
M. Verbitsky Generalized complex manifolds

Derived brackets

and generalized complex manifolds

Misha Verbitsky

Abstract
This is a short note purporting to explain the generalized complex
geometry through superalgebra and Clifford multiplication.
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There is nothing essentially new in this note. It is a write-up of a talk
given June 27 at “Geometric structures” seminar in Moscow, HSE. The
idea was to explain the definition of Courant bracket in terms of spinors,
and prove some basic results using this description. The basic reference is
[G], [H] and [KS].

1 Clifford algebras

Definition 1.1: A Clifford algebra Cl(V, q) of a vector space V with a
scalar product q is an algebra generated by V with a relation xy + yx =
q(x, y)1.

Example 1.2: Suppose that q = 0. Then xy = −yx, hence the Clifford
algebra Cl(V, q) is isomorphic to the Grassmann algebra: Cl(V, q) = Λ∗V .

Example 1.3: Denote the k-dimensional space Rk with a scalar product of
signature (q, p) by (Rn,+, ...,+︸ ︷︷ ︸

q

,−, ...,−︸ ︷︷ ︸
p

). Clearly

Cl(R,−) = R[t]/(t2 = −1) = C,
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and
Cl(R,+) = R[t]/(t2 = 1) = R⊕ R.

Exercise 1.4: Prove that Cl(R2,−,−) is isomorphic to the quaternion al-
gebra, and Cl(R2,+,+), Cl(R2,+,−) are isomorphic to the algebra of 2x2-
matrices, Cl(R2,+,+) ∼= Cl(R2,+,−) ∼= Mat(2,R).

Proposition 1.5: dim Cl(V ) = 2dimV .

Before I give a proof of this result, let me introduce the filtered algebras.

Definition 1.6: Let A0 ⊂ A1 ⊂ A2 ⊂ ... be a sequence of subspaces of
an algebra A =

⋃
Ai. We say that {Ai} is a multiplicative filtration if

Ai ·Aj ⊂ Ai+j . In this case A is called a filtered algebra.

Exercise 1.7: Prove that the direct sum
⊕

iAi/Ai−1 is equipped with an
algebra structure: a ∈ Ai mod Ai−1 multiplied by a′ ∈ Aj mod Aj−1 gives
aa′ ∈ Aij mod Aij−1.

Definition 1.8: Let A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ A be a filtered algebra. As-
sociated graded algebra of this filtration is

⊕
iAi/Ai−1 with the algebra

structure defined above.

Claim 1.9: Let Cl(V, q) be a Clifford algebra, and Cl0(V, q) = k · 1 the field
of constants, Cl1(V ) = Cl0(V, q)⊕V , and Cli(V, q) := Cl1(V, q), ..., Cl1(V, q)︸ ︷︷ ︸

i times

.

This gives a filtration on Cl(V, q). Then the associated graded algebra is the
Grassmann algebra Λ∗V .

Proof: Modulo lower terms of the filtration, the Clifford relations give
xy + yx = 0.

Now the proof of Proposition 1.5 is apparent; indeed, taking associ-
ated graded algebra does not change the dimension, hence dim Cl(V, q) =
dim Λ∗V = 2dimV .

Theorem 1.10: Let V := W ⊕W ∗, with the usual pairing 〈(x + ξ), (x′ +
ξ′)〉 = ξ(x′) + ξ′(x). Then Cl(V ) is naturally isomorphic to Mat(Λ∗V ∗).

Proof: Consider the convolution map W ⊗ΛiW ∗ −→ Λi−1W ∗, with v⊗
ξ −→ ξ(v, ·, ·, . . . , ·) denoted by v, ξ −→ iv(ξ) and the extertior multiplication
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map W ∗⊗ΛiW ∗ −→ Λi−1W ∗, with ν⊗ξ −→ ν∧ξ, denoted by ν, ξ −→ eν(ξ).

