Generalized complex structures and derived brackets

Misha Verbitsky
Geometric structures on manifolds,
IMPA, 11.04.2024

Clifford algebras

DEFINITION: A Clifford algebra $C l(V, q)$ of a vector space V with a scalar product q is an algebra generated by V with a relation $x y+y x=q(x, y) 1$.

EXAMPLE: Suppose that $q=0$. Then $x y=-y x$, hence the Clifford algebra $\mathcal{C l}(V, q)$ for $q=0$ is isomorphic to the Grassmann algebra: $C l(V, q)=\wedge^{*} V$.

EXAMPLE: Denote the k-dimensional space \mathbb{R}^{k} with a scalar product of signature (q, p) by $(\mathbb{R}^{n}, \underbrace{+, \ldots,+}_{q}, \underbrace{-, \ldots,-}_{p})$. Clearly, $\mathcal{C l}(\mathbb{R},-)=\mathbb{R}[t] /\left(t^{2}=-1\right)=$ \mathbb{C}, and $C l(\mathbb{R},+)=\mathbb{R}[t] /\left(t^{2}=1\right)=\mathbb{R} \oplus \mathbb{R}$.

EXERCISE: Prove that $\mathcal{C l}\left(\mathbb{R}^{2},-,-\right)$ is isomorphic to the quaternion algebra, and $\mathcal{C l}\left(\mathbb{R}^{2},+,+\right), \mathcal{C l}\left(\mathbb{R}^{2},+,-\right)$ are isomorphic to the algebra of 2×2-matrices, $c l\left(\mathbb{R}^{2},+,+\right) \cong c l\left(\mathbb{R}^{2},+,-\right) \cong \operatorname{Mat}(2, \mathbb{R})$.

Filtered algebras

DEFINITION: Let $A_{0} \subset A_{1} \subset A_{2} \subset \ldots$ be a sequence of subspaces of an algebra $A=\cup A_{i}$. We say that $\left\{A_{i}\right\}$ is a multiplicative filtration if $A_{i} \cdot A_{j} \subset$ A_{i+j}. In this case A is called a filtered algebra.

EXERCISE: Prove that the direct sum $\oplus_{i} A_{i} / A_{i-1}$ is equipped with an algebra structure: $a \in A_{i}$ mod A_{i-1} multiplied by $a^{\prime} \in A_{j} \bmod A_{j-1}$ gives $a a^{\prime} \in A_{i j} \bmod A_{i j-1}$.

DEFINITION: Let $A_{0} \subset A_{1} \subset A_{2} \subset \ldots \subset A$ be a filtered algebra. Associated graded algebra of this filtration is $\oplus_{i} A_{i} / A_{i-1}$ with the algebra structure defined above.

CLAIM: Let $\mathcal{C l}(V, q)$ be a Clifford algebra, and $C l_{0}(V, q)=k \cdot 1$ the field of constants, $C_{1}(V)=C l_{0}(V, q) \oplus V$, and $l_{i}(V, q):=\underbrace{\mathcal{C l}_{1}(V, q), \ldots l_{1}(V, q)}_{i \text { times }}$. This gives a filtration on $\mathcal{C l}(V, q)$. Then the associated graded algebra is the Grassmann algebra $\wedge^{*} V$.

Proof: Modulo lower terms of the filtration, the Clifford relations give $x y+$ $y x=0$.

COROLLARY: $\operatorname{dim} \mathcal{C l}(V)=2^{\operatorname{dim} V}$.
$\mathrm{Cl}\left(W \oplus W^{*}\right)$
THEOREM: Let $V:=W \oplus W^{*}$, with the usual pairing $\left\langle(x+\xi),\left(x^{\prime}+\xi^{\prime}\right)\right\rangle=$ $\xi\left(x^{\prime}\right)+\xi^{\prime}(x)$. Then $C l(V)$ is naturally isomorphic to $\operatorname{Mat}\left(\wedge^{*} V^{*}\right)$.

