Octonions and *G*₂**-manifolds**

Misha Verbitsky

IMPA, Estruturas geométricas em variedades, March 21, 2024

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla}$: $B|_x \rightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its restricted holonomy vanishes. Indeed, the connected component of the holonomy group of a bundle (B, ∇) is a Lie group, with the Lie algebra generated by all curvature elements of M transported to a given point by the connection (Ambrose, Singer).

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_x M, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

The Berger's list

THEOREM: (Berger's theorem, 1955)

Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) imes Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G ₂ -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: If the holonomy group is not irreducible, the manifold *M* locally splits onto a product of Riemannian manifolds with irreducible holonomy (de Rham). This splitting is global, if *M* is complete and simply connected.

$GL(n,\mathbb{R})$ acting on $\Lambda^k(\mathbb{R}^n)$ with an open orbit

THEOREM: Consider the action of $GL(n, \mathbb{R})$ on $\Lambda^k(\mathbb{R}^n)$. This action has open orbit in the following cases: when k = 0, 1, 2, n-2, n-1, n and when k = 3, n-3 and n = 6, 7, 8.

Proof for some special cases: It is clear that $GL(n, \mathbb{R})$ -action has an open orbit when k = 0, 1, 2, n-2, n-1, n: non-degenerate 2-forms are all conjugate, and non-degeneracy is an open condition. In the case k = 3, n-3 and n > 8 and $k > 3, n \ge 8$, the $GL(n, \mathbb{R})$ -action cannot have an open orbit, which follows from a dimension count.

Existence of an open orbit for n = 6,7,8 and k = 3 is a non-trivial exercise, especially when n = 8 (G. B. Gurevich, "Classification of trivectors of rank eight," Dokl. Akad. Nauk SSSR 2 (1935), 353-355.) Today we focus on n = 7, k = 3, and prove the existence of an open orbit.

The Fano projective plane

CLAIM: $PGL(\mathbb{F}_2, 2) = \mathbb{Z}/3$.

Proof: Indeed, $GL(\mathbb{F}_2, 2)$ has cardinality 6 (there are 3 choices for an image of the first vector of a basis, 2 for the second), hence $PGL(\mathbb{F}_2, 2) = GL(\mathbb{F}_2, 2)/(\mathbb{Z}/2)$ has cardinality 3.

REMARK: This implies that all lines on $\mathbb{F}_2\mathbb{P}^n$ have circle ordering.

DEFINITION: The Fano projective plane is $\mathbb{F}_2\mathbb{P}^2$, equipped with the $PGL(\mathbb{F}_2, 3)$ -action. The lines (each of which has 3 points) are circle oriented, and the $PGL(\mathbb{F}_2, 3)$ preserves the orientation:

PROPOSITION: Let $V = \mathbb{R}^7$. Choose the basis $v_1, ..., v_7 \in V$, and let $v_{ijk} := v_i \wedge v_j \wedge v_k \in \Lambda^3(\mathbb{R}^7)$. Consider the form

 $\eta := v_{125} + v_{345} - v_{136} + v_{246} + v_{147} + v_{237} + v_{567},$

and let $PGL(\mathbb{F}_2,3)$ act on v_i as on the vertices of the Fano plane. Then $PGL(\mathbb{F}_2,3)$ preserves η .

Proof: Indeed, the lines of the Fano plane correspond to the monomials terms in η , and their sign to the circle orientation.

3-forms on \mathbb{R}^7 and scalar product

THEOREM: Let $V = \mathbb{R}^7$. The form $\eta \in \Lambda^3(V)$ defines the following scalar $\Lambda^7(V)$ -valued product on V^* : $g_\eta(x, y) = i_x \eta \wedge i_y \eta \wedge \eta$. Consider the form

 $\eta := v_{125} + v_{345} - v_{136} + v_{246} + v_{147} + v_{237} + v_{567}$

defined as above. Then the corresponding scalar product g_{η} is can be written as $g_{\eta}(e_i, e_j) = \delta_{ij} \operatorname{Vol}_V$, where e_i is the dual basis in V^* . **Proof:** The group of $PGL(\mathbb{F}_2, 3)$ automorphisms of the Fano projective plane $\mathbb{F}_2\mathbb{P}^2$ acts transitively on $\{v_1, ..., v_7\}$, preserving this form, and acts transitively on the set of pairs $v_i \neq v_j$, hence it suffices to check that $g_{\eta}(v_1, v_1) = 1$ and $g_{\eta}(v_1, v_2) = 0$. This is a trivial calculation.

