Octonions and G_{2}-manifolds

Misha Verbitsky

IMPA,
Estruturas geométricas em variedades,
March 21, 2024

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma, \nabla}:\left.\left.B\right|_{x} \rightarrow B\right|_{x}$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma, \nabla}$, for all loops γ. If one takes all contractible loops instead, $V_{\gamma, \nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its restricted holonomy vanishes. Indeed, the connected component of the holonomy group of a bundle (B, ∇) is a Lie group, with the Lie algebra generated by all curvature elements of M transported to a given point by the connection (Ambrose, Singer).

REMARK: If $\nabla(\varphi)=0$ for some tensor $\varphi \in B^{\otimes i} \otimes\left(B^{*}\right)^{\otimes j}$, the holonomy group preserves φ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O\left(T_{x} M,\left.g\right|_{x}\right)=O(n)$.
EXAMPLE: Holonomy of a Kähler manifold lies in $U\left(T_{x} M,\left.g\right|_{x},\left.I\right|_{x}\right)=U(n)$.

The Berger's list
THEOREM: (Berger's theorem, 1955)
Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$S O(n)$ acting on \mathbb{R}^{n}	Riemannian manifolds
$U(n)$ acting on $\mathbb{R}^{2 n}$	Kähler manifolds
$S U(n)$ acting on $\mathbb{R}^{2 n}, n>2$	Calabi-Yau manifolds
$S p(n)$ acting on $\mathbb{R}^{4 n}$	hyperkähler manifolds
$S p(n) \times S p(1) /\{ \pm 1\}$ acting on $\mathbb{R}^{4 n}, n>1$	quaternionic-Kähler manifolds
G_{2} acting on \mathbb{R}^{7}	G_{2}-manifolds
$S p i n(7)$ acting on \mathbb{R}^{8}	Spin(7)-manifolds

REMARK: If the holonomy group is not irreducible, the manifold M locally splits onto a product of Riemannian manifolds with irreducible holonomy (de Rham). This splitting is global, if M is complete and simply connected.
$G L(n, \mathbb{R})$ acting on $\wedge^{k}\left(\mathbb{R}^{n}\right)$ with an open orbit
THEOREM: Consider the action of $G L(n, \mathbb{R})$ on $\wedge^{k}\left(\mathbb{R}^{n}\right)$. This action has open orbit in the following cases: when $k=0,1,2, n-2, n-1, n$ and when $k=3, n-3$ and $n=6,7,8$.

Proof for some special cases: It is clear that $G L(n, \mathbb{R})$-action has an open orbit when $k=0,1,2, n-2, n-1, n$: non-degenerate 2 -forms are all conjugate, and non-degeneracy is an open condition. In the case $k=3, n-3$ and $n>8$ and $k>3, n \geqslant 8$, the $G L(n, \mathbb{R})$-action cannot have an open orbit, which follows from a dimension count.

Existence of an open orbit for $n=6,7,8$ and $k=3$ is a non-trivial exercise, especially when $n=8$ (G. B. Gurevich, "Classification of trivectors of rank eight," Dokl. Akad. Nauk SSSR 2 (1935), 353-355.) Today we focus on $n=7, k=3$, and prove the existence of an open orbit.

The Fano projective plane

CLAIM: $P G L\left(\mathbb{F}_{2}, 2\right)=\mathbb{Z} / 3$.
Proof: Indeed, $G L\left(\mathbb{F}_{2}, 2\right)$ has cardinality 6 (there are 3 choices for an image of the first vector of a basis, 2 for the second), hence $\operatorname{PGL}\left(\mathbb{F}_{2}, 2\right)=$ $G L\left(\mathbb{F}_{2}, 2\right) /(\mathbb{Z} / 2)$ has cardinality 3.