Proof. Step 1: Consider the convolution map $W \otimes \wedge^{i} W^{*} \longrightarrow \wedge^{i-1} W^{*}$, with $v \otimes \xi \longrightarrow \xi(v, \cdot, \cdot, \ldots, \cdot)$ denoted by $v, \xi \longrightarrow i v(\xi)$ and the extertior multiplication $\operatorname{map} W^{*} \otimes \wedge^{i} W^{*} \longrightarrow \wedge^{i-1} W^{*}$, with $\nu \otimes \xi \longrightarrow \nu \wedge \xi$, denoted by $\nu, \xi \longrightarrow e_{\nu}(\xi)$. Let $V \otimes \wedge^{*} W^{*} \xrightarrow{\ulcorner } \wedge^{*} W^{*} \operatorname{map}(v, \nu) \otimes \xi$ to $i_{v}(\xi)+e_{\nu}(\xi)$.

Then all i_{v} pairwise anticommute, all e_{ν} pairwise anticommute, and the anticommutator $\left\{i_{v}, e_{\nu}\right\}$ is a scalar operator of multiplication by a number $\nu(v)$.

To prove the last assertion without any calculations, we notice that i_{v} is an odd derivation of the Grassmann algebra, e_{ν} is a linear operator, and a commutator of a derivation and a linear operator is linear, hence one has

$$
\left\{i_{v}, e_{\nu}\right\}(a)=\left\{i_{v}, e_{\nu}\right\}(1) \wedge a=\nu(v) \cdot a
$$

Step 2: These relation imply that the map $V \otimes \wedge^{*} W^{*} \xrightarrow{\ulcorner } \wedge^{*} W^{*}$, called the Clifford multiplication map, is extended to a homomorphism $\mathrm{Cl}(V) \longrightarrow \operatorname{Mat}\left(\wedge^{*} W^{*}\right)$. I's not hard to show that this map is surjective. Since $\operatorname{dim} \operatorname{Cl}(V)=2^{\operatorname{dim} V}=$ $2^{2 \operatorname{dim} W}=\operatorname{dim} \operatorname{Mat}\left(\wedge^{*} W^{*}\right)$, this also implies that $\operatorname{Cl}(V) \cong \operatorname{Mat}\left(\wedge^{*} W^{*}\right)$.

Spinoprial representation

REMARK: The Lie group $S O(V, q)$ acts on $\mathcal{C l}(V, q)$ by automorphisms. However, $\operatorname{Aut}(\operatorname{Mat}(S))=P S L(S)$ (this is left as an exercise). This gives a group homomorphism $S O(V, q) \longrightarrow P S L(S)$. Lifting this homomorphism to the universal covering $\operatorname{Spin}(V) \longrightarrow S L(S)$, we obtain the spinorial representation of the spin group $\operatorname{Spin}(V)$; it is a smallest faithfull representation of the spin group.

DEFINITION: Let M be a smooth manifold, $V=T M \oplus T^{*} M$ and $S=$ $\wedge^{*}(M)$. Consider the Clifford multiplication $V \otimes S \longrightarrow S$, we obtain the Clifford multiplication map $\Gamma: V \otimes \wedge^{*} M \longrightarrow \wedge^{*} M$ written as $(v, \nu) \otimes \xi \stackrel{\Gamma}{\mapsto} i_{v}(\xi)+e_{\nu}(\xi)$.

Graded vector spaces

DEFINITION: A graded vector space is a space $V^{*}=\oplus_{i \in \mathbb{Z}} V^{i}$. If V^{*} is graded, the endomorphisms space $\operatorname{End}\left(V^{*}\right)=\oplus_{i \in \mathbb{Z}} \operatorname{End}^{i}\left(V^{*}\right)$ is also graded, with $\operatorname{End}^{i}\left(V^{*}\right)=\oplus_{j \in \mathbb{Z}} \operatorname{Hom}\left(V^{j}, V^{i+j}\right)$.

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^{*}=\oplus_{i \in \mathbb{Z}} A^{i}$, with the product compatible with the grading: $A^{i} \cdot A^{j} \subset A^{i+j}$.

DEFINITION: An operator on a graded vector space is called even (odd) if it shifts the grading by even (odd) number. The parity \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even or odd.

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\}=a b-(-1)^{\tilde{a} \tilde{b}} b a$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

Loday bracket

From now on, we use the notation [., •] for the supercommutator.

DEFINITION: Let $A=\oplus A^{i}$ be a graded associative algebra, and $d: A \longrightarrow A$ an odd endomorphism satisfying $d^{2}=0$. Define the Loday bracket $[a, b]_{d}:=$ $(-1)^{\tilde{a}}[d(a), b]$.