REMARK: Since $\eta \in \text{Sym}^2(V) \otimes \Lambda^7(V)$, its determinant $\det(g_\eta)$ is an element in $\Lambda^7(V)^{\otimes 2} \otimes (\Lambda^7(V)^{\otimes 7} = (\Lambda^7(V)^{\otimes 9})$. Then $\sqrt[9]{\det(g_\eta)}$ is a volume form on V. Denote this volume form by Vol_{η} . Then $\frac{g_{\eta}}{\text{Vol}_{\eta}}$ is non-degenerate scalar product on V^* . Denote by g the dual scalar product on V; **this scalar product is positive definite and unambiguously determined by** η , hence preserved by its stabilizer $G_{\eta} \subset GL(7, \mathbb{R})$.

COROLLARY: Let $V = \mathbb{R}^7$, η the 3-form defined above, and $G_\eta \subset GL(7, \mathbb{R})$ its stabilizer. Then G_η is compact, and preserves a Euclidean form g unambiguously determined by ρ .

Vector product

DEFINITION: Let *V* be a vector space equipped with a non-degenerate scalar product *g* and a 3-form $\eta \in \Lambda^3(V^*)$. Define **the vector product** $V \times V \rightarrow V$ as $x, y \mapsto g^{-1}(i_y i_x(\eta))$, where $g^{-1} : V^* \rightarrow V$ is the natural isomorphism induced by *g*.

CLAIM: Let $V = \mathbb{R}^7$ and $\eta \in \Lambda^3(V^*)$ the 3-form defined above. Then the vector product $v_i \times v_j$ is $\pm v_k$, where v_k is the third node on the line connecting v_i and v_j on the Fano plane, and the sign is determined by the orientation.

Proof: $i_{v_i}i_{v_j}\eta = v_k^*$, where $\{v_i^*\}$ is the dual basis.

The octonions

REMARK: From now on, we use g to identify V and V*, and consider η as an element of $\Lambda^3(V) = \Lambda^3(V^*)$.

DEFINITION: Let $V = \mathbb{R}^7$ and $\eta \in \Lambda^3(V)$ the 3-form defined above. In these assumptions, we define **the octonion algebra** as $\mathbb{O} := \mathbb{R} \cdot 1 \oplus V$, with $\operatorname{Im} \mathbb{O} = V$ ("the imaginary octonions") and $\operatorname{Re} \mathbb{O} = \mathbb{R}$ ("the real octonions"), and the octonion product defined as follows: for any real octonion α and any octonion β , we have $\alpha \cdot \beta = \alpha \beta$, and for two imaginary octonions u, v, the product $u \cdot v := -g(u, v) \cdot 1 + u \times v$, where \times is the vector product on V.

REMARK: For three basis vectors v_i, v_j, v_k such that $v_i \times v_j = v_k$, the algebra $\mathbb{R}1 \oplus \langle v_i, v_j, v_k \rangle$ is isomorphic to quaternions.

REMARK: The octonion algebra is non-associative! However, it is a division algebra, as we shall see today.

REMARK: Frobenius (1877) proved that any division algebra over reals is isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O} .

The group G_2 and octonions

DEFINITION: Let $V = \mathbb{R}^7$ and $\eta \in \Lambda^3(V)$ the 3-form defined above. **Define** $G_2 \subset GL(7,\mathbb{R})$ as the group of automorphisms of V preserving η ; in other words, $G_2 = \operatorname{Aut}(\mathbb{O})$.

Proposition 1: dim_{\mathbb{R}} $G_2 \leq 14$.

