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Clifford algebras

DEFINITION: A Clifford algebra CI(V,q) of a vector space V with a scalar
product ¢ is an algebra generated by V with a relation zy 4+ yx = q(z,y)1.

EXAMPLE: Suppose that ¢ = 0. Then zy = —yx, hence the Clifford
algebra Cl(V,q) for ¢ = 0 is isomorphic to the Grassmann algebra:
Cl(V,q) = N\*V.

EXAMPLE: Denote the k-dimensional space RF with a scalar product of
signature (q,p) by (R*, +,...,+,—,...,—). Clearly, CI(R,—) =R[t]/(t? = —1) =

~"

C, and ClI(R,+) = R[t]/(t2q: 1) :ZI)R{@IR{.

EXERCISE: Prove that CI(R2, —, —) is isomorphic to the quaternion algebra,
and Cl(R2,4,4), Cl(R?,+,—) are isomorphic to the algebra of 2x2-matrices,
CI(R?,+,+) £ C(R?,+,—) = Mat(2,R).
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Filtered algebras

DEFINITION: Let Ag C A1 C Ay C ... be a sequence of subspaces of an
algebra A = A;. We say that {A;} is a multiplicative filtration if A;-A; C
Ay ;. In this case A is called a filtered algebra.

EXERCISE: Prove that the direct sum &, A;/A;_1 is equipped with an
algebra structure: a € A; mod A;_; multiplied by a’ € A; mod A;_q gives
aa’ € Aij mod Az'j—l-

DEFINITION: Let Ag C A1 C A> C ... C A be a filtered algebra. Associated
graded algebra of this filtration is &; A;/A;_1 with the algebra structure
defined above.

CLAIM: Let CI(V,q) be a Clifford algebra, and Clg(V,q) = k-1 the field of

constants, Cl1(V) = Clg(V,q) @V, and Cl;(V,q) := Cl1(V,q),...,Cl1(V,q). This
i times

gives a filtration on CI(V,q). Then the associated graded algebra is the

Grassmann algebra A*V.

Proof: Modulo lower terms of the filtration, the Clifford relations give zy +
yr = 0. m

COROLLARY: dimC(V) = 2dimV,
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Cl(W @ W*)

THEOREM: Let V=W @ W*, with the usual pairing {(z + &), (2’ + ¢)) =
(') + € (z). Then Cl(V) is naturally isomorphic to Mat(A*V*).

Proof. Step 1: Consider the convolution map W @ ATW* —s AP—1Ww* with
v®&— &(v, -, ..., -) denoted by v,§ — 1, (§) and the extertior multiplication
map W*QAW* — A= 1W*, with v @& — v A&, denoted by v, & — e, (€). Let

Ve NANWE s AW map (v, v) ® € 1o in(€) + en(£).

Then all 7, pairwise anticommute, all ey, pairwise anticommute, and the anti-
commutator {iy, ey} is @ scalar operator of multiplication by a number v(v).

To prove the last assertion without any calculations, we notice that i, IS an
odd derivation of the Grassmann algebra, ¢, is a linear operator, and
a commutator of a derivation and a linear operator is linear, hence one
has

{iv,ev}(a) = {iv,er} (1) ANa =v(v) - a.

Step 2: These relation imply that the map V @ A*W* L> N*W*, called the
Clifford multiplication map, is extended to a homomorphism CI(V) — Mat(A*W™*).
I's not hard to show that this map is surjective. Since dim (V) = 2dmV —
22dimW — dim Mat(A*W*), this also implies that C/(V) = Mat(A*WW*). =
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Spinoprial representation

REMARK: The Lie group SO(V,q) acts on CI(V, q) by automorphisms. How-
ever, Aut(Mat(S)) = PSL(S) (this is left as an exercise). This gives a group
homomorphism SO(V,q) — PSL(S). Lifting this homomorphism to the uni-
versal covering Spin(V) — SL(S), we obtain the spinorial representation
of the spin group Spin(V); it is a smallest faithfull representation of the spin
group.

DEFINITION: Let M be a smooth manifold, V = TM & T*M and S =
N*(M). Consider the Clifford multiplication V@S — S, we obtain the Clifford

multiplication map I : VQA*M — AN*M written as (v,v)®¢& LR (&) +ev(§).
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Graded vector spaces

DEFINITION: A graded vector space is a space V* = @, V. If V*
is graded, the endomorphisms space End(V*) = @,z End*(V*) is also
graded, with End"(V*) = @,z Hom(V7, Vit).

DEFINITION: A graded algebra (or “graded associative algebra”) is an as-
sociative algebra A* = @,z A*, with the product compatible with the grading:
At AT C AV

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.
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LLoday bracket
From now on, we use the notation [-,:] for the supercommutator.

DEFINITION: Let A = @ A* be a graded associative algebra, andd: A— A
an odd endomorphism satisfying d2 = 0. Define the Loday bracket [a, bl =

(=1)[d(a),b].

