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HYPERCOMPLEX MANIFOLDS

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =
IJK = − Id . Suppose that I, J, K are integrable almost complex structures.
Then (M, I, J,K) is called a hypercomplex manifold.

THEOREM: (M. Obata, 1952)
Let (M, I, J,K) be a hypercomplex manifold. Then M admits a unique
torsion-free affine connection preserving I, J,K.

REMARK: Converse is also true. Suppose that I, J,K are operators defin-
ing quaternionic structure on TM , and ∇ a torsion-free, affine connection
preserving I, J, K. Then I, J, K are integrable almost complex struc-
tures, and (M, I, J,K) is hypercomplex.

Holonomy of Obata connection lies in GL(n,H). Conversely, a mani-
fold equipped with an affine, torsion-free connection with holonomy in
GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure: a hyper-
complex manifold (M,∇, I, J,K) is a manifold equipped with a torsion-free
connection such that its holonomy preserves a quaternionic structure on a
tangent bundle.
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Exotic hypercomplex structures on hyperkähler manifolds

DEFINITION: A hypercomplex manifold (M,∇, I, J,K) is called hyperkähler

if the holonomy Hol(∇) of ∇ is compact. In this case, Hol(∇) preserves

a quaternionic invariant Riemannian metric g. Such metric is called hy-

perkähler. A hyperkähler structure is (M,∇, I, J,K, g); in this situation,

∇ is the Levi-Civita connection.

THEOREM: Let (M, I, J,K) be a compact hypercomplex manifold. Assume

that (M, I) admits a Kähler structure Then (M, I) admits a hyperkähler

structure (I, J ′,K′).

DEFINITION: Let (M, I, J,K) be a compact hypercomplex manifold. As-

sume that (M, I) admits a Kähler structure. The hypercomplex structure

(I, J,K) is called exotic if it is not compatible with a hyperkähler metric,

that is, if the holonomy of its Obata connection is non-compact.

The main result today

THEOREM: (Alberto Pipitone Federico, V.)

There are no exotic hypercomplex structures on a compact torus.
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Exotic hypercomplex structures on K3

THEOREM: Exotic hypercomplex structures on K3 do not exist.

Proof. Step 1: Let (M, I, J,K) be a hypercomplex structure on a K3,

and Θ the curvature of Obata connection on its canonical bundle KM,I =

KM,J = KM,K. Since Θ is of type (1,1) for I, J,K, it is SU(2)-invariant

with respect to the SU(2)-action on Λ∗(M) generated by quaternions. How-

ever, for any SU(2)-invariant form Θ, and any Hermitian metric g, one has

Θ ∧Θ = −‖Θ‖2g Volg. On the other hand, Θ is exact, because the canonical

bundle of a K3 is trivial. This implies that the Obata connection on the

canonical bundle KM,I is flat. Given that π1(K3) = 0, we obtain that

KM,I is trivialized by an Obata-parallel section.

Step 2: The Obata-parallel sections of the canonical bundle are closed 2-

forms (any parallel differential form is closed, if the connection is torsion-free).

Varying the complex structure, we obtain a rank 3 space W of parallel dif-

ferential forms, ωI , ωJ , ωK; the corresponding metric is hyperkähler, because

its holonomy belongs to the stabilizer of ωI , ωJ , ωK, that is, Sp(1).
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Twistor spaces for hypercomplex manifolds

DEFINITION: Induced complex structures on a hypercomplex manifold

are complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hypercomplex manifold is a

complex manifold obtained by gluing these complex structures into a

holomorphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, then Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1
k=1 O(ik), with ik > 0. It is

called a quasiline if all ik = 1.

THEOREM: (“twistor spaces are rationally connected”)

Let M be a compact complex manifold containing a an ample rational line.

red any N points z1, ..., zN can be connected by an ample rational curve.

