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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V., ¢ : Blz—B|z be the
corresponding parallel transport along the connection. The holonomy group
of (B,V) is a group generated by V. v, for all loops ~. If one takes all con-
tractible loops instead, V%v generates the local holonomy, or the restricted
holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only Iif its
restricted holonomy vanishes. Indeed, the connected component of the
holonomy group of a bundle (B,V) is a Lie group, with the Lie algebra
generated by all curvature elements of M transported to a given point
by the connection (Ambrose, Singer).

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥ @ (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).

EXAMPLE: Holonomy of a Kahler manifold lies in U(Ty M, glsz, I|z) = U(n).
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The Berger’s list

THEOREM: (Berger’'s theorem, 1955)
Let G be an irreducible holonomy group of a Riemannian manifold which is
not locally symmetric. Then &G belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R=" Kahler manifolds
SU(n) acting on R%"?, n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkdhler manifolds
Sp(n) x Sp(1)/{£1} quaternionic-Kahler
acting on R4, n > 1 manifolds
G acting on R’ G>-manifolds
Spin(7) acting on R® Spin(7)-manifolds

REMARK: If the holonomy group is not irreducible, the manifold M Ilo-
cally splits onto a product of Riemannian manifolds with irreducible
holonomy (de Rham). This splitting is global, if M is complete and simply

connected.
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GL(n,R) acting on A*(R") with an open orbit

THEOREM: Consider the action of GL(n,R) on A¥(R™). This action has
open orbit in the following cases: when £ =0,1,2,n—2,n—1,n and when
k=3,n—3 and n=06,7,8.

Proof for some special cases: It is clear that GL(n,R)-action has an open
orbit when £ =0,1,2,n—2,n—1,n: non-degenerate 2-forms are all conjugate,
and non-degeneracy is an open condition. In the case k=3,n—3 and n > 8
and k£ > 3, n > 8, the GL(n,R)-action cannot have an open orbit, which
follows from a dimension count.

Existence of an open orbit for n = 6,7,8 and £ = 3 is a non-trivial
exercise, especially when n = 8 (G. B. Gurevich, “Classification of trivectors
of rank eight,” Dokl. Akad. Nauk SSSR 2 (1935), 353-355.) Today we
focus on n =7, k=3, and prove the existence of an open orbit.
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The Fano projective plane

CLAIM: PGL(F5,2) = 7Z/3.

Proof: Indeed, GL(F>,2) has cardinality 6 (there are 3 choices for an im-
age of the first vector of a basis, 2 for the second), hence PGL(F>,2) =
GL(F>,2)/(Z/2) has cardinality 3. =

REMARK: This implies that all lines on F>P" have circle ordering.

DEFINITION: The Fano projective plane is FQPQ, equipped with the
PGL(F»5,3)-action. The lines (each of which has 3 points) are circle oriented,
and the PGL(F-,3) preserves the orientation:
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The Fano projective plane (2)

PROPOSITION: Let V = R’. Choose the basis vq,...,v7 € V, and let
vijk = v Avj A, € A3(RT). Consider the form

N 1= v125 + V345 — V136 T V246 T+ V147 + V237 1+ U567,
and let PGL(F>,3) act on v; as on the vertices of the Fano plane. Then
PGL(F>,3) preserves 1.

Proof: Indeed, the lines of the Fano plane correspond to the monomials
terms in n, and their sign to the circle orientation. =
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3-forms on R’ and scalar product

THEOREM: Let V =R’. The form n € A3(V) defines the following scalar
AT (V)-valued product on V*: gn(z,y) = izn Adiyn An. Consider the form

1 = v125 + V345 — V136 + V246 + V147 + V237 + Use7

defined as above. Then the corresponding scalar product g, is can be
written as gy(e;,e;) = §;; Voly, where e; is the dual basis in V*.

