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HYPERCOMPLEX MANIFOLDS

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I,J,K : TM — TM, satisfying the quaternionic relation I[? = J2 = K2 =
IJK = —1Id. Suppose that I, J, K are integrable almost complex structures.
Then (M,I,J,K) is called a hypercomplex manifold.

THEOREM: (M. Obata, 1952)
Let (M,I,J, K) be a hypercomplex manifold. Then M admits a unique
torsion-free affine connection preserving 1, J, K.

REMARK: Converse is also true. Suppose that I, J, K are operators defin-
ing quaternionic structure on T'M, and V a torsion-free, affine connection
preserving I, J, K. Then I, J, K are integrable almost complex struc-
tures, and (M, I, J, K) is hypercomplex.

Holonomy of Obata connection lies in GL(n,H). Conversely, a mani-
fold equipped with an affine, torsion-free connection with holonomy in
GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure: a hyper-
complex manifold (M,V,I,J,K) is a manifold equipped with a torsion-free
connection such that its holonomy preserves a quaternionic structure on a
tangent bundle.
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Exotic hypercomplex structures on hyperkahler manifolds

DEFINITION: A hypercomplex manifold (M,V, I, J, K) is called hyperkahler
if the holonomy #ol(V) of V is compact. In this case, #ol(V) preserves
a quaternionic invariant Riemannian metric g. Such metric is called hy-
perkahler. A hyperkahler structure is (M,V,I,J, K,g); in this situation,
V is the Levi-Civita connection.

THEOREM: Let (M, I,J, K) be a compact hypercomplex manifold. Assume
that (M,I) admits a Kahler structure Then (M,I) admits a hyperkahler
structure (I,J', K').

DEFINITION: Let (M,I,J,K) be a compact hypercomplex manifold. As-
sume that (M,I) admits a Kahler structure. The hypercomplex structure
(I,J,K) is called exotic if it is not compatible with a hyperkahler metric,
that is, if the holonomy of its Obata connection is non-compact.

The main result today

THEOREM: (Alberto Pipitone Federico, V.)

There are no exotic hypercomplex structures on a compact torus.
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Exotic hypercomplex structures on K3
THEOREM: Exotic hypercomplex structures on K3 do not exist.

Proof. Step 1: Let (M,I,J,K) be a hypercomplex structure on a K3,
and © the curvature of Obata connection on its canonical bundle Ky =
Kyg = Ky k. Since © is of type (1,1) for I,J, K, it is SU(2)-invariant
with respect to the SU(2)-action on A*(M) generated by quaternions. How-
ever, for any SU(2)-invariant form ©, and any Hermitian metric g, one has
ONO = —||@||§Volg. On the other hand, © is exact, because the canonical
bundle of a K3 is trivial. This implies that the Obata connection on the
canonical bundle K, is flat. Given that m1(K3) = 0, we obtain that
Ky 1 1s trivialized by an Obata-parallel section.

Step 2: The Obata-parallel sections of the canonical bundle are closed 2-
forms (any parallel differential form is closed, if the connection is torsion-free).
Varying the complex structure, we obtain a rank 3 space W of parallel dif-
ferential forms, w;r,wj,wg; the corresponding metric is hyperkahler, because
its holonomy belongs to the stabilizer of wy,wj,wg, that is, Sp(1). =
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Twistor spaces for hypercomplex manifolds

DEFINITION: Induced complex structures on a hypercomplex manifold
are complex structures of form S2 £ {L :=al +bJ+cK, a°+b°+c?>=1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a,b, c,
(M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hypercomplex manifold is a
complex manifold obtained by gluing these complex structures into a
holomorphic family over CPl. More formally:

Let TwW(M) := M x S2. Consider the complex structure I, : TonM — T, M 0ON
M induced by J & S2 C H. Let I ; denote the complex structure on S2 =cpl.