Let V ⊗ Λ∗W ∗
Γ−→ Λ∗W ∗ map (v, ν) ⊗ ξ to iv(ξ) + eν(ξ). It is easy to

check that all iv pairwise anticommute, all eν pairwise anticommute, and the
anticommutator {iv, eν} is a scalar operator of multiplication by a number
ν(v).

To prove the last assertion without any calculations, we notice that iv is
an odd derivation of the Grassmann algebra, eν is a linear operator, and a
commutator of a derivation and a linear operator is linear, hence one has

{iv, eν}(a) = {iv, eν}(1) ∧ a = ν(v) · a.

These anticommutator relations immediately imply that the map V ⊗
Λ∗W ∗

Γ−→ Λ∗W ∗, called the Clifford multiplication map, is extended
to a homomorphism Cl(V )−→ Mat(Λ∗W ∗). An elementary calculation (left
as an exercise) proves that this map is injective. Since dim Cl(V ) = 2dimV =
22 dimW = dim Mat(Λ∗W ∗), this also implies that Cl(V ) ∼= Mat(Λ∗W ∗).

Definition 1.11: Let (V, q) be a vector space equipped with a scalar prod-
uct, and Cl(V, q) ∼= Mat(S) an isomorphism (such an isomorphism is possible
only when V is even-dimensional, because otherwise 2dimV is not a square
of anything). Then S is called the space of spinors over (V, q).

Remark 1.12: The Lie group SO(V, q) acts on Cl(V, q) by automorphisms.
However, Aut(Mat(S)) = PSL(S) (this is left as an exercise). This gives a
group homomorphism SO(V, q)−→ PSL(S). Lifting this homomorphism to
the universal covering Spin(V )−→ SL(S), we obtain the spinorial repre-
sentation of the spin group Spin(V ); it is a smallest faithfull representation
of the spin group.

Definition 1.13: Let M be a smooth manifold. Consider the Clifford mul-
tiplication V ⊗ S −→ S. Apply this construction to the bundle Λ∗M taken,
fiberwise, as spinors over V := TM ⊕ T ∗M . We obtain the Clifford multi-

plication map Γ : V ⊗ Λ∗M −→ Λ∗M written as (v, ν)⊗ ξ Γ7→ iv(ξ) + eν(ξ).

2 Derived brackets

2.1 Graded algebras

Definition 2.1: A graded vector space is a space V ∗ =
⊕

i∈Z V
i.
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Remark 2.2: If V ∗ is graded, the endomorphisms space

End(V ∗) =
⊕
i∈Z

Endi(V ∗)

is also graded, with

Endi(V ∗) =
⊕
j∈Z

Hom(V j , V i+j).

Definition 2.3: A graded algebra (or “graded associative algebra”) is an
associative algebra A∗ =

⊕
i∈ZA

i, with the product compatible with the
grading: Ai ·Aj ⊂ Ai+j .

Definition 2.4: A bilinear map of graded spaces which satisfies Ai · Aj ⊂
Ai+j is called graded, or compatible with grading.

Remark 2.5: The category of graded spaces can be defined as a category
of vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the category
of spaces with U(1)-action.

Definition 2.6: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator
a is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is
even or odd.

Definition 2.7: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ãb̃ba.

Definition 2.8: A graded associative algebra is called graded commuta-
tive (or “supercommutative”) if its supercommutator vanishes.

Example 2.9: The Grassmann algebra is supercommutative.

Definition 2.10: A graded Lie algebra (Lie superalgebra) is a graded
vector space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗

which is graded anticommutative: {a, b} = −(−1)ãb̃{b, a} and satisfies the
super Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

Example 2.11: Consider the algebra End(A∗) of operators on a graded
vector space, with supercommutator as above. Then End(A∗), {·, ·} is a
graded Lie algebra.
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Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying
{d, d} = 0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.