EXERCISE: Prove that the Loday bracket satisfies the graded Jacobi identity:

$$
\left[a,[b, c]_{d}\right]_{d}=\left[[a, b]_{d}, c\right]_{d}+(-1)^{\tilde{a} \tilde{b}}\left[b,[a, c]_{d}\right]_{d}
$$

Loday gracket on endomorphisms of de Rham algebra

CLAIM: Now let A be the graded algebra End $\left(\wedge^{*} M\right)$, where M is a smooth manifold, and d the de Rham differential, acting on A as $d(a)=[d, a]$. Then $\left[e_{\eta}, e_{\eta^{\prime}}\right]_{d}=0$ and

$$
\begin{aligned}
{\left[i_{x}, i_{y}\right]_{d} } & =i_{[x, y]} \\
{\left[e_{\eta}, i_{x}\right]_{d} } & =\left[e_{d \eta}, i_{x}\right]=e_{i_{x}(d \eta)} \\
{\left[i_{x}, e_{\eta}\right]_{d} } & =\operatorname{Lie}_{x} e_{\eta}=e_{\text {Lie }_{x} \eta}
\end{aligned}
$$

for all $x, y \in T M, \eta, \eta^{\prime} \in \wedge^{1} M$.

Proof. Step 1: Cartan's formula gives $\left[d, i_{v}\right]=\operatorname{Lie}_{v}$ (we use $[\cdot, \cdot]$ for the supercommutator). Then $\left[i_{x}, i_{y}\right]_{d}=\left[\operatorname{Lie}_{x}, i_{y}\right]=i_{\text {Lie }_{x} y}=i_{[x, y]}$.

Step 2: Since i_{x} is a derivation of the de Rham algebra (prove this), the commutator $\left[i_{x}, e_{\eta}\right]$ is linear, and this gives $\left[i_{x}, e_{\xi}\right](a)=i_{x} e_{\xi}(1) \cdot a=i_{x}(\xi) \cdot a$. Then $\left.\left[e_{\eta}, i_{x}\right]_{d}=e_{d \eta}\right\lrcorner x$.

Step 3: The last formula follows from $\left[d, i_{x}\right]=\operatorname{Lie}_{x}$ and $\left[\operatorname{Lie}_{x}, e_{\eta}\right]=e_{\operatorname{Lie}_{x} \eta}$.

Courant bracket

COROLLARY: Let $V:=T M \oplus T^{*} M$. Consider the Clifford multiplication map $\Gamma: V \otimes \wedge^{*} M \longrightarrow \wedge^{*} M$, and let $x, x^{\prime} \in V$, with $x=(x, \nu), x^{\prime}=\left(v^{\prime}, \nu^{\prime}\right)$. Then $\left[\Gamma_{x}, \Gamma_{x^{\prime}}\right]_{d}=\Gamma_{y}$, where $y=\left(\left[v, v^{\prime}\right], i_{v}\left(d \nu^{\prime}\right)-\operatorname{Lie}_{v^{\prime}} \nu\right)$.

DEFINITION: We define the Courant bracket on $T M \oplus T^{*} M$:

$$
\left[(v, \nu),\left(v^{\prime}, \nu^{\prime}\right)\right]_{d}:=\left(\left[v, v^{\prime}\right], i_{v}\left(d \nu^{\prime}\right)-\operatorname{Lie}_{v^{\prime}} \nu\right)
$$

REMARK: The Courant bracket is Loday bracket applied to the Clifford multiplication operators.

CLAIM: $[a, b]_{d}+[v, u]_{d}=-d\langle a, b\rangle$

Proof: $d\langle x, \eta\rangle=d\left(i_{x} \eta\right)=\operatorname{Lie}_{x} \eta-i_{x}(d \eta)$
REMARK: The skew-symmetric bracket $[a, b]_{D}:=[a, b]_{d}-[b, a]_{d}$ is called the Dorfman bracket, after I. Ya. Dorfman.

Complex structures

DEFINITION: Let V be a real vector space. A complex structure operator on V is $I \in \operatorname{Hom}(V, V)$ satisfying $I^{2}=-\mathrm{Id}_{V}$.
CLAIM: The eigenvalues α_{i} of I are $\pm \sqrt{-1}$. Moreover, I diagonalizable over \mathbb{C}.