The operator Iy = I;m ®1j : Ty TW(M) — T, Tw(M) satisfies I%W = —Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H", then Tw(M) = Tot(0(1)®") & cp2rt1l\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a
smooth curve S =2 CP! ¢ M such that NS = GBZ;% O(ig), with 7, > 0. It is
called a quasiline if all 7, = 1.

THEOREM: (“twistor spaces are rationally connected”)
Let M be a compact complex manifold containing a an ample rational line.
red any N points zq, ...,z can be connected by an ample rational curve.

CLAIM: Let M be a hyperkidhler manifold, Tw(M) -2 M its twistor space,
m € M a point, and S;;, = CPl x {m} the corresponding rational curve in
Tw(M). Then S,, is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when
M is flat. Then Tw(M) = Tot(O(1)%2r) = cp2rTI\Ccp?,-1, and S,, is a
section of O(1)92P, m
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The twistor data

Let ¥ denote the central symmetry on CPL: if we identify CP! with imaginary
unit quaternions, we have 7(L) = —L. It is an anticomplex involution
without fixed points.

DEFINITION: The twistor data is a complex manifold Tw equipped with
the following structures.

1. A holomorphic submersion =: Tw —s CP! and an anticomplex invo-
lution 7: Tw — Tw which makes this diagram commutative

Tw 5 Tw

Wl lﬁ

cpl T, cpl
2. A connected component Hor in the set Sec”™ C Sec of r-invariant
sections of 7 such that for each S € Hor, the normal bundle to S is ©O(1)2"

and for each point £ € Tw there exists a unique S € Hor passing through zx.

REMARK: With any twistor space Tw(M) of a hypercomplex manifold, one
associates the twistor data in a natural way: +(I,m) = (—-I,m), and
Hor(M) the space of all sections S,, taking I € CPl to (I,m) € Tw(M),
where m € M is a fixed point.

.
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Hypercomplex structures defined in terms of twistor data

THEOREM: (HKLR)

Let M be a hypercomplex manifold. Then the twistor data on Tw(M)
can be used to recover the hypercomplex structure on M, which is
iIdentified with Hor. Moreoved, for any twistor data (Tw,r,Hor), there
exists a hypercomplex structure (I, J, K) on Hor such that these twistor
data are associated with (7, J, K).

Proof: N. J. Hitchin, A. Karlhede, U. Lindstrom, M. Rocek, Hyperkahler
metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589. =
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Complex tori

DEFINITION: A complex torus is a complex manifold M such that its

. CHOQIM)* . : :
Albanese map Alb: M — (0.2 IS an isomorphism.

REMARK: Any Kahler-type complex structure on a manifold diffeomorphic
to a torus has this nature; there are non-Kahler complex structures on a
torus, not well understood yet. These complex structures don't give ‘‘com-
plex torus’”’, because the Albanese map for such manifolds is never an isomor-
phism.

THEOREM: (F. Catanese)

Let X' be a connected, continuous family of complex structures on a manifold
M diffeomorphic to a torus. Assume that for some I € X, the manifold (M, I)
is a complex storus. Then (M, 1) is a torus for all I’ € X.

Proof: Fabrizio M.E. Catanese, Deformation types of real and complex man-
ifolds, arXivimath/0111245, Theorem 4.1. =
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Translations and flat structures on complex tori

REMARK: Let 64,...60, be holomorphic differentials on a complex torus M.
Their antiderivatives define a flat affine chart on M; the corresponding flat
affine structure on M is canonically defined. This also defines a holomor-
phic flat affine connection on M.

REMARK: Also, each complex torus M is a torsor over the corresponding
group manifold, identified with a connected component Autg(M) of Aut(M),
and its action on M is canonically defined. Since Autg(M) is (non-canonically)
identified with M, this action is called the action of the torus on itself by
translations.
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Exotic hypercomplex structures on a torus are flat

Theorem 1: Let (I,J,K) be a hypercomplex structure on a complex torus
(M,I), and V its Obata connection. Then V is flat.

