Formally Kähler structure on a knot space of a G_2 -manifold.

Misha Verbitsky

G2 manifolds: September 2 - 5, 2014

Simons Centre for Geometry and Physics,

September 5, 2014

Motivation

Quaternionic/hyperkähler/hypercomplex manifolds have twistor spaces. All the structures of quaternionic geometry are interpreted as holomorphic structures on these twistor spaces. We want to interpret G_2 -geometry in a similar fashion.

To define a twistor space of a G_2 -manifold, it is necessary to sacrifice something.

It turns out that sacrificing finite-dimensionality suffices.

Knot spaces

DEFINITION: Let *M* be a smooth manifold. A **knot space** on *M* is a space of **non-parametrized, immersed, oriented loops**, represented by a map which is injective outside a finite set.

DEFINITION: A **Fréchet space** is a topological vector space V admitting a translation-invariant complete metric.

EXAMPLE: The space of smooth functions on a manifold is a Fréchet space.

DEFINITION: A differentiable map of Fréchet spaces is a map which can be approximated at each point by a continuous linear map, up to a term which decays faster than linear, in the sense of this metric.

DEFINITION: A **Fréchet manifold** is a ringed space, locally modeled on a space of differentiable functions on a Fréchet space

EXAMPLE: A group of diffeomorphisms is a Fréchet Lie group.

EXAMPLE: The knot space is a Fréchet manifold.

Formally Kähler manifolds

DEFINITION: Let F be a Fréchet manifold. The sheaf of vector fields TF on F is a sheaf of continuous derivations of its structure sheaf.

REMARK: A commutator of two derivations is again a derivation. Therefore, TF is a sheaf of Lie algebras.

DEFINITION: Let *F* be a Fréchet manifold, and $I : TF \longrightarrow TF$ a smooth $C^{\infty}F$ -linear endomorphism of the tangent bundle satisfying $I^2 = -1$. Then *I* is called **an almost complex structure on** *F*.

REMARK: Clearly, *I* defines a decomposition $TF \otimes \mathbb{C} = T^{1,0}F \oplus T^{0,1}F$, where $T^{1,0}F$ is the $\sqrt{-1}$ -eigenspace of *I*, and $T^{0,1}F$ the $-\sqrt{-1}$ -eigenspace. Indeed, $x = \frac{1}{2}(x + \sqrt{-1}Ix) + \frac{1}{2}(x - \sqrt{-1}Ix)$.

DEFINITION: An almost complex structure on a Fréchet manifold (F, I) is called **formally integrable**, if $[T^{1,0}F, T^{1,0}F] \subset T^{1,0}F$,

DEFINITION: Let (F, I) be a formally integrable almost complex Fréchet manifold, g a Hermitian structure on F, and ω be the corresponding (1, 1)-form. We say that (F, I, g) is formally Kähler if ω is closed.

Knot spaces of Riemannian 3-manifolds

J. L. Brylinski, *The Kähler geometry of the space of knots in a smooth threefold*, Preprint, Penn. State Univ., University Park, PA, 1990

J. L. Brylinski, *Loop Spaces, Characteristic Classes and Geometric Quantization,* Progr. Math., vol. 107, Birkhäuser Boston, Boston, MA, 1993.

LeBrun, Claude, *A Kähler structure on the space of string worldsheets*, Classical Quantum Gravity 10 (1993), no. 9, L141–L148.

Lempert, László, *Loop spaces as complex manifolds,* J. Differential Geom. 38 (1993), no. 3, 519–543.

DEFINITION: Let Knot(M) be the space of knots on a Riemannian 3manifold M. For each $S \in Knot(M)$, $T_S Knot(M)$ is the space of sections of a normal bundle NS. Let γ be a unit tangent vector to S. The vector product with γ defines a complex structure on the vector space NS.

THEOREM: (Brylinski) **This complex structure is formally integrable**. Moreover, **the standard metric on** Knot(M) **is formally Kähler**.

M. Verbitsky

G₂-manifolds

DEFINITION: Let $\rho \in \Lambda^2 \mathbb{R}^7$ be a 3-form on \mathbb{R}^7 . We say that ρ is **non-degenerate** if the dimension of its stabilizer is maximal:

dim
$$St_{GL(7)}\rho$$
 = dim $GL(7)$ – dim $\Lambda^3(\mathbb{R}^7)$ = 49 – 35 = 14.

In this case, $St(\rho)$ is one of two real forms of a 14-dimensional Lie group $G_2(\mathbb{C})$. We say that ρ is **non-split** if it satisfies $St(\rho|_x) \cong G_2$, where G_2 denotes the compact real form of $G_2(\mathbb{C})$. A G_2 -structure on a 7-manifold is a 3-form $\rho \in \Lambda^3(M)$, which is non-degenerate and non-split at each point $x \in M$ ("stable", in the sense of Hitchin).

REMARK: A form ρ defines a $\Lambda^7 M$ -valued metric on M:

$$g(x,y) = (\rho \lrcorner x) \land (\rho \lrcorner y) \land \rho$$

This defines a conformal structure on M. The conformal factor is fixed if we want $|\rho| = 1$. Therefore, every G_2 -manifold is equipped with a natural Riemannian structure.