DEFINITION: Let V be a vector space, and $I \in \operatorname{End}(V)$ a complex structure operator. The eigenvalue decomposition $V \otimes_{\mathbb{R}} \mathbb{C}=V^{1,0} \oplus V^{0,1}$ is called the Hodge decomposition; here $\left.I\right|_{V^{1,0}}=\sqrt{-1}$ Id, and $\left.I\right|_{V^{0,1}}=-\sqrt{-1}$ Id.

REMARK: One can reconstruct I from the space $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$. Indeed, take $V^{0,1}=\overline{V^{1,0}}$, and let I act on $V^{0,1}$ as $\sqrt{-1}$ Id, and on $V^{0,1}$ as $-\sqrt{-1}$ Id. Since thus defined operator $I \in \operatorname{End}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)$ commutes with the complex conjugation, it is real, that is, preserves $V \subset V \otimes_{\mathbb{R}} \mathbb{C}$. This gives an identification between the set of complex structures on $V, \operatorname{dim}_{\mathbb{R}} V=2 n$, and an open part of the Grassmann space $G r_{n}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)$ consisting of all subspaces $W \subset V \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $W \cap \bar{W}=0$.

DEFINITION: An almost complex structure on a real $2 n$-manifold M is an operator $I \in \operatorname{End}(T M)$ satisfying $I^{2}=-\mathrm{Id}_{T M}$, or, equivalently, an n dimensional sub-bundle $T^{1,0} M \subset T M \otimes_{\mathbb{R}} \mathbb{C}$ such that $T^{1,0} M \cap \overline{T^{1,0} M}=0$. The almost complex structure called integrable (and M a complex manifold) if $T^{1,0} M$ satisfies $\left[T^{1,0} M, T^{1,0} M\right] \subset T^{1,0} M$.

Generalized almost complex structures

DEFINITION: Let M be a real $2 n$-manifold, and $V=T M \oplus T^{*} M$. Consider the standard symmetric pairing on V of signature $(2 n, 2 n)$,

$$
\left\langle(v, \nu),\left(v^{\prime}, \nu^{\prime}\right)\right\rangle:=\nu\left(v^{\prime}\right)+\nu^{\prime}(v) .
$$

Let $I \in$ End V an orthogonal operator satisfying $I^{2}=-\mathrm{Id}_{V}$. Then I is called a generalized almost complex structure.

DEFINITION: Let V be an even-dimensional vector space equipped with a non-degenerate scalar product h, and $W \subset V$ a subspace. Then W is called isotropic if $\left.h\right|_{W}=0$, and maximal isotropic if $\operatorname{dim} W=\frac{1}{2} \operatorname{dim} V$.

EXERCISE: Prove the dimension of an isotropic subspace is always $\leqslant \frac{1}{2} \operatorname{dim} V$.

REMARK: Let $V=T M \oplus T^{*} M, I \in \operatorname{End}(V)$ a generalized almost complex structure, and $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ be the $\sqrt{-1}$-eigenspace. Then $V^{1,0}$ is maximal isotropic. Indeed, $\left\langle v, v^{\prime}\right\rangle=\left\langle I v, I v^{\prime}\right\rangle=-\left\langle v, v^{\prime}\right\rangle$ for all $v, v^{\prime} \in V^{1,0}$.

Maximal isotropic subspaces

CLAIM: Let M be a smooth manifold, $V=T M \oplus T^{*} M$. The generalized almost complex structures $I \in E n d(V)$ are in bijective corresponidence with maximal isotropic subbundles $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $V^{1,0} \cap \overline{V^{1,0}}=0$.

Proof. Step 1: Let $I \in E n d(V)$ a generalized almost complex structure, and $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ its $\sqrt{-1}$-eigenspace. As shown above, $V^{1,0}$ is maximal isotropic. It remains to show that this correspondence is bijective.