Proof. Step 1: Any anticomplex involution of a torus exchanges holo-
morphic and antiholomorphic differentials, hence preserves the standard flat
structure induced by the complex structure as above. Since the fibers of
w1 Tw(M) — CPL are flat, the universal covering Tw(M) is an affine bun-
dle, and the anticomplex involution preserves the affine structure. Fixing a
horizontal section, we identify Tw(M) with Tot(©O(1)2"); the anticomplex
involution also preserves the vector bundle structure.

Step 2: Since the hypercomplex structure on Tot(©(1)2") = Tw(M) is com-
patible with the vector space structure on fibers, it gives a hypercomplex
structure, compatible with the vector bundle operation (addition and multi-
plication). Such a hypercomplex structure is translation-invariant, hence flat.
We obtain that (M, I, J, K) is a quotient of a flat hypercomplex manifold
H" by an affine action of Z*". =

REMARK: If the monodromy of Obata connection on M is trivial (or just
compact), it would immediately follow that M is a hyperkahler torus.

In the rest of this talk, I would discuss torsion-free flat connections on

complex tori.
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Flat affine structures and the development map

DEFINITION: A flat affine structure on a manifold M is a flat torsion-free
connection.

DEFINITION: Let M be a simply connected flat affine manifold, and 64,...,0, €
ALM a basis of parallel 1-forms. Since a parallel 1-form is closed and Hl(M, R) =
O, the forms 6; are exact. Then 6, = dx;. The map 6 : M — R"™ taking m to
(x1(m), ...,zn(m)) is called the development map. We consider R"™ as a flat
affine manifold, with the standard flat affine structure.

CLAIM: The development map 6 : M — R"™ is compatible with the flat
affine connections.

Proof: It takes the coordinate 1-forms dzq,...,dzn € AY(M) to 64,...,0, €
AN However, these 1-forms are parallel. m
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Linear and affine holonomy

DEFINITION: Linear holonomy (or holonomy) of a flat affine connection
V is its monodromy in T'M; by definition, the holonomy group belongs to
GL(T;M), where x € M is a base point.

DEFINITION: Let Aff(R™) denote the group of affine transforms of R™.
Clearly, Aff(R") is a semidirect product, Aff(R") = GL(n,R)xR". The natural
map Aff(R") — GL(n,R) is called the linearization.

DEFINITION: Let M be a flat affine n-manifold, Aff(R™) M its universal
cover § : M — R™ the development map, and a : w1(M) — Aff(R") the map
taking v € m1(M) to an element of Aff(R™) making the following diagram

commutative:

O, Rrn

M

LI

~ o n
M — R".

The map a : w1 (M) — Aff(R") is called the affine holonomy map.

REMARK: The linear holonomy of a manifold is the linearization if its

affine holonomy.
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Non-standard flat affine structures on a torus

REMARK: A flat affine structure on a torus is called standard if its linear
holonomy is trivial.

Remark 1: Let (M,V) be a flat affine torus with the standard flat affine
structure. Then w1(M) acts on M by translations, hence M = R"™ and M is
isomorphic to R"/Z" with the standard flat affine structure.

REMARK: In Sullivan, Dennis; Thurston, William Manifolds with canonical
coordinate charts: some examples. Enseign. Math. (2) 29 (1983), no. 1-
2, 15-25. Thurston and Sullivan gave examples of non-standard flat affine
structures on a torus.

EXAMPLE: Consider the quotient M = @, where Z acts by homotheties.
Clearly, the holonomy of M is Z acting on T'M by homotheties.

EXAMPLE: Consider Z2-action p on R? generated by (z,y) — (z 41 y) and
(z,y) - (x+y,y+1). The projection to the second component maps to

2
St with the fiber S, hence iﬁﬁ]—p is a torus; its (linear) holonomy is generated

by A(z,y) ;= (z+y,y).
14



Exotic hypercomplex structures on tori M. Verbitsky

Frid-Goldman-Hirsch theorem

DEFINITION: A flat affine manifold (M, V) is called complete if M = R;I_n,
where ' = w1 (M), with its action factorized through Aff(R").

