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Clifford algebras

DEFINITION: A Clifford algebra Cl(V, q) of a vector space V with a scalar

product q is an algebra generated by V with a relation xy + yx = q(x, y)1.

EXAMPLE: Suppose that q = 0. Then xy = −yx, hence the Clifford

algebra Cl(V, q) for q = 0 is isomorphic to the Grassmann algebra:

Cl(V, q) = Λ∗V .

EXAMPLE: Denote the k-dimensional space Rk with a scalar product of

signature (q, p) by (Rn,+, ...,+︸ ︷︷ ︸
q

,−, ...,−︸ ︷︷ ︸
p

). Clearly, Cl(R,−) = R[t]/(t2 = −1) =

C, and Cl(R,+) = R[t]/(t2 = 1) = R⊕ R.

EXERCISE: Prove that Cl(R2,−,−) is isomorphic to the quaternion algebra,

and Cl(R2,+,+), Cl(R2,+,−) are isomorphic to the algebra of 2x2-matrices,

Cl(R2,+,+) ∼= Cl(R2,+,−) ∼= Mat(2,R).
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Filtered algebras

DEFINITION: Let A0 ⊂ A1 ⊂ A2 ⊂ ... be a sequence of subspaces of an
algebra A =

⋃
Ai. We say that {Ai} is a multiplicative filtration if Ai ·Aj ⊂

Ai+j. In this case A is called a filtered algebra.

EXERCISE: Prove that the direct sum
⊕
iAi/Ai−1 is equipped with an

algebra structure: a ∈ Ai mod Ai−1 multiplied by a′ ∈ Aj mod Aj−1 gives
aa′ ∈ Aij mod Aij−1.

DEFINITION: Let A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ A be a filtered algebra. Associated
graded algebra of this filtration is

⊕
iAi/Ai−1 with the algebra structure

defined above.

CLAIM: Let Cl(V, q) be a Clifford algebra, and Cl0(V, q) = k · 1 the field of
constants, Cl1(V ) = Cl0(V, q) ⊕ V , and Cl i(V, q) := Cl1(V, q), ..., Cl1(V, q)︸ ︷︷ ︸

i times

. This

gives a filtration on Cl(V, q). Then the associated graded algebra is the
Grassmann algebra Λ∗V .

Proof: Modulo lower terms of the filtration, the Clifford relations give xy +
yx = 0.

COROLLARY: dimCl(V ) = 2dimV .
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Cl(W ⊕W ∗)

THEOREM: Let V := W ⊕W ∗, with the usual pairing 〈(x+ ξ), (x′+ ξ′)〉 =
ξ(x′) + ξ′(x). Then Cl(V ) is naturally isomorphic to Mat(Λ∗V ∗).

Proof. Step 1: Consider the convolution map W ⊗ ΛiW ∗ −→ Λi−1W ∗, with
v⊗ ξ −→ ξ(v, ·, ·, . . . , ·) denoted by v, ξ −→ iv(ξ) and the extertior multiplication
map W ∗⊗ΛiW ∗ −→ Λi−1W ∗, with ν⊗ ξ −→ ν∧ ξ, denoted by ν, ξ −→ eν(ξ). Let

V ⊗ Λ∗W ∗ Γ−→ Λ∗W ∗ map (v, ν)⊗ ξ to iv(ξ) + eν(ξ).

Then all iv pairwise anticommute, all eν pairwise anticommute, and the anti-
commutator {iv, eν} is a scalar operator of multiplication by a number ν(v).

To prove the last assertion without any calculations, we notice that iv is an
odd derivation of the Grassmann algebra, eν is a linear operator, and
a commutator of a derivation and a linear operator is linear, hence one
has

{iv, eν}(a) = {iv, eν}(1) ∧ a = ν(v) · a.

Step 2: These relation imply that the map V ⊗ Λ∗W ∗ Γ−→ Λ∗W ∗, called the
Clifford multiplication map, is extended to a homomorphism Cl(V )−→ Mat(Λ∗W ∗).
I’s not hard to show that this map is surjective. Since dimCl(V ) = 2dimV =
22 dimW = dim Mat(Λ∗W ∗), this also implies that Cl(V ) ∼= Mat(Λ∗W ∗).
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Spinoprial representation

REMARK: The Lie group SO(V, q) acts on Cl(V, q) by automorphisms. How-

ever, Aut(Mat(S)) = PSL(S) (this is left as an exercise). This gives a group

homomorphism SO(V, q)−→ PSL(S). Lifting this homomorphism to the uni-

versal covering Spin(V )−→ SL(S), we obtain the spinorial representation

of the spin group Spin(V ); it is a smallest faithfull representation of the spin

group.

