure.

CLAIM: The development map $\delta : M \rightarrow \mathbb{R}^n$ **is compatible with the flat affine connections.**

Proof: It takes the coordinate 1-forms $dx_1, \dots, dx_n \in \Lambda^1(M)$ to $\theta_1, \dots, \theta_n \in \Lambda^1 M$. However, these 1-forms are parallel. ■

Linear and affine holonomy

DEFINITION: **Linear holonomy** (or **holonomy**) of a flat affine connection ∇ is its monodromy in TM ; by definition, the holonomy group belongs to $GL(T_x M)$, where $x \in M$ is a base point.

DEFINITION: Let $\text{Aff}(\mathbb{R}^n)$ denote the group of affine transforms of \mathbb{R}^n . Clearly, $\text{Aff}(\mathbb{R}^n)$ is a semidirect product, $\text{Aff}(\mathbb{R}^n) = GL(n, \mathbb{R}) \rtimes \mathbb{R}^n$. The natural map $\text{Aff}(\mathbb{R}^n) \rightarrow GL(n, \mathbb{R})$ is called **the linearization**.

DEFINITION: Let M be a flat affine n -manifold, $\text{Aff}(\mathbb{R}^n)$ \tilde{M} its universal cover $\delta : \tilde{M} \rightarrow \mathbb{R}^n$ the development map, and $\alpha : \pi_1(M) \rightarrow \text{Aff}(\mathbb{R}^n)$ the map taking $\gamma \in \pi_1(M)$ to an element of $\text{Aff}(\mathbb{R}^n)$ making the following diagram commutative:

$$\begin{array}{ccc} \tilde{M} & \xrightarrow{\delta} & \mathbb{R}^n \\ \gamma \downarrow & & \downarrow \alpha \\ \tilde{M} & \xrightarrow{\delta} & \mathbb{R}^n. \end{array}$$

The map $\alpha : \pi_1(M) \rightarrow \text{Aff}(\mathbb{R}^n)$ is called **the affine holonomy map**.

REMARK: The linear holonomy of a manifold **is the linearization if its affine holonomy**.

Non-standard flat affine structures on a torus

REMARK: A flat affine structure on a torus is called **standard** if its linear holonomy is trivial.

Remark 1: Let (M, ∇) be a flat affine torus with the standard flat affine structure. Then $\pi_1(M)$ acts on \tilde{M} by translations, hence $\tilde{M} = \mathbb{R}^n$ and M is isomorphic to $\mathbb{R}^n/\mathbb{Z}^n$ with the standard flat affine structure.

REMARK: In *Sullivan, Dennis; Thurston, William Manifolds with canonical coordinate charts: some examples. Enseign. Math. (2) 29 (1983), no. 1-2, 15-25.* Thurston and Sullivan gave examples of non-standard flat affine structures on a torus.

EXAMPLE: Consider the quotient $M := \frac{\mathbb{R}^2 \setminus 0}{\mathbb{Z}}$, where \mathbb{Z} acts by homotheties. Clearly, the holonomy of M is \mathbb{Z} acting on TM by homotheties.

EXAMPLE: Consider \mathbb{Z}^2 -action ρ on \mathbb{R}^2 generated by $(x, y) \rightarrow (x + 1, y)$ and $(x, y) \rightarrow (x + y, y + 1)$. The projection to the second component maps $\frac{\mathbb{R}^2}{\text{im } \rho}$ to S^1 , with the fiber S^1 , hence $\frac{\mathbb{R}^2}{\text{im } \rho}$ is a torus; its (linear) holonomy is generated by $A(x, y) := (x + y, y)$.

Frid-Goldman-Hirsch theorem

DEFINITION: A flat affine manifold (M, ∇) is called **complete** if $M = \frac{\mathbb{R}^n}{\Gamma}$, where $\Gamma = \pi_1(M)$, with its action factorized through $\text{Aff}(\mathbb{R}^n)$.

CONJECTURE: (“Marcus conjecture”) A compact flat affine manifold is **complete if and only if it admits a parallel volume form**.

THEOREM: Let (M, ∇) be a compact flat affine manifold with affine holonomy group nilpotent. **Then the following are equivalent:**

- (a) (M, ∇) is complete,
- (b) (M, ∇) admits a parallel volume form, and
- (c) its linear holonomy action is unipotent.