2.2 Loday bracket

For the history and different versions of the definition of derived brackets
please see [KS]. For the present purposes, we need only one of them, namely
the Loday bracket.

From now on, we use the notation [·, ·] for the supercommutator.

Definition 2.12: Let A =
⊕
Ai be a Lie superalgebra, and d : A−→A an

odd endomorphism satisfying d2 = 0. Define the Loday bracket [a, b]d :=
(−1)ã[d(a), b].

Exercise 2.13: Prove that the Loday bracket satisfies the graded Jacobi
identity:

[a, [b, c]d]d = [[a, b]d, c]d + (−1)ãb̃[b, [a, c]d]d.

Example 2.14: Now let A be the superalgebra End(Λ∗M), where M is
a smooth manifold, and d the de Rham differential. Cartan formulas can
be written in terms of Loday bracket as follows (we use the notation eν , iv
introduced in Definition 1.13).

[ix, iy]d =i[x,y]

[eη, ix]d =[edη, ix] = edη y x
[ix, eη]d = Liex eη = eLiex η

for all x, y ∈ TM, η ∈ Λ1M .

Proof: Cartan’s formula gives [d, iv] = Liev (note that [·, ·] here denotes
a supercommutator). Then [ix, iy]d = Liex iy = iLiex y = i[x,y].

Since ix is a derivation of the de Rham algebra (prove this), the com-
mutator [ix, eη] is linear, and this gives [ix, eξ](a) = ixeξ(1) · a = ξ y x
where ξ y x is contraction, ξ y x = ix(ξ). This takes care about the formula
[eη, ix]d = edη y x.

Finally, the last formula is self-evident.
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Corollary 2.15: Let V := TM⊕T ∗M . Consider the Clifford multiplication
map Γ : V ⊗Λ∗M −→ Λ∗M , and let x, x′ ∈ V , with x = (x, ν), x′ = (v′, ν ′).
Then [Γx,Γx′ ]d = Γy, where y = ([v, v′], (dν) y v − Liev′ ν).

Definition 2.16: We define the Courant bracket [(v, ν), (v′, ν ′)]d :=
([v, v′], (dν) y v − Liev′ ν)

Remark 2.17: From Corollary 2.15 it is apparent that the Courant bracket
is the Loday bracket applied to the Clifford multiplication operators.

Exercise 2.18: Prove that [u, v]d − [v, u]d = d〈u, v〉.

Remark 2.19: The skew-symmetric bracket [u, v]d − [u, v]d is called the
Dorfman bracket, after I. Ya. Dorfman.

2.3 Complex structures and generalized complex structures

Definition 2.20: Let V be a real vector space. A complex structure
operator on V is I ∈ Hom(V, V ) satisfying I2 = − IdV .

Claim 2.21: The eigenvalues αi of I are ±
√
−1. Moreover, I diagonalizable

over C.

Proof: The operator I is unitary with respect to the Hermitian form
gI(x, y) := g(x, y) + g(Ix, Iy), where g is an arbitrary Hermitian form. Any
unitary matrix is diagonalizable. Finally, α2

i = −1, because I2 = − Id.

Definition 2.22: Let V be a vector space, and I ∈ End(V ) a complex
structure operator. The eigenvalue decomposition V ⊗R C = V 1,0 ⊕ V 0,1 is

called the Hodge decomposition; here I
∣∣∣
V 1,0

=
√
−1 Id, and I

∣∣∣
V 0,1

=

−
√
−1 Id.

Remark 2.23: One can reconstruct I from the space V 1,0 ⊂ V ⊗R C.
Indeed, take V 0,1 = V 1,0, and let I act on V 0,1 as

√
−1 Id, and on V 0,1 as

−
√
−1 Id. Since thus defined operator I ∈ End(V ⊗RC) commutes with the

complex conjugation, it is real, that is, preserves V ⊂ V ⊗R C. This gives
an identification between the set of complex structures on V,dimR V = 2n,
and an open part of the Grassmann space Grn(V ⊗R C) consisting of all
subspaces W ⊂ V ⊗R C satisfying W ∩W = 0.