REMARK: This implies that all lines on $\mathbb{F}_{2} \mathbb{P}^{n}$ have circle ordering.
DEFINITION: The Fano projective plane is $\mathbb{F}_{2} \mathbb{P}^{2}$, equipped with the $P G L\left(\mathbb{F}_{2}, 3\right)$-action. The lines (each of which has 3 points) are circle oriented, and the $P G L\left(\mathbb{F}_{2}, 3\right)$ preserves the orientation:

The Fano projective plane (2)

PROPOSITION: Let $V=\mathbb{R}^{7}$. Choose the basis $v_{1}, \ldots, v_{7} \in V$, and let $v_{i j k}:=v_{i} \wedge v_{j} \wedge v_{k} \in \wedge^{3}\left(\mathbb{R}^{7}\right)$. Consider the form

$$
\eta:=v_{125}+v_{345}-v_{136}+v_{246}+v_{147}+v_{237}+v_{567}
$$

and let $P G L\left(\mathbb{F}_{2}, 3\right)$ act on v_{i} as on the vertices of the Fano plane. Then $P G L\left(\mathbb{F}_{2}, 3\right)$ preserves η.

Proof: Indeed, the lines of the Fano plane correspond to the monomials terms in η, and their sign to the circle orientation.

3-forms on \mathbb{R}^{7} and scalar product

THEOREM: Let $V=\mathbb{R}^{7}$. The form $\eta \in \Lambda^{3}(V)$ defines the following scalar $\Lambda^{7}(V)$-valued product on $V^{*}: g_{\eta}(x, y)=i_{x} \eta \wedge i_{y} \eta \wedge \eta$. Consider the form

$$
\eta:=v_{125}+v_{345}-v_{136}+v_{246}+v_{147}+v_{237}+v_{567}
$$

defined as above. Then the corresponding scalar product g_{η} is can be written as $g_{\eta}\left(e_{i}, e_{j}\right)=\delta_{i j} \mathrm{Vol}_{V}$, where e_{i} is the dual basis in V^{*}.
Proof: The group of $\operatorname{PGL}\left(\mathbb{F}_{2}, 3\right)$ automorphisms of the Fano projective plane $\mathbb{F}_{2} \mathbb{P}^{2}$ acts transitively on $\left\{v_{1}, \ldots, v_{7}\right\}$, preserving this form, and acts transitively on the set of pairs $v_{i} \neq v_{j}$, hence it suffices to check that $g_{\eta}\left(v_{1}, v_{1}\right)=1$ and $g_{\eta}\left(v_{1}, v_{2}\right)=0$. This is a trivial calculation.

REMARK: Since $\eta \in \operatorname{Sym}^{2}(V) \otimes \Lambda^{7}(V)$, its determinant $\operatorname{det}\left(g_{\eta}\right)$ is an element in $\Lambda^{7}(V)^{\otimes 2} \otimes\left(\Lambda^{7}(V)^{\otimes 7}=\left(\Lambda^{7}(V)^{\otimes 9}\right.\right.$. Then $\sqrt[9]{\operatorname{det}\left(g_{\eta}\right)}$ is a volume form on V. Denote this volume form by Vol_{η}. Then $\frac{g_{\eta}}{V \eta_{\eta}}$ is non-degenerate scalar product on V^{*}. Denote by g the dual scalar product on V; this scalar product is positive definite and unambiguously determined by η, hence preserved by its stabilizer $G_{\eta} \subset G L(7, \mathbb{R})$.

COROLLARY: Let $V=\mathbb{R}^{7}, \eta$ the 3-form defined above, and $G_{\eta} \subset G L(7, \mathbb{R})$ its stabilizer. Then G_{η} is compact, and preserves a Euclidean form g unambiguously determined by ρ.

Vector product

DEFINITION: Let V be a vector space equipped with a non-degenerate scalar product g and a 3-form $\eta \in \Lambda^{3}\left(V^{*}\right)$. Define the vector product $V \times V \rightarrow V$ as $x, y \mapsto g^{-1}\left(i_{y} i_{x}(\eta)\right)$, where $g^{-1}: V^{*} \rightarrow V$ is the natural isomorphism induced by g.