EXERCISE: Prove that the Loday bracket satisfies the graded Jacobi
identity:

[a, [b, dlalg = [[a, bla, cla + (—1)%[b, [a, ] .
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Loday gracket on endomorphisms of de Rham algebra

CLAIM: Now let A be the graded algebra End(A*M), where M is a smooth
manifold, and d the de Rham differential, acting on A as d(a) = [d,a]. Then
[677, en/]d = 0 and

[ias iyla =i[z )

len, iz]q :[edna ig] = € (dn)

liz, enlq = Liez ey = el je, n
for all x,y € TM,n,n € A1 M.

Proof. Step 1: Cartan's formula gives [d,iy] = Liey, (we use [-,:] for the
supercommutator). Then [ig,iy]q = [Lieg, iy] = iLje,y = Uz ]

Step 2: Since i, is a derivation of the de Rham algebra (prove this), the
commutator [ig, ep] is linear, and this gives [iz, ec](a) = izeg(l) - a = iz(§) - a.
Then [en,ix]d = €dn iz

Step 3: The last formula follows from [d,i;] = Liez and [Liegz,en] = e|je, - ®
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Courant bracket

COROLLARY: Let V:=TM @ T*M. Consider the Clifford multiplication
map M : VRA*M — AN*M, and let z,2’ € V, with z = (z,v), 2’ = (W', ).
Then [, [ /]; =Ty, where y = ([v,v],i,(dv") — Lie, v).

DEFINITION: We define the Courant bracket on TM @ T*M:

[(v,v), (W, V)] .= ([v, 7], iu(dV) — Lie, v).

REMARK: The Courant bracket is Loday bracket applied to the Clifford
multiplication operators.

CLAIM: [a,b]y+ [v,u]y = —d{a,b)
Proof: d{x,n) = d(izn) = Liegzn —iz(dn) =

REMARK: The skew-symmetric bracket [a,b]p := [a,b];— [b, a] IS called the
Dorfman bracket, after I. Ya. Dorfman.
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Complex structures

DEFINITION: Let V be a real vector space. A complex structure operator
on Vis I € Hom(V, V) satisfying I? = —Idy .

CLAIM: The eigenvalues o; of I are =v/—1. Moreover, I diagonalizable
over C. m

DEFINITION: Let V be a vector space, and I € End(V) a complex structure
operator. The eigenvalue decomposition V @g C = V1.0 @ V01 s called the
Hodge decomposition; here I|V1,o = +—1 Id, and I|Vo,1 = —+/—1 Id.

REMARK: One can reconstruct I from the space V1.0 ¢ V @ C. Indeed,
take V01 =v1,0 and let I act on V91 as /=1 I1d, and on V%1 as —/=1 Id.
Since thus defined operator I € End(V®rC) commutes with the complex con-
jugation, it is real, that is, preserves V C VQrC. This gives an identification
between the set of complex structures on V,dimrp V= 2n, and an open
part of the Grassmann space Gr,(V ®r C) consisting of all subspaces
W C V @r C satisfying W N W = 0.

DEFINITION: An almost complex structure on a real 2n-manifold M
is an operator I € End(TM) satisfying I2 = — Idp,s, oOr, equivalently, an n-
dimensional sub-bundle T1.9M ¢ TM @i C such that THOM NTL.0M = 0. The
almost complex structure called integrable (and M a complex manifold) if
T1.OM satisfies [T1OM, T19M] c T1OM.
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Generalized almost complex structures

DEFINITION: Let M be a real 2n-manifold, and V =TM  T*M. Consider
the standard symmetric pairing on V of signature (2n,2n),

((v,v), (W, V)) = v®) + V().

Let I € EndV an orthogonal operator satisfying 2 = —Idy,. Then I is called
a generalized almost complex structure.

DEFINITION: Let V be an even-dimensional vector space equipped with a
non-degenerate scalar product h, and W C V a subspace. Then W is called
iIsotropic if h|jy = 0, and maximal isotropic if dimW = %dim V.

EXERCISE: Prove the dimension of an isotropic subspace is always
< 5dimV.

REMARK: Let V =TM&T*M, I € End(V) a generalized almost complex
structure, and V1.0 ¢ V@R C be the /—1-eigenspace. Then V1.0 is maximal
isotropic. Indeed, (v,v") = (Iv, [v') = —(v,v') for all v,v' € V1.0,

11
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Maximal isotropic subspaces

CLAIM: Let M be a smooth manifold, V =TM @ T*M. The generalized
almost complex structures I ¢ End(V) are in bijective corresponidence
with maximal isotropic subbundles V1.0 ¢ V®gC satisfying V1:9nv1.0 = 0.

Proof. Step 1: Let I € End(V) a generalized almost complex structure,
and V1.0 ¢ vV @ C its /—1 -eigenspace. As shown above, V1.0 is maximal
Isotropic. It remains to show that this correspondence is bijective.

Step 2: Let V1.0 ¢ V @z C be a maximal isotropic subbundle, satisfying
V0N Vv10 = 0. Then V@rC = V1.0 @ V10 Define I € End(V) using
I‘Vl,o — /=1 Id, and I‘m = —/—11d. Then I2 = —Idy. To prove that
I is generalized almost complex, it remains only to show that I is
orthogonal.