CLAIM: Let M be a hyperkähler manifold, Tw(M)
σ−→ M its twistor space,

m ∈ M a point, and Sm = CP1 × {m} the corresponding rational curve in

Tw(M). Then Sm is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2p) ∼= CP2p+1\CP2p−1, and Sm is a

section of O(1)⊕2p.
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The twistor data

Let τ̌ denote the central symmetry on CP1; if we identify CP1 with imaginary
unit quaternions, we have τ̌(L) = −L. It is an anticomplex involution
without fixed points.

DEFINITION: The twistor data is a complex manifold Tw equipped with
the following structures.

1. A holomorphic submersion π : Tw −→ CP1 and an anticomplex invo-
lution τ : Tw −→ Tw which makes this diagram commutative

Tw
τ−→ Tw

π

y yπ
CP1 τ̌−→ CP1

2. A connected component Hor in the set Secτ ⊂ Sec of τ-invariant
sections of π such that for each S ∈ Hor, the normal bundle to S is O(1)2n

and for each point x ∈ Tw there exists a unique S ∈ Hor passing through x.

REMARK: With any twistor space Tw(M) of a hypercomplex manifold, one
associates the twistor data in a natural way: τ(I,m) = (−I,m), and
Hor(M) the space of all sections Sm taking I ∈ CP1 to (I,m) ∈ Tw(M),
where m ∈M is a fixed point.
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Hypercomplex structures defined in terms of twistor data

THEOREM: (HKLR)

Let M be a hypercomplex manifold. Then the twistor data on Tw(M)

can be used to recover the hypercomplex structure on M, which is

identified with Hor. Moreoved, for any twistor data (Tw, τ,Hor), there

exists a hypercomplex structure (I, J,K) on Hor such that these twistor

data are associated with (I, J,K).

Proof: N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyperkähler

metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
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Complex tori

DEFINITION: A complex torus is a complex manifold M such that its

Albanese map Alb : M −→ H0(Ω1M)∗

H1(M,Z)
is an isomorphism.

REMARK: Any Kähler-type complex structure on a manifold diffeomorphic

to a torus has this nature; there are non-Kähler complex structures on a

torus, not well understood yet. These complex structures don’t give “com-

plex torus”, because the Albanese map for such manifolds is never an isomor-

phism.

THEOREM: (F. Catanese)

Let X be a connected, continuous family of complex structures on a manifold

M diffeomorphic to a torus. Assume that for some I ∈ X, the manifold (M, I)

is a complex storus. Then (M, I1) is a torus for all I ′ ∈ X.

Proof: Fabrizio M.E. Catanese, Deformation types of real and complex man-

ifolds, arXiv:math/0111245, Theorem 4.1.
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Translations and flat structures on complex tori

REMARK: Let θ1, ...θn be holomorphic differentials on a complex torus M .

Their antiderivatives define a flat affine chart on M ; the corresponding flat

affine structure on M is canonically defined. This also defines a holomor-

phic flat affine connection on M .

REMARK: Also, each complex torus M is a torsor over the corresponding

group manifold, identified with a connected component Aut0(M) of Aut(M),

and its action on M is canonically defined. Since Aut0(M) is (non-canonically)

identified with M , this action is called the action of the torus on itself by

translations.
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Exotic hypercomplex structures on a torus are flat

Theorem 1: Let (I, J,K) be a hypercomplex structure on a complex torus
(M, I), and ∇ its Obata connection. Then ∇ is flat.
Proof. Step 1: Any anticomplex involution of a torus exchanges holo-
morphic and antiholomorphic differentials, hence preserves the standard flat
structure induced by the complex structure as above. Since the fibers of
π : Tw(M)−→ CP1 are flat, the universal covering T̃w(M) is an affine bun-
dle, and the anticomplex involution preserves the affine structure. Fixing a
horizontal section, we identify T̃w(M) with Tot(O(1)2n); the anticomplex
involution also preserves the vector bundle structure.
Step 2: Since the hypercomplex structure on Tot(O(1)2n) = T̃w(M) is com-
patible with the vector space structure on fibers, it gives a hypercomplex
structure, compatible with the vector bundle operation (addition and multi-
plication). Such a hypercomplex structure is translation-invariant, hence flat.
We obtain that (M, I, J,K) is a quotient of a flat hypercomplex manifold
Hn by an affine action of Z4n.

