
G2-manifolds M. Verbitsky

Octonions and G2-manifolds

Misha Verbitsky

IMPA,
Estruturas geométricas em variedades,

March 21, 2024

1



G2-manifolds M. Verbitsky

Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x→B|x be the
corresponding parallel transport along the connection. The holonomy group
of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes all con-
tractible loops instead, Vγ,∇ generates the local holonomy, or the restricted
holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes. Indeed, the connected component of the
holonomy group of a bundle (B,∇) is a Lie group, with the Lie algebra
generated by all curvature elements of M transported to a given point
by the connection (Ambrose, Singer).

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).
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The Berger’s list

THEOREM: (Berger’s theorem, 1955)

Let G be an irreducible holonomy group of a Riemannian manifold which is

not locally symmetric. Then G belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

REMARK: If the holonomy group is not irreducible, the manifold M lo-

cally splits onto a product of Riemannian manifolds with irreducible

holonomy (de Rham). This splitting is global, if M is complete and simply

connected.
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GL(n,R) acting on Λk(Rn) with an open orbit

THEOREM: Consider the action of GL(n,R) on Λk(Rn). This action has

open orbit in the following cases: when k = 0,1,2, n−2, n−1, n and when

k = 3, n− 3 and n = 6,7,8.

Proof for some special cases: It is clear that GL(n,R)-action has an open

orbit when k = 0,1,2, n−2, n−1, n: non-degenerate 2-forms are all conjugate,

and non-degeneracy is an open condition. In the case k = 3, n− 3 and n > 8

and k > 3, n > 8, the GL(n,R)-action cannot have an open orbit, which

follows from a dimension count.

Existence of an open orbit for n = 6,7,8 and k = 3 is a non-trivial

exercise, especially when n = 8 (G. B. Gurevich, “Classification of trivectors

of rank eight,” Dokl. Akad. Nauk SSSR 2 (1935), 353-355.) Today we

focus on n = 7, k = 3, and prove the existence of an open orbit.

4



G2-manifolds M. Verbitsky

The Fano projective plane

CLAIM: PGL(F2,2) = Z/3.

Proof: Indeed, GL(F2,2) has cardinality 6 (there are 3 choices for an im-

age of the first vector of a basis, 2 for the second), hence PGL(F2,2) =

GL(F2,2)/(Z/2) has cardinality 3.

REMARK: This implies that all lines on F2Pn have circle ordering.

DEFINITION: The Fano projective plane is F2P2, equipped with the

PGL(F2,3)-action. The lines (each of which has 3 points) are circle oriented,

and the PGL(F2,3) preserves the orientation:
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The Fano projective plane (2)

PROPOSITION: Let V = R7. Choose the basis v1, ..., v7 ∈ V , and let
vijk := vi ∧ vj ∧ vk ∈ Λ3(R7). Consider the form

η := v125 + v345 − v136 + v246 + v147 + v237 + v567,

and let PGL(F2,3) act on vi as on the vertices of the Fano plane. Then
PGL(F2,3) preserves η.

Proof: Indeed, the lines of the Fano plane correspond to the monomials
terms in η, and their sign to the circle orientation.
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3-forms on R7 and scalar product

THEOREM: Let V = R7. The form η ∈ Λ3(V ) defines the following scalar
Λ7(V )-valued product on V ∗: gη(x, y) = ixη ∧ iyη ∧ η. Consider the form

η := v125 + v345 − v136 + v246 + v147 + v237 + v567

defined as above. Then the corresponding scalar product gη is can be
written as gη(ei, ej) = δij VolV , where ei is the dual basis in V ∗.
Proof: The group of PGL(F2,3) automorphisms of the Fano projective plane
F2P2 acts transitively on {v1, ..., v7}, preserving this form, and acts transitively
on the set of pairs vi 6= vj, hence it suffices to check that gη(v1, v1) = 1 and
gη(v1, v2) = 0. This is a trivial calculation.

REMARK: Since η ∈ Sym2(V )⊗Λ7(V ), its determinant det(gη) is an element
in Λ7(V )⊗2 ⊗ (Λ7(V )⊗7 = (Λ7(V )⊗9. Then 9

√
det(gη) is a volume form on V .