CLAIM: Let $V=\mathbb{R}^{7}$ and $\eta \in \Lambda^{3}\left(V^{*}\right)$ the 3-form defined above. Then the vector product $v_{i} \times v_{j}$ is $\pm v_{k}$, where v_{k} is the third node on the line connecting v_{i} and v_{j} on the Fano plane, and the sign is determined by the orientation.

Proof: $i_{v_{i}} i_{v_{j}} \eta=v_{k}^{*}$, where $\left\{v_{i}^{*}\right\}$ is the dual basis.

The octonions

REMARK: From now on, we use g to identify V and V^{*}, and consider η as an element of $\wedge^{3}(V)=\wedge^{3}\left(V^{*}\right)$.

DEFINITION: Let $V=\mathbb{R}^{7}$ and $\eta \in \wedge^{3}(V)$ the 3-form defined above. In these assumptions, we define the octonion algebra as $\mathbb{O}:=\mathbb{R} \cdot 1 \oplus V$, with $\operatorname{Im} \mathbb{O}=V$ ("the imaginary octonions") and $\operatorname{Re} \mathbb{O}=\mathbb{R}$ ("the real octonions"), and the octonion product defined as follows: for any real octonion α and any octonion β, we have $\alpha \cdot \beta=\alpha \beta$, and for two imaginary octonions u, v, the product $u \cdot v:=-g(u, v) \cdot 1+u \times v$, where \times is the vector product on V.

REMARK: For three basis vectors v_{i}, v_{j}, v_{k} such that $v_{i} \times v_{j}=v_{k}$, the algebra $\mathbb{R} 1 \oplus\left\langle v_{i}, v_{j}, v_{k}\right\rangle$ is isomorphic to quaternions.

REMARK: The octonion algebra is non-associative! However, it is a division algebra, as we shall see today.

REMARK: Frobenius (1877) proved that any division algebra over reals is isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O}.

The group G_{2} and octonions

DEFINITION: Let $V=\mathbb{R}^{7}$ and $\eta \in \Lambda^{3}(V)$ the 3-form defined above. Define $G_{2} \subset G L(7, \mathbb{R})$ as the group of automorphisms of V preserving η; in other words, $G_{2}=\operatorname{Aut}(\mathbb{O})$.

Proposition 1: $\operatorname{dim}_{\mathbb{R}} G_{2} \leqslant 14$.

Proof: Take the standard basis $\left\{v_{i}\right\} \subset V$, and let $\varphi \in G_{2}$. By definition, the action of φ on V is compatible with the vector product. The space $\left\langle v_{1}, v_{2}, v_{5}\right\rangle$ is isomorphic to imaginary quaternions with the standard vector product. Then $\varphi\left(v_{1}\right)$ belongs to a unit sphere $S(V) \cong S^{6}$, and $\varphi\left(v_{2}\right)$ in $\varphi\left(v_{1}\right)^{\perp} \cap S(V)=S^{5}$. The image of $v_{5}=v_{1} \times v_{2}$ is determined uniquely via $\varphi\left(v_{5}\right)=\varphi\left(v_{1}\right) \times \varphi\left(v_{2}\right)$. The image of v_{3} belongs to $\left\langle\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{5}\right)\right\rangle^{\perp} \cap S(V) \cong S^{3}$, which is 3dimensional, and the vector products of v_{1}, v_{2}, v_{3} generate the rest of v_{i}, hence φ is uniquely determined by $\left(\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right) \in S^{6} \times S^{5} \times S^{3}$, which is 14-dimensional.

REMARK: In the next slide, we prove that $\operatorname{dim} G_{2}=14$.