Proof: The group of PGL(IFQ, 3) automorphisms of the Fano projective plane
FoP?2 acts transitively on {vq,...,v7}, preserving this form, and acts transitively
on the set of pairs v; # v;, hence it suffices to check that gy(vq1,v1) =1 and
gn(vi,v2) = 0. This is a trivial calculation. m

REMARK: Since n € Sym?(V)®A’(V), its determinant det(gy) is an element
in AT(V)®2 @ (N(V)®T = (ANT(V)®2. Then i”/det(gn) is a volume form on V.
Denote this volume form by Vol,. Then VOIn IS hon-degenerate scalar product
on V*. Denote by g the dual scalar product on V; this scalar product is
positive definite and unambiguously determined by n, hence preserved
by its stabilizer G, C GL(7,R).

COROLLARY: Let V =R’, n the 3-form defined above, and G, C GL(7,R)
its stabilizer. Then G, is compact, and preserves a Euclidean form g
unambiguously determined by p. =
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Vector product

DEFINITION: Let V be a vector space equipped with a non-degenerate
scalar product g and a 3-form n € A3(V*). Define the vector product

VxV—=Vasx,yr g 1(iyiz(n)), where g—1 : V*V is the natural isomorphism
induced by g.

CLAIM: Let V =R’ and n € A3(V*) the 3-form defined above. Then the
vector product v; X v; IS *v,, where v, Is the third node on the line
connecting v; and v; on the Fano plane, and the sign is determined by
the orientation.

Proof: iyiy;n = vp, where {v7} is the dual basis. =
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T he octonions

REMARK: From now on, we use g to identify V and V*, and consider n
as an element of A3(V) = A3(V*).

DEFINITION: Let V = R’ and n € A3(V) the 3-form defined above. In
these assumptions, we define the octonion algebra as O :=R -1 & V, with
ImO =V ("the imaginary octonions”) and ReO = R ("“the real octonions”),
and the octonion product defined as follows: for any real octonion o and any
octonion B, we have o - = «f, and for two imaginary octonions u,v, the
product u-v := —g(u,v) -1 4+ u X v, where x is the vector product on V.

REMARK: For three basis vectors v;, v;, vi such that v; X v; = v, the algebra
R1 & (v;,v4,vg) is iIsomorphic to quaternions.

REMARK: The octonion algebra is non-associative! However, it iIs a
division algebra, as we shall see today.

REMARK: Frobenius (1877) proved that any division algebra over reals
Is isomorphic to R,C,H or O.
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The group G»> and octonions

DEFINITION: Let V =R’ and n € A3(V) the 3-form defined above. Define
Go> C GL(7,R) as the group of automorphisms of V preserving n; in other
words, Go> = Aut(0).

Proposition 1: dimp Go < 14.

Proof: Take the standard basis {v;} C V, and let ¢ € G>. By definition, the
action of ¢ on V is compatible with the vector product. The space (v1,vp,vs) iS
iIsomorphic to imaginary quaternions with the standard vector product. Then
©(v1) belongs to a unit sphere S(V) £ S°, and ¢(vo) in o(vy)+NS(V) = S°.
The image of vg = v1 X vy is determined uniquely via o(vg) = p(v1) X p(vo).
The image of vz belongs to (¢(v1), o(v2), ¢(vs))+ N S(V) =& S3, which is 3-
dimensional, and the vector products of vy, vy, v3 generate the rest of v;, hence
¢ is uniquely determined by (¢(v1), o(v2), ©(v3)) € S° x S° x S3, which is
14-dimensional. =

REMARK: In the next slide, we prove that dimG, = 14.
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The orbit of n in A3(R7) is open
THEOREM: GL(7,R) acts on A3(R’) with an open orbit.

Proof. Step 1: Let n € A3(R7) be the 3-form defined above, and G, C
GL(7,R) its stabilizer. Sinc dimA3(R7) = 35, dim GL(7,R) = 49, the dimen-
sion of an orbit GL(7,R)-n is 49—dim G < 35, which givesdim G > 49-35 = 14,
with equality occuring when the orbit is open.

Step 2: dimG <49 — 35 = 14 (Proposition 1). =
COROLLARY: dimGy=14. =
COROLLARY: The group G- acts transitively on the unit sphere S° c V.