DEFINITION: Let M be a smooth manifold, V = TM ⊕ T ∗M and S =

Λ∗(M). Consider the Clifford multiplication V⊗S −→ S, we obtain the Clifford

multiplication map Γ : V ⊗Λ∗M −→ Λ∗M written as (v, ν)⊗ξ Γ7→ iv(ξ)+eν(ξ).
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Graded vector spaces

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i. If V ∗

is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗) is also

graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j).

DEFINITION: A graded algebra (or “graded associative algebra”) is an as-
sociative algebra A∗ =

⊕
i∈ZA

i, with the product compatible with the grading:
Ai ·Aj ⊂ Ai+j.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.
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Loday bracket

From now on, we use the notation [·, ·] for the supercommutator.

DEFINITION: Let A =
⊕
Ai be a graded associative algebra, and d : A−→A

an odd endomorphism satisfying d2 = 0. Define the Loday bracket [a, b]d :=

(−1)ã[d(a), b].

EXERCISE: Prove that the Loday bracket satisfies the graded Jacobi

identity:

[a, [b, c]d]d = [[a, b]d, c]d + (−1)ã̃b[b, [a, c]d]d.
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Loday gracket on endomorphisms of de Rham algebra

CLAIM: Now let A be the graded algebra End(Λ∗M), where M is a smooth

manifold, and d the de Rham differential, acting on A as d(a) = [d, a]. Then

[eη, eη′]d = 0 and

[ix, iy]d =i[x,y]

[eη, ix]d =[edη, ix] = eix(dη)

[ix, eη]d = Liex eη = eLiex η

for all x, y ∈ TM, η, η′ ∈ Λ1M.

Proof. Step 1: Cartan’s formula gives [d, iv] = Liev (we use [·, ·] for the

supercommutator). Then [ix, iy]d = [Liex, iy] = iLiex y = i[x,y].

Step 2: Since ix is a derivation of the de Rham algebra (prove this), the

commutator [ix, eη] is linear, and this gives [ix, eξ](a) = ixeξ(1) · a = ix(ξ) · a.

Then [eη, ix]d = edηyx.

Step 3: The last formula follows from [d, ix] = Liex and [Liex, eη] = eLiex η.
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Courant bracket

COROLLARY: Let V := TM ⊕ T ∗M . Consider the Clifford multiplication

map Γ : V ⊗ Λ∗M −→ Λ∗M , and let x, x′ ∈ V , with x = (x, ν), x′ = (v′, ν′).

Then [Γx,Γx′]d = Γy, where y = ([v, v′], iv(dν′)− Liev′ ν).

DEFINITION: We define the Courant bracket on TM ⊕ T ∗M :

[(v, ν), (v′, ν′)]d := ([v, v′], iv(dν′)− Liev′ ν).

REMARK: The Courant bracket is Loday bracket applied to the Clifford

multiplication operators.

CLAIM: [a, b]d + [v, u]d = −d〈a, b〉

Proof: d〈x, η〉 = d(ixη) = Liex η − ix(dη)

REMARK: The skew-symmetric bracket [a, b]D := [a, b]d− [b, a]d is called the

Dorfman bracket, after I. Ya. Dorfman.
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Complex structures

DEFINITION: Let V be a real vector space. A complex structure operator
on V is I ∈ Hom(V, V ) satisfying I2 = − IdV .
CLAIM: The eigenvalues αi of I are ±

√
−1 . Moreover, I diagonalizable

over C.

DEFINITION: Let V be a vector space, and I ∈ End(V ) a complex structure
operator. The eigenvalue decomposition V ⊗R C = V 1,0 ⊕ V 0,1 is called the
Hodge decomposition; here I

∣∣∣V 1,0 =
√
−1 Id, and I

∣∣∣V 0,1 = −
√
−1 Id.

REMARK: One can reconstruct I from the space V 1,0 ⊂ V ⊗R C. Indeed,
take V 0,1 = V 1,0, and let I act on V 0,1 as

√
−1 Id, and on V 0,1 as −

√
−1 Id.

Since thus defined operator I ∈ End(V ⊗RC) commutes with the complex con-
jugation, it is real, that is, preserves V ⊂ V ⊗RC. This gives an identification
between the set of complex structures on V,dimR V = 2n, and an open
part of the Grassmann space Grn(V ⊗R C) consisting of all subspaces
W ⊂ V ⊗R C satisfying W ∩W = 0.