Denote this volume form by Volη. Then
gη

Volη
is non-degenerate scalar product

on V ∗. Denote by g the dual scalar product on V ; this scalar product is
positive definite and unambiguously determined by η, hence preserved
by its stabilizer Gη ⊂ GL(7,R).

COROLLARY: Let V = R7, η the 3-form defined above, and Gη ⊂ GL(7,R)
its stabilizer. Then Gη is compact, and preserves a Euclidean form g

unambiguously determined by ρ.
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Vector product

DEFINITION: Let V be a vector space equipped with a non-degenerate

scalar product g and a 3-form η ∈ Λ3(V ∗). Define the vector product

V ×V→V as x, y 7→ g−1(iyix(η)), where g−1 : V ∗→V is the natural isomorphism

induced by g.

CLAIM: Let V = R7 and η ∈ Λ3(V ∗) the 3-form defined above. Then the

vector product vi × vj is ±vk, where vk is the third node on the line

connecting vi and vj on the Fano plane, and the sign is determined by

the orientation.

Proof: iviivjη = v∗k, where {v∗i } is the dual basis.
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The octonions

REMARK: From now on, we use g to identify V and V ∗, and consider η

as an element of Λ3(V ) = Λ3(V ∗).

DEFINITION: Let V = R7 and η ∈ Λ3(V ) the 3-form defined above. In

these assumptions, we define the octonion algebra as O := R · 1 ⊕ V , with

ImO = V (“the imaginary octonions”) and ReO = R (“the real octonions”),

and the octonion product defined as follows: for any real octonion α and any

octonion β, we have α · β = αβ, and for two imaginary octonions u, v, the

product u · v := −g(u, v) · 1 + u× v, where × is the vector product on V .

REMARK: For three basis vectors vi, vj, vk such that vi×vj = vk, the algebra

R1⊕ 〈vi, vj, vk〉 is isomorphic to quaternions.

REMARK: The octonion algebra is non-associative! However, it is a

division algebra, as we shall see today.

REMARK: Frobenius (1877) proved that any division algebra over reals

is isomorphic to R,C,H or O.

9



G2-manifolds M. Verbitsky

The group G2 and octonions

DEFINITION: Let V = R7 and η ∈ Λ3(V ) the 3-form defined above. Define

G2 ⊂ GL(7,R) as the group of automorphisms of V preserving η; in other

words, G2 = Aut(O).

Proposition 1: dimRG2 6 14.

Proof: Take the standard basis {vi} ⊂ V , and let ϕ ∈ G2. By definition, the

action of ϕ on V is compatible with the vector product. The space 〈v1, v2, v5〉 is

isomorphic to imaginary quaternions with the standard vector product. Then

ϕ(v1) belongs to a unit sphere S(V ) ∼= S6, and ϕ(v2) in ϕ(v1)⊥ ∩ S(V ) = S5.

The image of v5 = v1 × v2 is determined uniquely via ϕ(v5) = ϕ(v1)× ϕ(v2).

The image of v3 belongs to 〈ϕ(v1), ϕ(v2), ϕ(v5)〉⊥ ∩ S(V ) ∼= S3, which is 3-

dimensional, and the vector products of v1, v2, v3 generate the rest of vi, hence

ϕ is uniquely determined by (ϕ(v1), ϕ(v2), ϕ(v3)) ∈ S6 × S5 × S3, which is

14-dimensional.

REMARK: In the next slide, we prove that dimG2 = 14.
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The orbit of η in Λ3(R7) is open

THEOREM: GL(7,R) acts on Λ3(R7) with an open orbit.

Proof. Step 1: Let η ∈ Λ3(R7) be the 3-form defined above, and Gη ⊂
GL(7,R) its stabilizer. Sinc dim Λ3(R7) = 35, dimGL(7,R) = 49, the dimen-
sion of an orbit GL(7,R)·η is 49−dimG 6 35, which gives dimG > 49−35 = 14,
with equality occuring when the orbit is open.

Step 2: dimG 6 49− 35 = 14 (Proposition 1).

COROLLARY: dimG2 = 14.

COROLLARY: The group G2 acts transitively on the unit sphere S6 ⊂ V .