DEFINITION: An G_2 -manifold is called a holonomy G_2 -manifold if ρ is preserved by the corresponding Levi-Civita connection.

The vector product on a G₂-manifold

DEFINITION: Let $V = \mathbb{R}^7$ be a 7-dimensional real space equipped with a 3-form ρ with $St_{GL(7)}(\rho) = G_2$, and g the G_2 -invariant metric defined as above. Define the **octonion vector product** as $x \star y = \rho(x, y, \cdot)^{\sharp}$. Here $\rho(x, y, \cdot)$ is a 1-form obtained by contraction, and $\rho(x, y, \cdot)^{\sharp}$ its dual vector.

CLAIM: For each unit vector $x \in V$, the vector product $y \longrightarrow x \star y$ defines a complex structure on the orthogonal complement x^{\perp} .

PROOF: This vector product is the octonion product on imaginary octonions.

CLAIM: For each non-zero vector $x \in V$, its stabilizer $St_{G_2}(x) \cong SU(3)$.

PROOF: $St_{G_2}(x)$ acts on x^{\perp} preserving the complex structure and the metric, hence $St_{G_2}(x) \subset U(3)$. Its dimension is dim G_2 -dim $S^6 = 8$, hence $St_{G_2}(x) = SU(3) \subset U(3)$ (there are no other 8-dimensional subgroups in U(3)).

COROLLARY: For each non-zero vector $x \in V$, the space x^{\perp} is equipped with a natural SU(3)-structure.

Complex Hermitian structure on Knot(M)

COROLLARY: For each knot $S \subset M$ on a G_2 -manifold, its normal bundle NS is equipped with an SU(3)-structure.

PROOF: For each $x \in S$, $NS|_x = x^{\perp}$.

REMARK: The space of sections $\Gamma(NS)$ of NS is, therefore, a complex Hermitian vector space.

THEOREM: Consider the space of knots on a G_2 -manifold as a Frechet manifold, wih $T_S \operatorname{Knot}(M) = \Gamma(NS)$. Then **the Hermitian structure on** $\Gamma(NS)$ **defines a formally Kähler structure on** $\operatorname{Knot}(M)$ if and only if M is a holonomy G_2 -manifold.

REMARK: A symplectic structure was obtained by M. Movshev in 1999.

The Movshev symplectic structure

DEFINITION: Let $Knot^m(M) \subset Knot(M) \times M$ be the space of marked knots, that is, pairs $(S^1 \stackrel{\gamma}{\hookrightarrow} Knot(M), s \in S^1)$, where $|\gamma'| = const$. Clearly, the forgetful map $Knot^m(M) \stackrel{\pi}{\longrightarrow} Knot(M)$ is an S^1 -fibration. The fiberwise integration map

$$\Lambda^{i}(\operatorname{Knot}^{m}(M)) \xrightarrow{\pi_{*}} \Lambda^{i-1}(\operatorname{Knot}(M))$$

is defined as usual,

$$\pi_*(\alpha)|_S := \int_{\pi^{-1}(S)} \left(\alpha \, \lrcorner \, \frac{d}{dt} \right) dt$$

where t is a parameter on S.

REMARK: The pushforward map π_* always commutes with the de **Rham differential.** This gives an interesting map

$$\pi_*\sigma^*: \Lambda^i(M) \longrightarrow \Lambda^{i-1}(\operatorname{Knot}(M))$$

commuting with the de Rham differential.

DEFINITION: Let (M, ρ) be a G_2 -manifold. The Movshev 2-form on Knot(M) is defined as $\pi_*\sigma^*(\rho)$. It is closed iff $d\rho = 0$.

The Kähler form on Knot(M)

CLAIM: Let (M, ρ) be a G_2 -manifold, $S \in Knot(M)$ a knot, and $\alpha, \beta \in NS$ two sections of a normal bundle, considered as tangent vectors $a, b \in T_S Knot(M)$. Consider the integral $S(a, b) := \int_S \rho(a, b, \cdot)|_S$. Then

$$\pi_*\sigma^*(\rho)(a,b) = S(a,b).$$

COROLLARY: The Movshev symplectic form is equal to the Hermitian form on Knot(M).

REMARK: Closedness of ρ implies the $d\omega = 0$ condition.

It remains to prove integrability of the complex structure on Knot(M) (equivalent to holonomy condition on M).

Non-degenerate (3,0)-forms

DEFINITION: Let M be a manifold (smooth or a Fréchet one) equipped with an almost complex structure, and $\Omega \in \Lambda^{3,0}(M)$ a (3,0)-form. We say that Ω is **non-degenerate** if for any $X \in T^{1,0}(M)$ there exist $Y, Z \in$ $T^{1,0}(M)$ such that $\Omega(X, Y, Z) \neq 0$.