The orbit of η in $\Lambda^{3}\left(\mathbb{R}^{7}\right)$ is open
THEOREM: $G L(7, \mathbb{R})$ acts on $\wedge^{3}\left(\mathbb{R}^{7}\right)$ with an open orbit.
Proof. Step 1: Let $\eta \in \Lambda^{3}\left(\mathbb{R}^{7}\right)$ be the 3-form defined above, and $G_{\eta} \subset$ $G L(7, \mathbb{R})$ its stabilizer. Sinc $\operatorname{dim} \wedge^{3}\left(\mathbb{R}^{7}\right)=35, \operatorname{dim} G L(7, \mathbb{R})=49$, the dimension of an orbit $G L(7, \mathbb{R}) \cdot \eta$ is 49 - $\operatorname{dim} G \leqslant 35$, which gives $\operatorname{dim} G \geqslant 49-35=14$, with equality occuring when the orbit is open.

Step 2: $\operatorname{dim} G \leqslant 49-35=14$ (Proposition 1).
COROLLARY: $\operatorname{dim} G_{2}=14$.
COROLLARY: The group G_{2} acts transitively on the unit sphere $S^{6} \subset V$.
Proof. Step 1: We start by proving that the orbit $G_{2} \cdot v_{1} \subset S^{6}$ is 6-dimensional. Consider the standard 3-form $\eta \in \Lambda^{3}(V)$, where $V=\mathbb{R}^{7}$. An element $\varphi \in G_{2}$ is determined by the image of v_{1}, v_{2}, v_{3}, with $\varphi\left(v_{2}\right) \in$ $S^{6} \cap \varphi\left(v_{1}\right)^{\perp}=S^{5}$ and $\varphi\left(v_{2}\right) \in S^{6} \cap\left\langle\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{5}\right)\right\rangle^{\perp}=S^{3}$. Therefore, $14=\operatorname{dim} G_{2} \leqslant \operatorname{dim} G_{2} \cdot v_{1}+5+3$, which implies that $6=14-8 \leqslant \operatorname{dim} G_{2} \cdot v_{1}$.

Step 2: Since the orbit is a homogeneous space, it is actually a 6-dimensional submanifold in S^{6}. However, G_{2} is compact, hence any its orbit is also compact. A compact 6-dimensional submanifold of S^{6} is S^{6} itself.

Octonions are left alternative algebra

DEFINITION: We say that a non-associative algebra is left alternative if it satisfies $x(x y)=(x x) y$ for all x, y. This property is a weakened form of associativity.

CLAIM: The octonion algebra is left alternative. In particular, for any $x \in \operatorname{Im} \mathbb{O}$ and any $y \in \mathbb{O}$, we have $x^{2}=-|x|^{2}$, and $(x(x y))=-|x|^{2} y$.

Proof. Step 1: Left alternativity is implied by the second assertion. Indeed, if $\lambda \in \operatorname{Re} \mathbb{O}$, we have $(\lambda+x)(\lambda+x) y=(x x) y+\lambda x y+\lambda^{2} y$ and $(\lambda+$ $x)((\lambda+x) y)=x(x y)+\lambda x y+\lambda^{2} y$.

Step 2: Since G_{2} acts transitively on the sphere and commutes with octonion product, it suffices to show this statement when $x=v_{1}$. In this case, $v_{1}\left(v_{1} v_{i}\right)=\left(v_{1}^{2}\right) v_{i}=-v_{i}$, as follows from the multiplication table on the basis vectors encoded by the Fano plane.

Octonions are division algebra

DEFINITION: Given $x \in \mathbb{O}$, define $\bar{x}:=\operatorname{Re} x-\operatorname{Im} x$. This operation is called conjugation, or octonion conjugation.

CLAIM: Similarly to quaternions, the octonion conjugation has the following properties: $\overline{x \cdot y}=\bar{y} \cdot \bar{x}$ and $x \bar{x}=|x|^{2}$.

Proof: It suffices to check $\overline{(x y)}=\bar{y} \cdot \bar{x}$ when $x, y \in \operatorname{Im} \mathbb{O}$, where it follows because $a \times b=-b \times a$. The second assertion is implied by $v_{i} \times v_{j}=-v_{j} \times v_{i}$, hence

$$
\left(\lambda+\sum_{i=1}^{7} a_{i} v_{i}\right)\left(\lambda-\sum_{i=1}^{7} a_{i} v_{i}\right)=\lambda^{2}-\sum_{i=1}^{7}\left|a_{i}\right|^{2} v_{i}^{2}=\lambda^{2}+\sum_{i=1}^{7}\left|a_{i}\right|^{2} .
$$

THEOREM: The octonion algebra \mathbb{O} is a division algebra (that is, \mathbb{O} has no zero divisors).