CONJECTURE: (“Marcus conjecture”) A compact flat affine manifold
IS complete if and only if it admits a parallel volume form.

THEOREM: Let (M,V) be a compact flat affine manifold with affine holon-
omy group nilpotent. Then the following are equivalent:

(a) (M,V) is complete,

(b) (M,V) admits a paralell volume form, and

(c) its linear holonomy action is unipotent.

Proof: Theorem A in Fried, D., Goldman, W., Hirsch, M.W.,6 Affine manifolds

with nilpotent holonomy, Commentarii Mathematici Helvetici 56, 487-523
(1981), https://doi.org/10.1007/BF02566225 =
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Frid-Goldman-Hirsch theorem for Obata connection a torus

COROLLARY: Let W :=H", (M,1I,J,K) an exotic hypercomplex structure
on a torus, and V its Obata connection. Then (M,V) satisfies (a)-(c) of
Frid-Goldman-Hirsch theorem.

Proof: Since (M,1I) is Kahler, it is HKT; since its canonical bundle is trivial
and (M,I,J,K) is HKT, the Obata holonomy is contained in SL(n,H) and V
fixes a volume form, as shown in M. Verbitsky, Hyperkahler manifolds with
torsion, supersymmetry and Hodge theory, Asian J. of Math., Vol. 6 (4),
December 2002). =

REMARK: Most importantly, this implies that the flat Obata connection on
an exotic hypercomplex torus is complete.
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Complete flat affie connections on a torus

THEOREM 1: Let (M,V) be a complete flat affine structure on a compact
torus. Then

(i) its linear holonomy is unipotent.

(ii) For some real basis tq,...,tn in R?, the action of 71 (M) on R® = M is
generated by 71, ..., T, with 7;(z) :=t; + L;(x). Here Lq,...,L, € GL(n,R) is a
collection of commuting unipotent matrices which satisfy

(L; —1d)(t;) = (L; —1d)(t;) (%)
for any 1, 7.

(iii) For any collection of commuting affine maps 7, ..., with 7;(z) =
t; + L;(x), where t1,...,tn, iS a basis and all L; unipotent and satisfying (*),
there exists a flat affine structure on a torus M with r, ..., 7, generating
the action of 71 (M) on R".

Proof. Step 1: The holonomy of V is unipotent by Fried-Goldman-Hirsch.
Step 2: To prove (ii), we write the generators of ' = w1 (M) as 74,..., T,
with 7;(x) := L;(x) + ¢t;, where L+, ..., L, are linear. Clearly, L; are commuting
and (by Fried-Goldman-Hirsch) unipotent. The equation (*) follows because
77;(x) = L;(t;) + L;L;j(x) +t;. To complete the proof of (ii), it remains to
show that all the ¢; are linearly independent.

Step 3: Linear independence of t; is clear because expotents of G =
S o;logT;(x) define a free R™-action on R"; this also proves (iii), because
GG is a a free commutative Lie group acting on R". m
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Exotic hypercomplex structures on tori do not exist

REMARK: In assumptions of Theorem 1, let W be the tensor written in the
basis tq,...,tn as

2n
W(u,v) = ) (Ai)ﬁuzvjtk,
1,J,k=1
where A, = L, —Id. Then (*) can be rewritten as W € Sym2V*® V. If, in
addition, the flat connection preserves a complex or a hypercomplex structure
on a torus, this would mean that A; € GL(n,C) or A; € GL(n,H).

THEOREM: Exotic hypercomplex structures on tori do not exist.

Proof: Let (M,I,J,K) be a hypercomplex structure and V the Obata con-
nection on a complex torus. Then V is flat and complete, hence Theorem 1
can be applied. Let W € Sme(V) ® V* be the tensor defined above; by con-
struction, W commutes commutes with I,J, K on last two arguments. This
forces W to be zero, since

KV(z,y) =V{UJz,y) = V(Jx,Iy) = V(x,J]ly) = —KWV(x,y).
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