Proof. Step 1: We start by proving that the orbit G, - vy C S° is
6-dimensional. Consider the standard 3-form n € A3(V), where V = R’.
An element ¢ € G5 is determined by the image of v, vy, vz, with p(vy) €
S0 N p(v))t = S° and ¢(vr) € S° N (p(v1),o(va), (vs))+ = S3. Therefore,
14 =dimGy <dimGo-vy + 54 3, which implies that 6 = 14 -8 < dimG» - v1.

Step 2: Since the orbit is a homogeneous space, it is actually a 6-dimensional
submanifold in S®. However, G- is compact, hence any its orbit is also
compact. A compact 6-dimensional submanifold of S® is S° itself. m
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Octonions are left alternative algebra

DEFINITION: We say that a non-associative algebra is left alternative if
it satisfies x(xy) = (zx)y for all x,y. This property is a weakened form of
associativity.

CLAIM: The octonion algebra is left alternative. In particular, for any
z €ImO and any y € O, we have z° = —|z|2, and (z(zy)) = —|z|%v.

Proof. Step 1: Left alternativity is implied by the second assertion.
Indeed, if A € ReQ, we have A+ 2)(\ + 2)y = (z2)y + Azy + X2y and (\ +
) (A + z2)y) = z(zy) + Azy + A?y.

Step 2: Since G5 acts transitively on the sphere and commutes with octo-
nion product, it suffices to show this statement when x = v1. In this case,
v1(viv;) = (v%)vi = —wv;, as follows from the multiplication table on the basis
vectors encoded by the Fano plane. m
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Octonions are division algebra

DEFINITION: Given x € O, definez := Rex —Imx. This operation is called
conjugation, or octonion conjugation.

CLAIM: Similarly to quaternions, the octonion conjugation has the fol-
lowing properties: T-y =7 - and zz = |z|2.

Proof: It suffices to check (xzy) = v -7 when z,y € ImO, where it follows

because a X b = —b X a. The second assertion is implied by v; X v; = —vj X v,
hence
7 7 7 7
(A-I- > am) ()\ - awz') =X = alvf =X+ Y ag]”
i=1 i=1 i=1 i=1
u

THEOREM: The octonion algebra O is a division algebra (that is, O has
no zero divisors).

Proof. Step 1: From left alternativity it follows immediately that z(zy) =
(zz)y) = |z|?y. Indeed, let + = a + b, whjere a = Rez and b = Imz, Then
z(zy) = (a —b)((a+b)y) = aby — bay + a?y — b%y = (|a|? + |b]?)y.

Step 2: if zy = 0, then Z(zy) = (zz)y = |z|°y = 0, hence either z = 0 or
y=0. =
13



G>-manifolds M. Verbitsky

G- acts transitively on pairs of vectors

PROPOSITION: Let V = R’ be the space with standard action of Go.
Then G- acts transitively on the set X pairs (z,y) of orthogonal vectors
with |z| = |y| = 1.

Proof: Clearly, X is 11-dimensional. Since G5 is compact, it suffices to show
that the orbits G5 - (v1,v2) of Gyr-action on X are also 11-dimensional.

Step 2: Any element ¢ € G5 is determined by p(v1), p(v2),0(v3); if p(vy) =
v1, p(v2) = vy, then p(v3) is a point on the 3-sphere S9N {p(v1), v(va), p(vs))+,
hence the dimension of the stabilizer of the pair (v1,v2) € X is at most 3-
dimensional, and the orbit is at least 11-dimensional. m

COROLLARY: Any two non-collinear imaginary octonions generate a quater-
nion subalgebra HC O. m
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Stable 3-forms on 7-manifolds

DEFINITION: A 3-form on R’ is stable if its stabilizer in GL(7,R) is iso-
morphic to Go, Let n € A3(M) be a 3-form on a 7-manifold M. The form n
is called stable if the stabilizer of U‘TxM is isomorphic to G, for each x € M.