Proof. Step 1: We start by proving that the orbit G2 · v1 ⊂ S6 is
6-dimensional. Consider the standard 3-form η ∈ Λ3(V ), where V = R7.
An element ϕ ∈ G2 is determined by the image of v1, v2, v3, with ϕ(v2) ∈
S6 ∩ ϕ(v1)⊥ = S5 and ϕ(v2) ∈ S6 ∩ 〈ϕ(v1), ϕ(v2), ϕ(v5)〉⊥ = S3. Therefore,
14 = dimG2 6 dimG2 · v1 + 5 + 3, which implies that 6 = 14−8 6 dimG2 · v1.

Step 2: Since the orbit is a homogeneous space, it is actually a 6-dimensional
submanifold in S6. However, G2 is compact, hence any its orbit is also
compact. A compact 6-dimensional submanifold of S6 is S6 itself.

11



G2-manifolds M. Verbitsky

Octonions are left alternative algebra

DEFINITION: We say that a non-associative algebra is left alternative if

it satisfies x(xy) = (xx)y for all x, y. This property is a weakened form of

associativity.

CLAIM: The octonion algebra is left alternative. In particular, for any

x ∈ ImO and any y ∈ O, we have x2 = −|x|2, and (x(xy)) = −|x|2y.

Proof. Step 1: Left alternativity is implied by the second assertion.

Indeed, if λ ∈ ReO, we have (λ + x)(λ + x)y = (xx)y + λxy + λ2y and (λ +

x)((λ+ x)y) = x(xy) + λxy + λ2y.

Step 2: Since G2 acts transitively on the sphere and commutes with octo-

nion product, it suffices to show this statement when x = v1. In this case,

v1(v1vi) = (v2
1)vi = −vi, as follows from the multiplication table on the basis

vectors encoded by the Fano plane.
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Octonions are division algebra

DEFINITION: Given x ∈ O, define x := Rex− Imx. This operation is called
conjugation, or octonion conjugation.

CLAIM: Similarly to quaternions, the octonion conjugation has the fol-
lowing properties: x · y = y · x and xx = |x|2.

Proof: It suffices to check (xy) = y · x when x, y ∈ ImO, where it follows
because a× b = −b× a. The second assertion is implied by vi × vj = −vj × vi,
hence λ+

7∑
i=1

aivi

λ− 7∑
i=1

aivi

 = λ2 −
7∑
i=1

|ai|2v2
i = λ2 +

7∑
i=1

|ai|2.

THEOREM: The octonion algebra O is a division algebra (that is, O has
no zero divisors).

Proof. Step 1: From left alternativity it follows immediately that x(xy) =
(xx)y) = |x|2y. Indeed, let x = a + b, whjere a = Rex and b = Imx, Then
x(xy) = (a− b)((a+ b)y) = aby − bay + a2y − b2y = (|a|2 + |b|2)y.

Step 2: if xy = 0, then x(xy) = (xx)y = |x|2y = 0, hence either x = 0 or
y = 0.
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G2 acts transitively on pairs of vectors

PROPOSITION: Let V = R7 be the space with standard action of G2.

Then G2 acts transitively on the set X pairs (x, y) of orthogonal vectors

with |x| = |y| = 1.

Proof: Clearly, X is 11-dimensional. Since G2 is compact, it suffices to show

that the orbits G2 · (v1, v2) of G2-action on X are also 11-dimensional.

Step 2: Any element ϕ ∈ G2 is determined by ϕ(v1), ϕ(v2), ϕ(v3); if ϕ(v1) =

v1, ϕ(v2) = v2, then ϕ(v3) is a point on the 3-sphere S6∩〈ϕ(v1), ϕ(v2), ϕ(v5)〉⊥,

hence the dimension of the stabilizer of the pair (v1, v2) ∈ X is at most 3-

dimensional, and the orbit is at least 11-dimensional.

COROLLARY: Any two non-collinear imaginary octonions generate a quater-

nion subalgebra H ⊂ O.
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Stable 3-forms on 7-manifolds

DEFINITION: A 3-form on R7 is stable if its stabilizer in GL(7,R) is iso-

morphic to G2, Let η ∈ Λ3(M) be a 3-form on a 7-manifold M . The form η

is called stable if the stabilizer of η
∣∣∣TxM is isomorphic to G2 for each x ∈M .

REMARK: This is an open property: a small deformation of a stable

form ρ is stable. Indeed, the GL(7,R)-orbit of ρ is open, and all forms in

this orbit are also stable.