Proof: Take the standard basis $\{v_i\} \subset V$, and let $\varphi \in G_2$. By definition, the action of φ on V is compatible with the vector product. The space $\langle v_1, v_2, v_5 \rangle$ is isomorphic to imaginary quaternions with the standard vector product. Then $\varphi(v_1)$ belongs to a unit sphere $S(V) \cong S^6$, and $\varphi(v_2)$ in $\varphi(v_1)^{\perp} \cap S(V) = S^5$. The image of $v_5 = v_1 \times v_2$ is determined uniquely via $\varphi(v_5) = \varphi(v_1) \times \varphi(v_2)$. The image of v_3 belongs to $\langle \varphi(v_1), \varphi(v_2), \varphi(v_5) \rangle^{\perp} \cap S(V) \cong S^3$, which is 3-dimensional, and the vector products of v_1, v_2, v_3 generate the rest of v_i , hence φ is uniquely determined by $(\varphi(v_1), \varphi(v_2), \varphi(v_3)) \in S^6 \times S^5 \times S^3$, which is 14-dimensional.

REMARK: In the next slide, we prove that $\dim G_2 = 14$.

The orbit of η in $\Lambda^3(\mathbb{R}^7)$ is open

THEOREM: $GL(7,\mathbb{R})$ acts on $\Lambda^3(\mathbb{R}^7)$ with an open orbit.

Proof. Step 1: Let $\eta \in \Lambda^3(\mathbb{R}^7)$ be the 3-form defined above, and $G_\eta \subset GL(7,\mathbb{R})$ its stabilizer. Sinc dim $\Lambda^3(\mathbb{R}^7) = 35$, dim $GL(7,\mathbb{R}) = 49$, the dimension of an orbit $GL(7,\mathbb{R})\cdot\eta$ is $49-\dim G \leq 35$, which gives dim $G \geq 49-35 = 14$, with equality occuring when the orbit is open.

Step 2: dim $G \leq 49 - 35 = 14$ (Proposition 1).

COROLLARY: dim $G_2 = 14$.

COROLLARY: The group G_2 acts transitively on the unit sphere $S^6 \subset V$.

Proof. Step 1: We start by proving that the orbit $G_2 \cdot v_1 \subset S^6$ is 6-dimensional. Consider the standard 3-form $\eta \in \Lambda^3(V)$, where $V = \mathbb{R}^7$. An element $\varphi \in G_2$ is determined by the image of v_1 , v_2 , v_3 , with $\varphi(v_2) \in S^6 \cap \varphi(v_1)^{\perp} = S^5$ and $\varphi(v_2) \in S^6 \cap \langle \varphi(v_1), \varphi(v_2), \varphi(v_5) \rangle^{\perp} = S^3$. Therefore, $14 = \dim G_2 \leq \dim G_2 \cdot v_1 + 5 + 3$, which implies that $6 = 14 - 8 \leq \dim G_2 \cdot v_1$.

Step 2: Since the orbit is a homogeneous space, it is actually a 6-dimensional submanifold in S^6 . However, G_2 is compact, hence any its orbit is also compact. A compact 6-dimensional submanifold of S^6 is S^6 itself.

Octonions are left alternative algebra

DEFINITION: We say that a non-associative algebra is left alternative if it satisfies x(xy) = (xx)y for all x, y. This property is a weakened form of associativity.

CLAIM: The octonion algebra is left alternative. In particular, for any $x \in \text{Im } \mathbb{O}$ and any $y \in \mathbb{O}$, we have $x^2 = -|x|^2$, and $(x(xy)) = -|x|^2y$.

Proof. Step 1: Left alternativity is implied by the second assertion. Indeed, if $\lambda \in \text{Re}\mathbb{O}$, we have $(\lambda + x)(\lambda + x)y = (xx)y + \lambda xy + \lambda^2 y$ and $(\lambda + x)((\lambda + x)y) = x(xy) + \lambda xy + \lambda^2 y$.

Step 2: Since G_2 acts transitively on the sphere and commutes with octonion product, it suffices to show this statement when $x = v_1$. In this case, $v_1(v_1v_i) = (v_1^2)v_i = -v_i$, as follows from the multiplication table on the basis vectors encoded by the Fano plane.