Proof. Step 1: From left alternativity it follows immediately that $\bar{x}(x y)=$ $(\bar{x} x) y)=|x|^{2} y$. Indeed, let $x=a+b$, whjere $a=\operatorname{Re} x$ and $b=\operatorname{Im} x$, Then $\bar{x}(x y)=(a-b)((a+b) y)=a b y-b a y+a^{2} y-b^{2} y=\left(|a|^{2}+|b|^{2}\right) y$.

Step 2: if $x y=0$, then $\bar{x}(x y)=(\bar{x} x) y=|x|^{2} y=0$, hence either $x=0$ or $y=0$.
G_{2} acts transitively on pairs of vectors
PROPOSITION: Let $V=\mathbb{R}^{7}$ be the space with standard action of G_{2}. Then G_{2} acts transitively on the set X pairs (x, y) of orthogonal vectors with $|x|=|y|=1$.

Proof: Clearly, X is 11-dimensional. Since G_{2} is compact, it suffices to show that the orbits $G_{2} \cdot\left(v_{1}, v_{2}\right)$ of G_{2}-action on X are also 11-dimensional.

Step 2: Any element $\varphi \in G_{2}$ is determined by $\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)$; if $\varphi\left(v_{1}\right)=$ $v_{1}, \varphi\left(v_{2}\right)=v_{2}$, then $\varphi\left(v_{3}\right)$ is a point on the 3-sphere $S^{6} \cap\left\langle\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{5}\right)\right\rangle^{\perp}$, hence the dimension of the stabilizer of the pair $\left(v_{1}, v_{2}\right) \in X$ is at most 3dimensional, and the orbit is at least 11-dimensional.

COROLLARY: Any two non-collinear imaginary octonions generate a quaternion subalgebra $\mathbb{H} \subset \mathbb{O}$.

Stable 3-forms on 7-manifolds

DEFINITION: A 3-form on \mathbb{R}^{7} is stable if its stabilizer in $G L(7, \mathbb{R})$ is isomorphic to G_{2}, Let $\eta \in \Lambda^{3}(M)$ be a 3-form on a 7 -manifold M. The form η is called stable if the stabilizer of $\left.\eta\right|_{T_{x} M}$ is isomorphic to G_{2} for each $x \in M$.

REMARK: This is an open property: a small deformation of a stable form ρ is stable. Indeed, the $G L(7, \mathbb{R})$-orbit of ρ is open, and all forms in this orbit are also stable.

REMARK: Any stable 3 -form ρ on M defines a $\Lambda^{7}(M)$-valued metric $g_{\rho}(x, y):=i_{x} \rho \wedge i_{y} \rho \wedge \rho$ on $T M$, and after the natural trivialization of the line bundle $\Lambda^{7}(M)$, it defines the Riemannianmetric g on M.

DEFINITION: Let $\rho \in \Lambda^{3}(M)$ be a stable 3-form. The pair (M, ρ) is called a holonomy G_{2}-manifold if $\nabla(\rho)=0$ where ∇ denotes the Levi-Civita connection.

EXAMPLE: A 7-torus with the standard 3-form is a holonomy $G_{2^{-}}$ manifold, because ρ is invariant under the parallel transport, hence the connection form is constant, which implies that $\nabla(\rho)=0$.
G_{2} and $S U(3)$
PROPOSITION: Let (V, η) be a 7 -dimensional vector space with the standard 3 -form, and $x \in V$ a non-zero vector. Then the stabilizer of x in G_{2} is isomorphic to $S U(3)$.