DEFINITION: An almost complex structure on a real 2n-manifold M
is an operator I ∈ End(TM) satisfying I2 = − IdTM , or, equivalently, an n-
dimensional sub-bundle T1,0M ⊂ TM ⊗RC such that T1,0M ∩T1,0M = 0. The
almost complex structure called integrable (and M a complex manifold) if
T1,0M satisfies [T1,0M,T1,0M ] ⊂ T1,0M .
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Generalized almost complex structures

DEFINITION: Let M be a real 2n-manifold, and V = TM ⊕ T ∗M . Consider

the standard symmetric pairing on V of signature (2n,2n),

〈(v, ν), (v′, ν′)〉 := ν(v′) + ν′(v).

Let I ∈ EndV an orthogonal operator satisfying I2 = − IdV . Then I is called

a generalized almost complex structure.

DEFINITION: Let V be an even-dimensional vector space equipped with a

non-degenerate scalar product h, and W ⊂ V a subspace. Then W is called

isotropic if h|W = 0, and maximal isotropic if dimW = 1
2 dimV .

EXERCISE: Prove the dimension of an isotropic subspace is always

6 1
2 dimV .

REMARK: Let V = TM ⊕ T ∗M , I ∈ End(V ) a generalized almost complex

structure, and V 1,0 ⊂ V ⊗RC be the
√
−1-eigenspace. Then V 1,0 is maximal

isotropic. Indeed, 〈v, v′〉 = 〈Iv, Iv′〉 = −〈v, v′〉 for all v, v′ ∈ V 1,0.
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Maximal isotropic subspaces

CLAIM: Let M be a smooth manifold, V = TM ⊕ T ∗M . The generalized

almost complex structures I ∈ End(V ) are in bijective corresponidence

with maximal isotropic subbundles V 1,0 ⊂ V ⊗RC satisfying V 1,0∩V 1,0 = 0.

Proof. Step 1: Let I ∈ End(V ) a generalized almost complex structure,

and V 1,0 ⊂ V ⊗R C its
√
−1 -eigenspace. As shown above, V 1,0 is maximal

isotropic. It remains to show that this correspondence is bijective.

Step 2: Let V 1,0 ⊂ V ⊗R C be a maximal isotropic subbundle, satisfying

V 1,0 ∩ V 1,0 = 0. Then V ⊗R C = V 1,0 ⊕ V 1,0. Define I ∈ End(V ) using

I
∣∣∣V 1,0 =

√
−1 Id, and I

∣∣∣
V 1,0 = −

√
−1 Id. Then I2 = − IdV . To prove that

I is generalized almost complex, it remains only to show that I is

orthogonal.

Step 3: 〈·, ·〉
∣∣∣V 1,0 = 〈·, ·〉

∣∣∣
V 1,0 = 0, because V 1,0 is isotropic, and for any

v ∈ V 1,0, v′ ∈ V 1,0, one has 〈Iv, Iv′〉 = 〈
√
−1 v,−

√
−1 v′〉 = 〈v, v′〉.
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Generalized complex structures

DEFINITION: A generalized almost complex structure I on M is integrable
if [V 1,0, V 1,0]d ⊂ V 1,0. Then I is called a generalized complex structure,
and M a generalized complex manifold.

CLAIM: Let ω be a non-degenerate 2-form on M . Consider an almost com-

plex structure I ∈ End(TM ⊕ T ∗M) written as I :=

(
0 −ω
ω−1 0

)
.

Then I is integrable if and only if dω = 0.

Proof: Later today (uses spinors).

CLAIM: Let (M,J) be a complex manifold. Consider an almost complex

structure I ∈ End(TM ⊕ T ∗M) written as I :=

(
J 0
0 −J∗

)
. Then I is inte-

grable.

Proof: A pair (v, ν) belongs to V 1,0 if v ∈ T1,0M and ν ∈ Λ0,1(M). Writing
[(v, ν), (v′, ν′)]d = ([v, v′], iv(dν′)− Liev′ ν), we notice that dν′ is of Hodge type
(0,2)+(1,1) by integrability of J, hence iv(dν′) is of type (0,1), and Liev′ ν =
{iv′, d}ν = iv′(dν) is of type (0,1) for the same reason.
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Pure spinors and generalized complex structures

REMARK: Let (V, h) be a vector space equipped with a scalar product, S
the corresponding spinors, and V ⊗ S −→ S the Clifford multiplication. Given
a non-zero spinor Ψ ∈ S, consider the space

ker Ψ := {v ∈ V | v ·Ψ = 0}.
Then ker Ψ is isotropic. Indeed, for each u, v ∈ ker Ψ, one has 0 = uvΨ +
uvΨ = h(u, v)Ψ.