Octonions are division algebra

DEFINITION: Given $x \in \mathbb{O}$, define $\overline{x} := \operatorname{Re} x - \operatorname{Im} x$. This operation is called **conjugation**, or **octonion conjugation**.

CLAIM: Similarly to quaternions, the octonion conjugation has the following properties: $\overline{x \cdot y} = \overline{y} \cdot \overline{x}$ and $x\overline{x} = |x|^2$.

Proof: It suffices to check $\overline{(xy)} = \overline{y} \cdot \overline{x}$ when $x, y \in \text{Im } \mathbb{O}$, where it follows because $a \times b = -b \times a$. The second assertion is implied by $v_i \times v_j = -v_j \times v_i$, hence

$$\left(\lambda + \sum_{i=1}^{7} a_i v_i\right) \left(\lambda - \sum_{i=1}^{7} a_i v_i\right) = \lambda^2 - \sum_{i=1}^{7} |a_i|^2 v_i^2 = \lambda^2 + \sum_{i=1}^{7} |a_i|^2$$

THEOREM: The octonion algebra \bigcirc **is a division algebra** (that is, \bigcirc has no zero divisors).

Proof. Step 1: From left alternativity **it follows immediately that** $\overline{x}(xy) = (\overline{x}x)y) = |x|^2 y$. Indeed, let x = a + b, while $a = \operatorname{Re} x$ and $b = \operatorname{Im} x$, Then $\overline{x}(xy) = (a-b)((a+b)y) = aby - bay + a^2y - b^2y = (|a|^2 + |b|^2)y$.

Step 2: if xy = 0, then $\overline{x}(xy) = (\overline{x}x)y = |x|^2y = 0$, hence either x = 0 or y = 0.

G_2 acts transitively on pairs of vectors

PROPOSITION: Let $V = \mathbb{R}^7$ be the space with standard action of G_2 . Then G_2 acts transitively on the set X pairs (x, y) of orthogonal vectors with |x| = |y| = 1.

Proof: Clearly, X is 11-dimensional. Since G_2 is compact, it suffices to show that the orbits $G_2 \cdot (v_1, v_2)$ of G_2 -action on X are also 11-dimensional.

Step 2: Any element $\varphi \in G_2$ is determined by $\varphi(v_1), \varphi(v_2), \varphi(v_3)$; if $\varphi(v_1) = v_1, \varphi(v_2) = v_2$, then $\varphi(v_3)$ is a point on the 3-sphere $S^6 \cap \langle \varphi(v_1), \varphi(v_2), \varphi(v_5) \rangle^{\perp}$, hence the dimension of the stabilizer of the pair $(v_1, v_2) \in X$ is at most 3-dimensional, and the orbit is at least 11-dimensional.

COROLLARY: Any two non-collinear imaginary octonions generate a quaternion subalgebra $\mathbb{H} \subset \mathbb{O}$.

Stable 3-forms on 7-manifolds

DEFINITION: A 3-form on \mathbb{R}^7 is **stable** if its stabilizer in $GL(7,\mathbb{R})$ is isomorphic to G_2 , Let $\eta \in \Lambda^3(M)$ be a 3-form on a 7-manifold M. The form η is called **stable** if the stabilizer of $\eta|_{T_xM}$ is isomorphic to G_2 for each $x \in M$.

REMARK: This is an open property: a small deformation of a stable form ρ is stable. Indeed, the $GL(7,\mathbb{R})$ -orbit of ρ is open, and all forms in this orbit are also stable.

REMARK: Any stable 3-form ρ on M defines a $\Lambda^7(M)$ -valued metric $g_\rho(x,y) := i_x \rho \wedge i_y \rho \wedge \rho$ on TM, and after the natural trivialization of the line bundle $\Lambda^7(M)$, it defines the Riemannianmetric g on M.

DEFINITION: Let $\rho \in \Lambda^3(M)$ be a stable 3-form. The pair (M, ρ) is called a holonomy G_2 -manifold if $\nabla(\rho) = 0$ where ∇ denotes the Levi-Civita connection.