Step 3: (-,-}‘Vl,o = (-,-}‘m = 0, because V1.0 is isotropic, and for any
ve VO o € V1.0 one has (Iv, Iv) = (/=1 v, —v/—1 ') = (v,7'). =
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Generalized complex structures

DEFINITION: A generalized almost complex structure I on M is integrable
if [V10 v10], c V1.0 Then I is called a generalized complex structure,
and M a generalized complex manifold.

CLAIM: Let w be a non-degenerate 2-form on M. Consider an almost com-

plex structure I € End(TM @& T*M) written as I := (w(ll _Ow> :

Then I is integrable if and only if dw = 0.
Proof: Later today (uses spinors). =

CLAIM: Let (M,J) be a complex manifold. Consider an almost complex

structure I € End(TM & T*M) written as I := ('C]) _(?]*> Then [ is inte-

grable.

Proof: A pair (v,v) belongs to V1.0 if v € T1O0M and v € ADL(M). Writing
[(v,v), (v, V)] = ([v,v'],,(dV") — Lieyv), we notice that dv/ is of Hodge type
(0,2)4(1,1) by integrability of J, hence i,(dv’) is of type (0,1), and Lie, v =
{i,,d}v =1i,(dv) is of type (0,1) for the same reason. =
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Pure spinors and generalized complex structures

REMARK: Let (V,h) be a vector space equipped with a scalar product, S
the corresponding spinors, and V ® S — S the Clifford multiplication. Given
a non-zero spinor W € S, consider the space

kerwW := {veV | v-¥ =0}

Then ker W is isotropic. Indeed, for each u,v € ker ¥, one has 0 = uwvW¥V +
uoW = h(u,v)W.

DEFINITION: (Cartan, Chevalley)
W € S is a pure spinor if ker W is maximal isotropic.

THEOREM: (Chevalley) Let (V,h) be a vector space equipped with a scalar
product, and S its spinor space. Then for each maximally isotropic subspace
W CV, one has W = ker WV for some pure spinor W < S, which is unique
up to a scalar multiplier.

Proof: Identifying V with W @ W*, we obtain an identification S = A*W as
above. Let wq,...,wy, be a basis in W. Then kerwi Awo A ... Nwp = W.

Converse is also obvious: if W € A*W satisfies W AW = 0, one has WV =

Cwi Awo A ... Nwp,. W
14
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Pure spinors and maximally isotropic subspaces in TM & T*M

DEFINITION: Let V =TM®T*M, and S = AN*(M) the corresponding spinor
space. In this situation, a pure spinor is a nowhere vanishing differential
form W € A*(M) such that the kernel ker W of the Clifford multiplication
v : V— A*(M) has maximal possible dimension.

EXAMPLE: Let (M,J) be a complex n-manifold, and I the generalized
complex structure constructed as in above. The corresponding pure spinor Is
any non-degenerate section of A™9(M,.J). (check this).

EXAMPLE: Let (M,w) be a symplectic n-manifold, and I the generalized

complex structure [ = ( 0 ) as above. The corresponding pure

w1l 0
spinor is W = ¢V~ 1« Indeed, V!0 is spanned by iy — V=1 e; (., for all
r € TM. Since iy is a derivation, one has iz(eV1%) = /=1 iz(w) A eV 1w,
giving

e —V—1 eix(w)(Ei” —1w) = +v—1 ?:g;(w)Ei” —lw _ v—1 eix(w)(GV —1w) = 0.
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Pure spinors and generalized complex structures

THEOREM: Let L be a maximal isotropic subbundle in V. = TM & T*M,
and W € A*M the corresponding spinor. Then L satisfies [L,L]; C L if and
only if dVV =tW, for some tc V.

Proof. Step 1: If u,v € ker WV, then

[u, v] ¥V = [du + ud, v] ¥V = duvWV + udoWV — vduW — vudWV = —vudWV.

Since u,v € ker W, this gives [u,v];V = —vudWV. If d¥ = tW, one has
[u, v] WV = —vutWV = vtuWV — v(u,t) ¥V = 0.

Step 2: It remains to show that [L, L]; C L implies that dW = tW, where W is
a pure spinor such that L = ker W. Consider the filtration on the spinor bundle
S=N(M), with Sog =(V), 51 =V -V ... 5;,=V-5;_1. Denote L = ker W by
V510 Let A"V10 ¢ @I(V) be the subspace in the Clifford algebra generated
by the monomials of degree r on V51,9, Clearly,

S,={seS | NTy10s =0} (%)

As shown above, [L,L]; C L is equivalent to —vudW = 0 for all u,v € L By
(*), d¥ € Sy for all pure spinors W inducing integrable generalized complex

structure. However, S1 =V - V. =
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Pure spinors on symplectic manifolds

COROLLARY: If w is a symplectic form, the generalized almost complex

structure 01 is integrable. Indeed, the corresponding spinor is e%,

w™ 0]
and it is closed as a differential form.

DEFINITION: (Hitchin)

A generalized Calabi-Yau manifold is a generalized complex manifold, with
the generalized complex structure defined by a pure spinor represented by a
closed differential form.

EXAMPLE: Calabi-Yau manifolds and symplectic manifolds are generalized
Calabi-Yau.
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