Step 2: Let $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ be a maximal isotropic subbundle, satisfying $V^{1,0} \cap \overline{V^{1,0}}=0$. Then $V \otimes_{\mathbb{R}} \mathbb{C}=V^{1,0} \oplus \overline{V^{1,0}}$. Define $I \in$ End (V) using $\left.I\right|_{V^{1,0}}=\sqrt{-1}$ Id, and $\left.I\right|_{V^{1,0}}=-\sqrt{-1}$ Id. Then $I^{2}=-\mathrm{Id}_{V}$. To prove that I is generalized almost complex, it remains only to show that I is orthogonal.

Step 3: $\left.\langle\cdot, \cdot\rangle\right|_{V^{1,0}}=\left.\langle\cdot, \cdot\rangle\right|_{V^{1,0}}=0$, because $V^{1,0}$ is isotropic, and for any $v \in V^{1,0}, v^{\prime} \in \overline{V^{1,0}}$, one has $\left\langle I v, I v^{\prime}\right\rangle=\left\langle\sqrt{-1} v,-\sqrt{-1} v^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle$.

Generalized complex structures

DEFINITION: A generalized almost complex structure I on M is integrable if $\left[V^{1,0}, V^{1,0}\right]_{d} \subset V^{1,0}$. Then I is called a generalized complex structure, and M a generalized complex manifold.

CLAIM: Let ω be a non-degenerate 2-form on M. Consider an almost complex structure $I \in \operatorname{End}\left(T M \oplus T^{*} M\right)$ written as $I:=\left(\begin{array}{cc}0 & -\omega \\ \omega^{-1} & 0\end{array}\right)$.

Then I is integrable if and only if $d \omega=0$.
Proof: Later today (uses spinors).
CLAIM: Let (M, J) be a complex manifold. Consider an almost complex structure $I \in \operatorname{End}\left(T M \oplus T^{*} M\right)$ written as $I:=\left(\begin{array}{cc}J & 0 \\ 0 & -J^{*}\end{array}\right)$. Then I is integrable.

Proof: A pair (v, ν) belongs to $V^{1,0}$ if $v \in T^{1,0} M$ and $\nu \in \Lambda^{0,1}(M)$. Writing $\left[(v, \nu),\left(v^{\prime}, \nu^{\prime}\right)\right]_{d}=\left(\left[v, v^{\prime}\right], i_{v}\left(d \nu^{\prime}\right)-\mathrm{Lie}_{v^{\prime}} \nu\right)$, we notice that $d \nu^{\prime}$ is of Hodge type $(0,2)+(1,1)$ by integrability of J, hence $i_{v}\left(d \nu^{\prime}\right)$ is of type $(0,1)$, and $\mathrm{Lie}_{v^{\prime}} \nu=$ $\left\{i_{v^{\prime}}, d\right\} \nu=i_{v^{\prime}}(d \nu)$ is of type $(0,1)$ for the same reason.

Pure spinors and generalized complex structures

REMARK: Let (V, h) be a vector space equipped with a scalar product, S the corresponding spinors, and $V \otimes S \longrightarrow S$ the Clifford multiplication. Given a non-zero spinor $\Psi \in S$, consider the space

$$
\operatorname{ker} \Psi:=\{v \in V \quad \mid \quad v \cdot \Psi=0\} .
$$

Then $\operatorname{ker} \Psi$ is isotropic. Indeed, for each $u, v \in \operatorname{ker} \Psi$, one has $0=u v \Psi+$ $u v \Psi=h(u, v) \Psi$.

DEFINITION: (Cartan, Chevalley)
$\Psi \in S$ is a pure spinor if $\operatorname{ker} \psi$ is maximal isotropic.
THEOREM: (Chevalley) Let (V, h) be a vector space equipped with a scalar product, and S its spinor space. Then for each maximally isotropic subspace $W \subset V$, one has $W=\operatorname{ker} \psi$ for some pure spinor $\psi \in S$, which is unique up to a scalar multiplier.

Proof: Identifying V with $W \oplus W^{*}$, we obtain an identification $S=\wedge^{*} W$ as above. Let w_{1}, \ldots, w_{n} be a basis in W. Then $\operatorname{ker} w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}=W$.

Converse is also obvious: if $\Psi \in \wedge^{*} W$ satisfies $W \wedge \Psi=0$, one has $\Psi=$ $C w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}$.