DEFINITION: (Cartan, Chevalley)
Ψ ∈ S is a pure spinor if ker Ψ is maximal isotropic.

THEOREM: (Chevalley) Let (V, h) be a vector space equipped with a scalar
product, and S its spinor space. Then for each maximally isotropic subspace
W ⊂ V , one has W = ker Ψ for some pure spinor Ψ ∈ S, which is unique
up to a scalar multiplier.

Proof: Identifying V with W ⊕W ∗, we obtain an identification S = Λ∗W as
above. Let w1, ..., wn be a basis in W . Then kerw1 ∧ w2 ∧ ... ∧ wn = W .

Converse is also obvious: if Ψ ∈ Λ∗W satisfies W ∧ Ψ = 0, one has Ψ =
Cw1 ∧ w2 ∧ ... ∧ wn.
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Pure spinors and maximally isotropic subspaces in TM ⊕ T ∗M

DEFINITION: Let V = TM⊕T ∗M , and S = Λ∗(M) the corresponding spinor

space. In this situation, a pure spinor is a nowhere vanishing differential

form Ψ ∈ Λ∗(M) such that the kernel ker Ψ of the Clifford multiplication

ΓΨ : V −→ Λ∗(M) has maximal possible dimension.

EXAMPLE: Let (M,J) be a complex n-manifold, and I the generalized

complex structure constructed as in above. The corresponding pure spinor is

any non-degenerate section of Λn,0(M,J). (check this).

EXAMPLE: Let (M,ω) be a symplectic n-manifold, and I the generalized

complex structure I :=

(
0 −ω
ω−1 0

)
as above. The corresponding pure

spinor is Ψ = e
√
−1 ω. Indeed, V 1,0 is spanned by ix −

√
−1 eix(ω), for all

x ∈ TM . Since ix is a derivation, one has ix(e
√
−1 ω) =

√
−1 ix(ω) ∧ e

√
−1 ω,

giving

ix −
√
−1 eix(ω)(e

√
−1 ω) =

√
−1 ix(ω)e

√
−1 ω −

√
−1 eix(ω)(e

√
−1 ω) = 0.
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Pure spinors and generalized complex structures

THEOREM: Let L be a maximal isotropic subbundle in V = TM ⊕ T ∗M ,
and Ψ ∈ Λ∗M the corresponding spinor. Then L satisfies [L,L]d ⊂ L if and

only if dΨ = tΨ, for some t ∈ V .

Proof. Step 1: If u, v ∈ ker Ψ, then

[u, v]dΨ = [du+ ud, v]Ψ = duvΨ + udvΨ− vduΨ− vudΨ = −vudΨ.

Since u, v ∈ ker Ψ, this gives [u, v]dΨ = −vudΨ. If dΨ = tΨ, one has
[u, v]dΨ = −vutΨ = vtuΨ− v(u, t)Ψ = 0.

Step 2: It remains to show that [L,L]d ⊂ L implies that dΨ = tΨ, where Ψ is
a pure spinor such that L = ker Ψ. Consider the filtration on the spinor bundle
S = Λ∗(M), with S0 = 〈Ψ〉, S1 = V ·Ψ, ..., Sd = V · Sd−1. Denote L = ker Ψ by
V 1,0. Let ΛrV 1,0 ⊂ Cl(V ) be the subspace in the Clifford algebra generated
by the monomials of degree r on V 1,0. Clearly,

Sr = {s ∈ S | Λr+1V 1,0s = 0}. (∗)

As shown above, [L,L]d ⊂ L is equivalent to −vudΨ = 0 for all u, v ∈ L By
(*), dΨ ∈ S1 for all pure spinors Ψ inducing integrable generalized complex
structure. However, S1 = V ·Ψ.
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Pure spinors on symplectic manifolds

COROLLARY: If ω is a symplectic form, the generalized almost complex

structure

(
0 −ω
ω−1 0

)
is integrable. Indeed, the corresponding spinor is eω,

and it is closed as a differential form.

DEFINITION: (Hitchin)

A generalized Calabi-Yau manifold is a generalized complex manifold, with

the generalized complex structure defined by a pure spinor represented by a

closed differential form.

EXAMPLE: Calabi-Yau manifolds and symplectic manifolds are generalized

Calabi-Yau.

17