Definition 2.24: An almost complex structure on a real 2n-manifold
M is an operator I ∈ End(TM) satisfying I2 = − IdTM , or, equivalently, an
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n-dimensional sub-bundle T 1,0M ⊂ TM ⊗R C such that T 1,0M ∩ T 1,0M =
0. The almost complex structure called integrable (and M a complex
manifold) if T 1,0M is involutive, that is, satisfies [T 1,0M,T 1,0M ] ⊂ T 1,0M .

Definition 2.25: Let M be a real 2n-manifold, and V = TM ⊕ T ∗M .
Consider the standard symmetric pairing on V of signature (2n, 2n),

〈(v, ν), (v′, ν ′)〉 := ν(v′) + ν ′(v).

Let I ∈ EndV an orthogonal operator satisfying I2 = − IdV . Then I is
called a generalized almost complex structure.

Definition 2.26: Let V be an even-dimensional vector space equipped with
a non-degenerate scalar product h, and W ⊂ V a subspace. Then W is called

isotropic if h
∣∣∣
W

= 0, and maximal isotropic if dimW = 1
2 dimV .

Exercise 2.27: Prove the dimension of an isotropic subspace is always
6 1

2 dimV .

Remark 2.28: Let V = TM ⊕ T ∗M , I ∈ End(V ) a generalized almost
complex structure, and V 1,0 ⊂ V ⊗R C be the

√
−1 -eigenspace. Then V 1,0

is maximal isotropic. Indeed, 〈v, v′〉 = 〈Iv, Iv′〉 = −〈v, v′〉 for all v, v′ ∈ V 1,0.

Claim 2.29: Let M be a smooth manifold, V = TM ⊕ T ∗M . The general-
ized almost complex structures I ∈ End(V ) are in bijective corresponidence
with maximal isotropic subbundles V 1,0 ⊂ V ⊗RC satisfying V 1,0∩V 1,0 = 0.

Proof: I ∈ End(V ) a generalized almost complex structure, and V 1,0 ⊂
V ⊗R C its

√
−1 -eigenspace. As shown in Remark 2.28, V 1,0 is maximal

isotropic. It remains to show that this correspondence is bijective.
Let V 1,0 ⊂ V ⊗R C be a maximal isotropic subbundle, satisfying V 1,0 ∩

V 1,0 = 0. Then V ⊗R C = V 1,0 ⊕ V 1,0. Define I ∈ End(V ) using I
∣∣∣
V 1,0

=
√
−1 Id, and I

∣∣∣
V 1,0

= −
√
−1 Id. Then I2 = − IdV ; to prove Claim 2.29 it

remains only to show that I is orthogonal.

However, 〈·, ·〉
∣∣∣
V 1,0

= 〈·, ·〉
∣∣∣
V 1,0

= 0, because V 1,0 is isotropic, and for any

v ∈ V 1,0, v′ ∈ V 1,0, one has 〈Iv, Iv′〉 = 〈
√
−1 v,−

√
−1 v′〉 = 〈v, v′〉.

Definition 2.30: A generalized almost complex structure I on M is inte-
grable if [V 1,0, V 1,0]d ⊂ V 1,0. Then I is called a generalized complex
structure, and M a generalized complex manifold.
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The following examples explain the utility of generalized complex struc-
tures, which unite into one usable definition the notions of complex and
symplectic structures. Their integrability remains to be proven after the
pure spinors are introduced and used to prove integrability.

Example 2.31: Let (M,ω) be a symplectic manifold. Consider an almost
complex structure I ∈ End(TM ⊕ T ∗M) written as

I :=

(
0 −ω
ω−1 0

)
.

Then I is integrable.