Pure spinors and maximally isotropic subspaces in $T M \oplus T^{*} M$

DEFINITION: Let $V=T M \oplus T^{*} M$, and $S=\Lambda^{*}(M)$ the corresponding spinor space. In this situation, a pure spinor is a nowhere vanishing differential form $\psi \in \Lambda^{*}(M)$ such that the kernel $\operatorname{ker} \psi$ of the Clifford multiplication $\Gamma_{\psi}: V \longrightarrow \wedge^{*}(M)$ has maximal possible dimension.

EXAMPLE: Let (M, J) be a complex n-manifold, and I the generalized complex structure constructed as in above. The corresponding pure spinor is any non-degenerate section of $\wedge^{n, 0}(M, J)$. (check this).

EXAMPLE: Let (M, ω) be a symplectic n-manifold, and I the generalized complex structure $I:=\left(\begin{array}{cc}0 & -\omega \\ \omega^{-1} & 0\end{array}\right)$ as above. The corresponding pure spinor is $\Psi=e^{\sqrt{-1} \omega}$. Indeed, $V^{1,0}$ is spanned by $i_{x}-\sqrt{-1} e_{i_{x}(\omega)}$, for all $x \in T M$. Since i_{x} is a derivation, one has $i_{x}\left(e^{\sqrt{-1}} \omega\right)=\sqrt{-1} i_{x}(\omega) \wedge e^{\sqrt{-1} \omega}$, giving

$$
i_{x}-\sqrt{-1} e_{i_{x}(\omega)}\left(e^{\sqrt{-1} \omega}\right)=\sqrt{-1} i_{x}(\omega) e^{\sqrt{-1} \omega}-\sqrt{-1} e_{i_{x}(\omega)}\left(e^{\sqrt{-1} \omega}\right)=0
$$

Pure spinors and generalized complex structures

THEOREM: Let L be a maximal isotropic subbundle in $V=T M \oplus T^{*} M$, and $\Psi \in \Lambda^{*} M$ the corresponding spinor. Then L satisfies $[L, L]_{d} \subset L$ if and only if $d \Psi=t \Psi$, for some $t \in V$.

Proof. Step 1: If $u, v \in \operatorname{ker} \Psi$, then

$$
[u, v]_{d} \Psi=[d u+u d, v] \Psi=d u v \Psi+u d v \Psi-v d u \Psi-v u d \Psi=-v u d \Psi .
$$

Since $u, v \in \operatorname{ker} \Psi$, this gives $[u, v]_{d} \Psi=-v u d \Psi$. If $d \Psi=t \Psi$, one has $[u, v]_{d} \Psi=-v u t \Psi=v t u \Psi-v(u, t) \Psi=0$.

Step 2: It remains to show that $[L, L]_{d} \subset L$ implies that $d \Psi=t \Psi$, where Ψ is a pure spinor such that $L=\operatorname{ker} \Psi$. Consider the filtration on the spinor bundle $S=\wedge^{*}(M)$, with $S_{0}=\langle\Psi\rangle, S_{1}=V \cdot \Psi, \ldots, S_{d}=V \cdot S_{d-1}$. Denote $L=\operatorname{ker} \Psi$ by $V^{1,0}$. Let $\wedge^{r} V^{1,0} \subset \mathcal{C l}(V)$ be the subspace in the Clifford algebra generated by the monomials of degree r on $V^{1,0}$. Clearly,

$$
S_{r}=\left\{s \in S \mid \wedge^{r+1} V^{1,0_{s}}=0\right\}
$$

As shown above, $[L, L]_{d} \subset L$ is equivalent to $-v u d \Psi=0$ for all $u, v \in L$ By $(*), d \Psi \in S_{1}$ for all pure spinors Ψ inducing integrable generalized complex structure. However, $S_{1}=V \cdot \Psi$.

Pure spinors on symplectic manifolds

COROLLARY: If ω is a symplectic form, the generalized almost complex structure $\left(\begin{array}{cc}0 & -\omega \\ \omega^{-1} & 0\end{array}\right)$ is integrable. Indeed, the corresponding spinor is e^{ω}, and it is closed as a differential form.

DEFINITION: (Hitchin)
A generalized Calabi-Yau manifold is a generalized complex manifold, with the generalized complex structure defined by a pure spinor represented by a closed differential form.

EXAMPLE: Calabi-Yau manifolds and symplectic manifolds are generalized Calabi-Yau.