REMARK: If the monodromy of Obata connection on M is trivial (or just
compact), it would immediately follow that M is a hyperkähler torus.

In the rest of this talk, I would discuss torsion-free flat connections on
complex tori.

11



Exotic hypercomplex structures on tori M. Verbitsky

Flat affine structures and the development map

DEFINITION: A flat affine structure on a manifold M is a flat torsion-free

connection.

DEFINITION: Let M be a simply connected flat affine manifold, and θ1, ..., θn ∈
Λ1M a basis of parallel 1-forms. Since a parallel 1-form is closed and H1(M,R) =

0, the forms θi are exact. Then θi = dxi. The map δ : M → Rn taking m to

(x1(m), ..., xn(m)) is called the development map. We consider Rn as a flat

affine manifold, with the standard flat affine structure.

CLAIM: The development map δ : M → Rn is compatible with the flat

affine connections.

Proof: It takes the coordinate 1-forms dx1, ..., dxn ∈ Λ1(M) to θ1, ..., θn ∈
Λ1M . However, these 1-forms are parallel.
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Linear and affine holonomy

DEFINITION: Linear holonomy (or holonomy) of a flat affine connection
∇ is its monodromy in TM ; by definition, the holonomy group belongs to
GL(TxM), where x ∈M is a base point.

DEFINITION: Let Aff(Rn) denote the group of affine transforms of Rn.
Clearly, Aff(Rn) is a semidirect product, Aff(Rn) = GL(n,R)oRn. The natural
map Aff(Rn)−→GL(n,R) is called the linearization.

DEFINITION: Let M be a flat affine n-manifold, Aff(Rn) M̃ its universal
cover δ : M̃ → Rn the development map, and a : π1(M)−→ Aff(Rn) the map
taking γ ∈ π1(M) to an element of Aff(Rn) making the following diagram
commutative:

M̃
δ−→ Rn

γ

y ya
M̃

δ−→ Rn.
The map a : π1(M)−→ Aff(Rn) is called the affine holonomy map.

REMARK: The linear holonomy of a manifold is the linearization if its
affine holonomy.
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Non-standard flat affine structures on a torus

REMARK: A flat affine structure on a torus is called standard if its linear

holonomy is trivial.

Remark 1: Let (M,∇) be a flat affine torus with the standard flat affine

structure. Then π1(M) acts on M̃ by translations, hence M̃ = Rn and M is

isomorphic to Rn/Zn with the standard flat affine structure.

REMARK: In Sullivan, Dennis; Thurston, William Manifolds with canonical

coordinate charts: some examples. Enseign. Math. (2) 29 (1983), no. 1-

2, 15-25. Thurston and Sullivan gave examples of non-standard flat affine

structures on a torus.

EXAMPLE: Consider the quotient M := R2\0
Z , where Z acts by homotheties.

Clearly, the holonomy of M is Z acting on TM by homotheties.

EXAMPLE: Consider Z2-action ρ on R2 generated by (x, y)→ (x+ 1, y) and

(x, y)→ (x+ y, y+ 1). The projection to the second component maps R2

im ρ to

S1, with the fiber S1, hence R2

im ρ is a torus; its (linear) holonomy is generated

by A(x, y) := (x+ y, y).
14



Exotic hypercomplex structures on tori M. Verbitsky

Frid-Goldman-Hirsch theorem

DEFINITION: A flat affine manifold (M,∇) is called complete if M = Rn
Γ ,

where Γ = π1(M), with its action factorized through Aff(Rn).

CONJECTURE: (“Marcus conjecture”) A compact flat affine manifold

is complete if and only if it admits a parallel volume form.