EXAMPLE: A 7-torus with the standard 3-form is a holonomy G_2 -manifold, because ρ is invariant under the parallel transport, hence the connection form is constant, which implies that $\nabla(\rho) = 0$.

M. Verbitsky

G_2 and SU(3)

PROPOSITION: Let (V, η) be a 7-dimensional vector space with the standard 3-form, and $x \in V$ a non-zero vector. Then the stabilizer of x in G_2 is isomorphic to SU(3).

Proof. Step 1: Let G_x be the stabilizer of x in G_2 . Then $G_x \,\subset O(x^{\perp})$. Also, G_x preserves the complex structure $I(v) := x \times v$, where \times is the vector product on V, hence $G_x \subset U(3)$. Since dim $G_x = \dim G_2 - \dim S^6 = 8$, and dim U(3) = 9, it is a codimension 1 subgroup. It is not hard to prove that U(3) contains only one connected codimension 1 subgroup, using the Lie algebras, but we will use a more explicit argument.

Step 2: Consider the 3-form $\eta|_{x^{\perp}}$. If we prove that this form is non-zero and of Hodge type (3,0)+(0,3), we will obtain that $G_x \subset SU(3)$, and the equality $G_x = SU(3)$ follows because dim $G_x = \dim SU(3)$.

Step 3: $\rho|_{x^{\perp}} \neq 0$ because for $x = v_1$ it is equal to $v_{345} + v_{246} + v_{237} + v_{567}$.

Step 4: The following 3 vectors in v_1^{\perp} have type (1,0): $z_1 = v_2 + \sqrt{-1}v_5, z_2 = v_4 + \sqrt{-1}v_7, z_3 = v_6 + \sqrt{-1}v_3$, hence the real part of the (3,0)-vector is $v_{246} - v_{273} - v_{543} - v_{657} = v_{246} + v_{237} + v_{345} + v_{567}$.

G₂-manifolds and Calabi-Yau manifolds

COROLLARY: Let (W, I) be a 6-dimensional vector space, I a complex structure operator, $z_1 = v_2 + \sqrt{-1} v_5$, $z_2 = v_4 + \sqrt{-1} v_7$, $z_3 = v_6 + \sqrt{-1} v_3$ the basis in $W^{1,0}$, and $\Omega := z_1 \wedge z_2 \wedge z_3$. Denote by ω the standard Hermitian form on W, $\omega = v_2 \wedge v_5 + v_4 \wedge v_7 + v_6 \wedge v_3$. Consider the space $V := \mathbb{R} \cdot t \oplus W$, and let $\rho := \operatorname{Re} \Omega + t \wedge \omega$. Then ρ is a stable 3-form.

DEFINITION: A Calabi-Yau manifold is a Riemannian 6-manifold with holonomy group in SU(3). In other words, a manifold (X, I, g, Ω) is Calabi-Yau if *I* is a parallel almost complex structure, and Ω a parallel, non-zero 3-form.

COROLLARY: Let (X, I, g, Ω) be an almost complex Hermitian 6-manifold equipped with a (3, 0)-form Ω which satisfies $|\operatorname{Re} \Omega| = 4$. Consider the manifold $M = X \times I$, where I is a 1-dimensional oriented Riemannian manifold with dt unit 1-form, and let $\rho := \omega \wedge dt + \operatorname{Re} \Omega \in \Lambda^3 M$. Then ρ is stable, and the corresponding Riemannian form $g \in \operatorname{Sym}^2 T^*M$ is the product form. Moreover, (M, ρ) is a holonomy G_2 -manifold if and only if (X, I, g, Ω) is Calabi-Yau. **Proof:** By Corollary 2, ρ is a stable 3-form, which is parallel with respect to Levi-Civita, because the forms ω and Re Ω are parallel with respect to the Levi-Civita.

For further reading, see "Stable forms and special metrics" (Nigel Hitchin, https: //arxiv.org/abs/math/0107101), "The Octonions" (John C. Baez, https:// math.ucr.edu/home/baez/octonions/octonions.html), and "Riemannian Holonomy Groups and Calibrated Geometry" by Dominic Joyce (Oxford Graduate Texts in Math).