REMARK: Any stable 3-form ρ on M defines a Λ7(M)-valued metric

gρ(x, y) := ixρ ∧ iyρ ∧ ρ on TM, and after the natural trivialization of the line

bundle Λ7(M), it defines the Riemannianmetric g on M .

DEFINITION: Let ρ ∈ Λ3(M) be a stable 3-form. The pair (M,ρ) is called

a holonomy G2-manifold if ∇(ρ) = 0 where ∇ denotes the Levi-Civita con-

nection.

EXAMPLE: A 7-torus with the standard 3-form is a holonomy G2-

manifold, because ρ is invariant under the parallel transport, hence the con-

nection form is constant, which implies that ∇(ρ) = 0.
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G2 and SU(3)

PROPOSITION: Let (V, η) be a 7-dimensional vector space with the stan-
dard 3-form, and x ∈ V a non-zero vector. Then the stabilizer of x in G2
is isomorphic to SU(3).

Proof. Step 1: Let Gx be the stabilizer of x in G2. Then Gx ⊂ O(x⊥).
Also, Gx preserves the complex structure I(v) := x× v, where × is the vector
product on V , hence Gx ⊂ U(3). Since dimGx = dimG2 − dimS6 = 8, and
dimU(3) = 9, it is a codimension 1 subgroup. It is not hard to prove that
U(3) contains only one connected codimension 1 subgroup, using the
Lie algebras, but we will use a more explicit argument.

Step 2: Consider the 3-form η
∣∣∣x⊥ . If we prove that this form is non-zero

and of Hodge type (3,0)+(0,3), we will obtain that Gx ⊂ SU(3), and
the equality Gx = SU(3) follows because dimGx = dimSU(3).

Step 3: ρ
∣∣∣x⊥ 6= 0 because for x = v1 it is equal to v345 + v246 + v237 + v567.

Step 4: The following 3 vectors in v⊥1 have type (1,0): z1 = v2+
√
−1v5, z2 =

v4 +
√
−1 v7, z3 = v6 +

√
−1 v3, hence the real part of the (3,0)-vector is

v246 − v273 − v543 − v657 = v246 + v237 + v345 + v567.
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G2-manifolds and Calabi-Yau manifolds

COROLLARY: Let (W, I) be a 6-dimensional vector space, I a complex

structure operator, z1 = v2 +
√
−1 v5, z2 = v4 +

√
−1 v7, z3 = v6 +

√
−1 v3 the

basis in W1,0, and Ω := z1∧z2∧z3. Denote by ω the standard Hermitian form

on W , ω = v2 ∧ v5 + v4 ∧ v7 + v6 ∧ v3. Consider the space V := R · t⊕W , and

let ρ := Re Ω + t ∧ ω. Then ρ is a stable 3-form.

DEFINITION: A Calabi-Yau manifold is a Riemannian 6-manifold with

holonomy group in SU(3). In other words, a manifold (X, I, g,Ω) is Calabi-

Yau if I is a parallel almost complex structure, and Ω a parallel, non-zero

3-form.

COROLLARY: Let (X, I, g,Ω) be an almost complex Hermitian 6-manifold

equipped with a (3,0)-form Ω which satisfies |Re Ω| = 4. Consider the man-

ifold M = X × I, where I is a 1-dimensional oriented Riemannian manifold

with dt unit 1-form, and let ρ := ω∧dt+ Re Ω ∈ Λ3M . Then ρ is stable, and

the corresponding Riemannian form g ∈ Sym2 T ∗M is the product form.

Moreover, (M,ρ) is a holonomy G2-manifold if and only if (X, I, g,Ω) is

Calabi-Yau.
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Proof: By Corollary 2, ρ is a stable 3-form, which is parallel with respect to

Levi-Civita, because the forms ω and Re Ω are parallel with respect to the

Levi-Civita.

For further reading, see “Stable forms and special metrics” (Nigel Hitchin,https:

//arxiv.org/abs/math/0107101), “The Octonions” (John C. Baez, https://

math.ucr.edu/home/baez/octonions/octonions.html), and “Riemannian Holon-

omy Groups and Calibrated Geometry” by Dominic Joyce (Oxford Graduate

Texts in Math).
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