Proof. Step 1: Let G_{x} be the stabilizer of x in G_{2}. Then $G_{x} \subset O\left(x^{\perp}\right)$. Also, G_{x} preserves the complex structure $I(v):=x \times v$, where \times is the vector product on V, hence $G_{x} \subset U(3)$. Since $\operatorname{dim} G_{x}=\operatorname{dim} G_{2}-\operatorname{dim} S^{6}=8$, and $\operatorname{dim} U(3)=9$, it is a codimension 1 subgroup. It is not hard to prove that $U(3)$ contains only one connected codimension 1 subgroup, using the Lie algebras, but we will use a more explicit argument.

Step 2: Consider the 3 -form $\left.\eta\right|_{x^{\perp}}$. If we prove that this form is non-zero and of Hodge type $(3,0)+(0,3)$, we will obtain that $G_{x} \subset S U(3)$, and the equality $G_{x}=S U(3)$ follows because $\operatorname{dim} G_{x}=\operatorname{dim} S U(3)$.

Step 3: $\left.\rho\right|_{x^{\perp}} \neq 0$ because for $x=v_{1}$ it is equal to $v_{345}+v_{246}+v_{237}+v_{567}$.
Step 4: The following 3 vectors in v_{1}^{\perp} have type (1,0): $z_{1}=v_{2}+\sqrt{-1} v_{5}, z_{2}=$ $v_{4}+\sqrt{-1} v_{7}, z_{3}=v_{6}+\sqrt{-1} v_{3}$, hence the real part of the $(3,0)$-vector is $v_{246}-v_{273}-v_{543}-v_{657}=v_{246}+v_{237}+v_{345}+v_{567}$.
G_{2}-manifolds and Calabi-Yau manifolds

COROLLARY: Let (W, I) be a 6-dimensional vector space, I a complex structure operator, $z_{1}=v_{2}+\sqrt{-1} v_{5}, z_{2}=v_{4}+\sqrt{-1} v_{7}, z_{3}=v_{6}+\sqrt{-1} v_{3}$ the basis in $W^{1,0}$, and $\Omega:=z_{1} \wedge z_{2} \wedge z_{3}$. Denote by ω the standard Hermitian form on $W, \omega=v_{2} \wedge v_{5}+v_{4} \wedge v_{7}+v_{6} \wedge v_{3}$. Consider the space $V:=\mathbb{R} \cdot t \oplus W$, and let $\rho:=\operatorname{Re} \Omega+t \wedge \omega$. Then ρ is a stable 3 -form.

DEFINITION: A Calabi-Yau manifold is a Riemannian 6-manifold with holonomy group in $S U(3)$. In other words, a manifold (X, I, g, Ω) is CalabiYau if I is a parallel almost complex structure, and Ω a parallel, non-zero 3-form.

COROLLARY: Let (X, I, g, Ω) be an almost complex Hermitian 6-manifold equipped with a (3, 0)-form Ω which satisfies $|\operatorname{Re} \Omega|=4$. Consider the manifold $M=X \times I$, where I is a 1-dimensional oriented Riemannian manifold with $d t$ unit 1-form, and let $\rho:=\omega \wedge d t+\operatorname{Re} \Omega \in \Lambda^{3} M$. Then ρ is stable, and the corresponding Riemannian form $g \in \operatorname{Sym}^{2} T^{*} M$ is the product form. Moreover, (M, ρ) is a holonomy G_{2}-manifold if and only if (X, I, g, Ω) is Calabi-Yau.

Proof: By Corollary 2, ρ is a stable 3-form, which is parallel with respect to Levi-Civita, because the forms ω and $\operatorname{Re} \Omega$ are parallel with respect to the Levi-Civita.

For further reading, see "Stable forms and special metrics" (Nigel Hitchin,https: //arxiv.org/abs/math/0107101), "The Octonions" (John C. Baez, https:// math.ucr.edu/home/baez/octonions/octonions.html), and "Riemannian Holonomy Groups and Calibrated Geometry" by Dominic Joyce (Oxford Graduate Texts in Math).