Proof: Theorem A in *Fried, D., Goldman, W., Hirsch, M.W., Affine manifolds with nilpotent holonomy, Commentarii Mathematici Helvetici 56, 487-523 (1981), <https://doi.org/10.1007/BF02566225>* ■

Frid-Goldman-Hirsch theorem for Obata connection a torus

COROLLARY: Let $W := \mathbb{H}^n$, (M, I, J, K) an exotic hypercomplex structure on a torus, and ∇ its Obata connection. **Then (M, ∇) satisfies (a)-(c) of Frid-Goldman-Hirsch theorem.**

Proof: Since (M, I) is Kähler, it is HKT; since its canonical bundle is trivial and (M, I, J, K) is HKT, the Obata holonomy is contained in $SL(n, \mathbb{H})$ and ∇ fixes a volume form, as shown in *M. Verbitsky, Hyperkähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. of Math., Vol. 6 (4), December 2002*. ■

REMARK: Most importantly, this implies that the flat Obata connection on an exotic hypercomplex torus **is complete**.

Complete flat affine connections on a torus

THEOREM 1: Let (M, ∇) be a complete flat affine structure on a compact torus. Then

(i) **its linear holonomy is unipotent.**

(ii) For some real basis t_1, \dots, t_n in \mathbb{R}^n , the action of $\pi_1(M)$ on $\mathbb{R}^n = \widetilde{M}$ is generated by τ_1, \dots, τ_n , with $\tau_i(x) := t_i + L_i(x)$. Here $L_1, \dots, L_n \in GL(n, \mathbb{R})$ is a collection of commuting unipotent matrices which satisfy

$$(L_i - \text{Id})(t_j) = (L_j - \text{Id})(t_i) \quad (*)$$

for any i, j .

(iii) For any collection of commuting affine maps τ_1, \dots, τ_n with $\tau_i(x) := t_i + L_i(x)$, where t_1, \dots, t_n is a basis and all L_i unipotent and satisfying $(*)$, **there exists a flat affine structure on a torus M with τ_1, \dots, τ_n generating the action of $\pi_1(M)$ on \mathbb{R}^n .**

Proof. Step 1: The holonomy of ∇ is unipotent by Fried-Goldman-Hirsch.

Step 2: To prove (ii), we write the generators of $\Gamma = \pi_1(M)$ as τ_1, \dots, τ_n , with $\tau_i(x) := L_i(x) + t_i$, where L_1, \dots, L_n are linear. Clearly, L_i are commuting and (by Fried-Goldman-Hirsch) unipotent. The equation $(*)$ follows because $\tau_i \tau_j(x) = L_i(t_j) + L_i L_j(x) + t_i$. To complete the proof of (ii), **it remains to show that all the t_i are linearly independent.**

Step 3: Linear independence of t_i is clear because **expotents of $G := \sum \alpha_i \log \tau_i(x)$ define a free \mathbb{R}^n -action on \mathbb{R}^n** ; this also proves (iii), because G is a free commutative Lie group acting on \mathbb{R}^n . ■

Exotic hypercomplex structures on tori do not exist

REMARK: In assumptions of Theorem 1, let Ψ be the tensor written in the basis t_1, \dots, t_n as

$$\Psi(u, v) := \sum_{i,j,k=1}^{2n} (A_i)_j^k u^i v^j t_k,$$

where $A_i = L_i - \text{Id}$. **Then (*) can be rewritten as $\Psi \in \text{Sym}^2 V^* \otimes V$.** If, in addition, the flat connection preserves a complex or a hypercomplex structure on a torus, this would mean that $A_i \in GL(n, \mathbb{C})$ or $A_i \in GL(n, \mathbb{H})$.

THEOREM: Exotic hypercomplex structures on tori do not exist.

Proof: Let (M, I, J, K) be a hypercomplex structure and ∇ the Obata connection on a complex torus. Then ∇ is flat and complete, hence Theorem 1 can be applied. Let $\Psi \in \text{Sym}^2(V) \otimes V^*$ be the tensor defined above; by construction, Ψ commutes with I, J, K on last two arguments. This forces Ψ to be zero, since

$$K\Psi(x, y) = \Psi(IJx, y) = \Psi(Jx, Iy) = \Psi(x, JIy) = -K\Psi(x, y).$$

■