THEOREM: Let (M,∇) be a compact flat affine manifold with affine holon-

omy group nilpotent. Then the following are equivalent:

(a) (M,∇) is complete,

(b) (M,∇) admits a paralell volume form, and

(c) its linear holonomy action is unipotent.

Proof: Theorem A in Fried, D., Goldman, W., Hirsch, M.W., Affine manifolds

with nilpotent holonomy, Commentarii Mathematici Helvetici 56, 487-523

(1981), https://doi.org/10.1007/BF02566225
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Frid-Goldman-Hirsch theorem for Obata connection a torus

COROLLARY: Let W := Hn, (M, I, J,K) an exotic hypercomplex structure

on a torus, and ∇ its Obata connection. Then (M,∇) satisfies (a)-(c) of

Frid-Goldman-Hirsch theorem.

Proof: Since (M, I) is Kähler, it is HKT; since its canonical bundle is trivial

and (M, I, J,K) is HKT, the Obata holonomy is contained in SL(n,H) and ∇
fixes a volume form, as shown in M. Verbitsky, Hyperkähler manifolds with

torsion, supersymmetry and Hodge theory, Asian J. of Math., Vol. 6 (4),

December 2002).

REMARK: Most importantly, this implies that the flat Obata connection on

an exotic hypercomplex torus is complete.
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Complete flat affie connections on a torus

THEOREM 1: Let (M,∇) be a complete flat affine structure on a compact
torus. Then

(i) its linear holonomy is unipotent.
(ii) For some real basis t1, ..., tn in Rn, the action of π1(M) on Rn = M̃ is

generated by τ1, ..., τn, with τi(x) := ti + Li(x). Here L1, ..., Ln ∈ GL(n,R) is a
collection of commuting unipotent matrices which satisfy

(Li − Id)(tj) = (Lj − Id)(ti) (∗)
for any i, j.

(iii) For any collection of commuting affine maps τ1, ..., τn with τi(x) :=
ti + Li(x), where t1, ..., tn is a basis and all Li unipotent and satisfying (*),
there exists a flat affine structure on a torus M with τ1, ..., τn generating
the action of π1(M) on Rn.
Proof. Step 1: The holonomy of ∇ is unipotent by Fried-Goldman-Hirsch.
Step 2: To prove (ii), we write the generators of Γ = π1(M) as τ1, ..., τn,
with τi(x) := Li(x) + ti, where L1, ..., Ln are linear. Clearly, Li are commuting
and (by Fried-Goldman-Hirsch) unipotent. The equation (*) follows because
τiτj(x) = Li(tj) + LiLj(x) + ti. To complete the proof of (ii), it remains to
show that all the ti are linearly independent.
Step 3: Linear independence of ti is clear because expotents of G :=∑
αi log τi(x) define a free Rn-action on Rn; this also proves (iii), because

G is a a free commutative Lie group acting on Rn.
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Exotic hypercomplex structures on tori do not exist

REMARK: In assumptions of Theorem 1, let Ψ be the tensor written in the

basis t1, ..., tn as

Ψ(u, v) :=
2n∑

i,j,k=1

(Ai)
k
ju
ivjtk,

where Ai = Li − Id. Then (*) can be rewritten as Ψ ∈ Sym2 V ∗ ⊗ V . If, in

addition, the flat connection preserves a complex or a hypercomplex structure

on a torus, this would mean that Ai ∈ GL(n,C) or Ai ∈ GL(n,H).

THEOREM: Exotic hypercomplex structures on tori do not exist.

Proof: Let (M, I, J,K) be a hypercomplex structure and ∇ the Obata con-

nection on a complex torus. Then ∇ is flat and complete, hence Theorem 1

can be applied. Let Ψ ∈ Sym2(V )⊗ V ∗ be the tensor defined above; by con-

struction, Ψ commutes commutes with I, J,K on last two arguments. This

forces Ψ to be zero, since

KΨ(x, y) = Ψ(IJx, y) = Ψ(Jx, Iy) = Ψ(x, JIy) = −KΨ(x, y).
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