REMARK: This is an open property: a small deformation of a stable
form p is stable. Indeed, the GL(7,R)-orbit of p is open, and all forms in
this orbit are also stable.

REMARK: Any stable 3-form p on M defines a A’(M)-valued metric
gp(x,y) :==1ixp ANiyp A p on TM, and after the natural trivialization of the line
bundle AT(M), it defines the Riemannianmetric g on M.

DEFINITION: Let p € A3(M) be a stable 3-form. The pair (M, p) is called
a holonomy Gy-manifold if V(p) = 0 where V denotes the Levi-Civita con-
nection.

EXAMPLE: A 7-torus with the standard 3-form is a holonomy Go-
manifold, because p is invariant under the parallel transport, hence the con-

nection form is constant, which implies that V(p) = 0.
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G- and SU(3)

PROPOSITION: Let (V,n) be a 7-dimensional vector space with the stan-
dard 3-form, and z € V a non-zero vector. Then the stabilizer of = in G»
is isomorphic to SU(3).

Proof. Step 1: Let G, be the stabilizer of z in Go. Then Gz C O(z1).
Also, G preserves the complex structure I(v) := x X v, where x is the vector
product on V, hence G, C U(3). Since dimG; = dimGs — dim S® = 8, and
dimU(3) = 9, it is a codimension 1 subgroup. It is not hard to prove that
U(3) contains only one connected codimension 1 subgroup, using the
Lie algebras, but we will use a more explicit argument.

Step 2: Consider the 3-form ”‘xL- If we prove that this form is non-zero
and of Hodge type (3,0)4(0,3), we will obtain that G, C SU(3), and
the equality G, = SU(3) follows because dimG; = dim SU(3).

Step 3: p|,1 # 0 because for z = vy it is equal to vsss + v246 + v237 + U567

Step 4: The following 3 vectors in v have type (1,0): 21 = vo++/—1vg, 20 =
va + V—1v7,23 = vg + vV/—1 v3, hence the real part of the (3,0)-vector is

V246 — V273 — U543 — V657 — U246 + v237 + U345 + vsg7. W
16
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Go-manifolds and Calabi-Yau manifolds

COROLLARY: Let (W,I) be a 6-dimensional vector space, I a complex
structure operator, 21 = vo ++v/—1vs,20 = v4 +/—1v7,23 = v5 + v/—1 v3 the
basis in W10 and Q := z1 Nzo A z3. Denote by w the standard Hermitian form
on W, w=wvo Avg 4+ vg Nv7y + vg Av3. Consider the space V :=R-t®d W, and
let p:=ReQ24+tAw. Then p is a stable 3-form.

DEFINITION: A Calabi-Yau manifold is a Riemannian 6-manifold with
holonomy group in SU(3). In other words, a manifold (X, 1, g,<2) is Calabi-
Yau if / is a parallel almost complex structure, and <2 a parallel, non-zero
3-form.

COROLLARY: Let (X,1,9,2) be an almost complex Hermitian 6-manifold
equipped with a (3,0)-form 2 which satisfies | Re2| = 4. Consider the man-
ifold M = X x I, where [ is a 1-dimensional oriented Riemannian manifold
with dt unit 1-form, and let p := wAdt+ReQ € ASM. Then p is stable, and
the corresponding Riemannian form g € Sym2T*M is the product form.
Moreover, (M, p) is a holonomy Gs-manifold if and only if (X,1,9,Q) Is
Calabi-Yau.
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Proof: By Corollary 2, p is a stable 3-form, which is parallel with respect to
Levi-Civita, because the forms w and Re(2 are parallel with respect to the
Levi-Civita. =

For further reading, see “Stable forms and special metrics” (Nigel Hitchin,https:
//arxiv.org/abs/math/0107101), “The Octonions” (John C. Baez, https://
math.ucr.edu/home/baez/octonions/octonions.html), and “Riemannian Holon-

omy Groups and Calibrated Geometry” by Dominic Joyce (Oxford Graduate
Texts in Math).
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