THEOREM: Let (M, I) be a manifold (smooth or a Fréchet one) equipped with an almost complex structure, and $\Omega \in \Lambda^{3,0}(M)$ a non-degenerate (3,0)-form. Assume that $d\Omega = 0$. Then I is formally integrable.

PROOF: Let $X, Y \in T^{1,0}M$ and $Z, T \in T^{0,1}(M)$. Since Ω is a (3,0)-form, it vanishes on (0,1)-vectors. Then Cartan's formula together with $d\Omega = 0$ implies that

$$0 = d\Omega(X, Y, Z, T) = \Omega(X, Y, [Z, T]).$$

From non-degeneracy of Ω we obtain that unless $[Z,T] \in T^{0,1}(M)$, for some $X, Y \in T^{1,0}M$ one would have $\Omega(X,Y,[Z,T]) \neq 0$. Therefore, $[Z,T] \in T^{0,1}(M)$.

Constructing a non-degenerate (3,0)-form

CLAIM: Let $V = \mathbb{R}^7$ be a 7-dimensional real space equipped with a 3-form ρ , with $St_{GL(7)}(\rho) = G_2$, $\rho^* \in \Lambda^4 \mathbb{R}^7$ the dual form, and $x \in V$ a unit vector. Consider x^{\perp} equipped with a complex structure via the octonion vector product. Then $\Omega := \rho + \sqrt{-1} \rho^* \lrcorner x$ is a holomorphic volume form on x^{\perp} . Therefore, Ω is a non-degenerate (3,0)-form.

DEFINITION: Let M be a G_2 -manifold, and Ω a 3-form defined as $\Omega := \xi + \sqrt{-1} \pi_* \sigma^*(\rho^*)$. Here $\xi(x, y, z)|_S := \int_S \rho(x, y, z) dt$, for each $S \in \text{Knot}(M)$, where dt is a unit 1-form on S.

COROLLARY: For any G_2 -manifold, Ω is a non-degenerate (3,0)-form.

PROOF: Follows from the above claim.

THEOREM: Ω is closed if and only if ρ and ρ^* are closed.

This theorem implies formal integrability of the complex structure on Knot(M).

APPLICATIONS

DEFINITION: Let M be a G_2 -manifold, and $\Lambda^2 M = \Lambda_7^2(M) \oplus \Lambda_{14}^2(M)$ the irreducible decomposition of the bundle of 2-forms $\Lambda^2(M)$ associated with the G_2 -action. A vector bundle (B, ∇) with connection is called **a** G_2 -instanton if its curvature lies in $\Lambda_{14}^2(M) \otimes \text{End}(B)$.

DEFINITION: Let (F, I) be a formally complex Fréchet manifold, and (B, ∇) a Hermitian bundle with connection. We say that (B, ∇) is **formally** holomorphic if the curvature Θ of ∇ satisfies $\Theta \in \Lambda^{1,1}(F) \otimes \text{End } B$.

THEOREM: Let M be a G_2 -manifold, Knot(M) its knot space equipped with a natural formally Kähler structure, (B, ∇) a Hermitian vector bundle with connection, and $(\tilde{B}, \tilde{\nabla})$ the corresponding bundle on Knot(M). Then $(\tilde{B}, \tilde{\nabla})$ is formally holomorphic if and only if ∇ is a G_2 -instanton.

MORE APPLICATIONS

DEFINITION: Let $V = \mathbb{R}^7$ be a 7-space equipped with a 3-form ρ and the associated octonionic vector product. A 3-dimensional subspace $A \subset V$ is called **associative** if it is closed under the vector product. The set of associative subspaces is in bijective correspondence with the set of quaternionic subalgebras in octonions.

DEFINITION: Let $X \subset M$ be a 3-dimensional subvariety of a G_2 -manifold. We say that X is **associative** if $T_x X \subset T_x M$ is an associative subspace for each smooth point $x \in X$.

PROPOSITION: Let M be a holonomy G_2 -manifold, and $S \subset \text{Knot}(M)$ a 1-dimensional complex subvariety. Denote by $\tilde{S} \subset M$ the union of all knots in S. Then \tilde{S} is an associative subvariety of M.

PROPOSITION: Let M be a holonomy G_2 -manifold, and $X \subset M$ a subvariety, $1 < \dim X < 7$. Then $Knot(X) \subset Knot(M)$ is a formally complex subvariety if and only if X is an associative subvariety.

AND MORE APPLICATIONS

DEFINITION: A 1-form on a vector space V is called **non-degenerate** if it non-zero. A p-form η is called **non-degenerate** if its contraction with any non-vanishing vector x is non-degenerate on V/x.

CLAIM: Let V be a finite-dimensional vector space, and η a non-degenerate form. Then η is either symplectic, structure 2-form for a G_2 -structure or a volume form.

NOT SO IN INFINITE-DIMENSIONAL CASE!

DEFINITION: A Calabi-Yau manifold of rank k is a Frechet complex manifold equipped with a non-degenerate, closed, holomorphic k-form.

EXAMPLE: The knot space of a G_2 -manifold is a rank 3 infinitedimensional Calabi-Yau manifold.

M. Verbitsky

THANKS!