Remark 2.32: Integrability of the generalized almost complex structure is
in fact equivalent to dω = 0, which is an easy exercise using the pure spinor
approach.

Example 2.33: Let (M,J) be a complex manifold. Consider an almost
complex structure I ∈ End(TM ⊕ T ∗M) written as

I :=

(
J 0
0 −J∗

)
.

Then I is integrable.

3 Pure spinors and generalized complex structures

Remark 3.1: Let (V, h) be a vector space equipped with a scalar product,
S the corresponding spinors, and V ⊗ S −→ S the Clifford multiplication.
Given a non-zero spinor Ψ ∈ S, consider the space

ker Ψ : {v ∈ V | v · Psi = 0}.

Then ker Ψ is isotropic. Indeed, for each u, v ∈ ker Ψ, one has 0 = uvΨ +
uvΨ = h(u, v)Ψ.

Definition 3.2: (Cartan, Chevalley) Ψ ∈ S is a pure spinor if ker Ψ is
maximal isotropic.

Remark 3.3: The following theorem gives a Plücker-type embedding for
the maximally isotropic Grassmannian.

Theorem 3.4: (Chevalley) Let (V, h) be a vector space equipped with a
scalar product, and S its spinor space. Then for each maximally isotropic

– 8 – version 1.0, June 30, 2013



M. Verbitsky Generalized complex manifolds

subspace W ⊂ V , W = ker Ψ for some pure spinor Ψ ∈ S, which is unique
up to a scalar multiplier.

Proof: Identifying V withW⊕W ∗, we obtain an identification S = Λ∗W
(Theorem 1.10). Let w1, ..., wn be a basis in W . Then kerw1∧w2∧ ...∧wn =
W .

Converse is also obvious: if Ψ ∈ Λ∗W satisfies W ∧ Ψ = 0, one has
Ψ = Cw1 ∧ w2 ∧ ... ∧ wn.

Example 3.5: Let (M,J) be a complex n-manifold, and I the generalized
complex structure constructed as in Example 2.33. The corresponding pure
spinor is any non-degenerate section of Λn,0(M,J) (check this).

Example 3.6: Let (M,ω) be a symplectic n-manifold, and I the generalized
complex structure constructed as in Example 2.31. The corresponding pure
spinor is Ψ = e

√
−1 ω. Indeed, V 1,0 is spanned by ix −

√
−1 eω y x, where

x ∈ TM . Since ix is a derivation, one has ix(e
√
−1 ω) =

√
−1 ix(ω)∧ e

√
−1 ω,

giving

ix −
√
−1 eω y x(e

√
−1 ω) = 1ix(ω)e

√
−1 ω −

√
−1 eω y x(e

√
−1 ω) = 0.

Theorem 3.7: Let L be a maximal isotropic subbundle in V = TM⊕T ∗M ,
and Ψ ∈ Λ∗M the corresponding spinor. Then L satisfies [L,L]d ⊂ L if and
only if dΨ = t ·Ψ, for some t ∈ V .

Proof: u, v ∈ ker Ψ, then

[u, v]dΨ = [du+ ud, v]Ψ = duvΨ + udvΨ− vduΨ− vudΨ = −vudΨ.

If dΨ = 0, one has [u, v]dΨ = −vudΨ = 0.
To prove the converse, consider the filtration on the spinor bundle, S0 =

Ψ, S1 = V ·Ψ, ..., Sd = V · Sd−1. Denote ker Ψ by V 1,0. Let ΛdV 1,0 ⊂ Cl(V )
be the subspace in the Clifford algebra generated by the monomials of degree
d on V 1,0. Clearly, Sd = {s ∈ S | ΛdV 1,0s = 0}.

Let now v, u, [u, v]d ∈ ker Ψ. The same calculation as above gives−vudΨ =
0. This implies that dΨ ∈ S1 for all pure spinors Ψ inducing integrable gen-
eralized complex structure. However, S1 = V ·Ψ.
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