Generalized complex structures and derived brackets

Misha Verbitsky

Geometric structures on manifolds,

IMPA, 20.02.2020

Clifford algebras

DEFINITION: A Clifford algebra Cl(V,q) of a vector space V with a scalar product q is an algebra generated by V with a relation xy + yx = q(x,y)1.

EXAMPLE: Suppose that q = 0. Then xy = -yx, hence the Clifford algebra $\mathcal{C}(V,q)$ for q = 0 is isomorphic to the Grassmann algebra: $\mathcal{C}(V,q) = \Lambda^*V$.

EXAMPLE: Denote the k-dimensional space \mathbb{R}^k with a scalar product of signature (q,p) by $(\mathbb{R}^n,\underbrace{+,...,+}_{q},\underbrace{-,...,-}_{p})$. Clearly, $\mathcal{C}l(\mathbb{R},-)=\mathbb{R}[t]/(t^2=-1)=\mathbb{C}$, and $\mathcal{C}l(\mathbb{R},+)=\mathbb{R}[t]/(t^2=1)=\mathbb{R}\oplus\mathbb{R}$.

EXERCISE: Prove that $\mathcal{C}l(\mathbb{R}^2, -, -)$ is isomorphic to the quaternion algebra, and $\mathcal{C}l(\mathbb{R}^2, +, +)$, $\mathcal{C}l(\mathbb{R}^2, +, -)$ are isomorphic to the algebra of 2x2-matrices, $\mathcal{C}l(\mathbb{R}^2, +, +) \cong \mathcal{C}l(\mathbb{R}^2, +, -) \cong \mathsf{Mat}(2, \mathbb{R})$.

Filtered algebras

DEFINITION: Let $A_0 \subset A_1 \subset A_2 \subset ...$ be a sequence of subspaces of an algebra $A = \bigcup A_i$. We say that $\{A_i\}$ is a multiplicative filtration if $A_i \cdot A_j \subset A_{i+j}$. In this case A is called a filtered algebra.

EXERCISE: Prove that the direct sum $\bigoplus_i A_i/A_{i-1}$ is equipped with an algebra structure: $a \in A_i \mod A_{i-1}$ multiplied by $a' \in A_j \mod A_{j-1}$ gives $aa' \in A_{ij} \mod A_{ij-1}$.

DEFINITION: Let $A_0 \subset A_1 \subset A_2 \subset ... \subset A$ be a filtered algebra. Associated graded algebra of this filtration is $\bigoplus_i A_i/A_{i-1}$ with the algebra structure defined above. **CLAIM:** Let $\mathcal{C}l(V,q)$ be a Clifford algebra, and $\mathcal{C}l_0(V,q) = k \cdot 1$ the field of constants, $\mathcal{C}l_1(V) = \mathcal{C}l_0(V,q) \oplus V$, and $\mathcal{C}l_i(V,q) := \underbrace{\mathcal{C}l_1(V,q),...,\mathcal{C}l_1(V,q)}_{i \text{ times}}$. This gives a filtration on $\mathcal{C}l(V,q)$. Then

the associated graded algebra is the Grassmann algebra Λ^*V .

Proof: Modulo lower terms of the filtration, the Clifford relations give xy + yx = 0.

COROLLARY: $\dim \mathcal{C}(V) = 2^{\dim V}$.

 $Cl(W \oplus W^*)$

THEOREM: Let $V := W \oplus W^*$, with the usual pairing $\langle (x + \xi), (x' + \xi') \rangle = \xi(x') + \xi'(x)$. Then $\mathcal{C}(V)$ is naturally isomorphic to $\mathsf{Mat}(\Lambda^*V^*)$.

Proof. Step 1: Consider the convolution map $W \otimes \Lambda^i W^* \longrightarrow \Lambda^{i-1} W^*$, with $v \otimes \xi \longrightarrow \xi(v, \cdot, \cdot, \dots, \cdot)$ denoted by $v, \xi \longrightarrow i_v(\xi)$ and the extertior multiplication map $W^* \otimes \Lambda^i W^* \longrightarrow \Lambda^{i-1} W^*$, with $v \otimes \xi \longrightarrow v \wedge \xi$, denoted by $v, \xi \longrightarrow e_v(\xi)$. Let $V \otimes \Lambda^* W^* \stackrel{\Gamma}{\longrightarrow} \Lambda^* W^*$ map $(v, v) \otimes \xi$ to $i_v(\xi) + e_v(\xi)$.

Then all i_v pairwise anticommute, all e_{ν} pairwise anticommute, and the anticommutator $\{i_v, e_{\nu}\}$ is a scalar operator of multiplication by a number $\nu(v)$.

To prove the last assertion without any calculations, we notice that i_v is an odd derivation of the Grassmann algebra, e_{ν} is a linear operator, and a commutator of a derivation and a linear operator is linear, hence one has

$$\{i_v, e_\nu\}(a) = \{i_v, e_\nu\}(1) \land a = \nu(v) \cdot a.$$

Step 2: These relation imply that the map $V \otimes \Lambda^*W^* \xrightarrow{\Gamma} \Lambda^*W^*$, called the Clifford multiplication map, is extended to a homomorphism $\mathcal{C}(V) \longrightarrow \operatorname{Mat}(\Lambda^*W^*)$. I's not hard to show that this map is surjective. Since $\dim \mathcal{C}(V) = 2^{\dim V} = 2^{2\dim W} = \dim \operatorname{Mat}(\Lambda^*W^*)$, this also implies that $\mathcal{C}(V) \cong \operatorname{Mat}(\Lambda^*W^*)$.

Spinoprial representation

REMARK: The Lie group SO(V,q) acts on Cl(V,q) by automorphisms. However, Aut(Mat(S)) = PSL(S) (this is left as an exercise). This gives a group homomorphism $SO(V,q) \longrightarrow PSL(S)$. Lifting this homomorphism to the universal covering $Spin(V) \longrightarrow SL(S)$, we obtain **the spinorial representation** of the spin group Spin(V); it is a smallest faithfull representation of the spin group.

DEFINITION: Let M be a smooth manifold, $V = TM \oplus T^*M$ and $S = \Lambda^*(M)$. Consider the Clifford multiplication $V \otimes S \longrightarrow S$, we obtain **the Clifford** multiplication map $\Gamma: V \otimes \Lambda^*M \longrightarrow \Lambda^*M$ written as $(v, \nu) \otimes \xi \stackrel{\Gamma}{\mapsto} i_v(\xi) + e_{\nu}(\xi)$.

Graded vector spaces

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$. If V^* is graded, the endomorphisms space $\operatorname{End}(V^*) = \bigoplus_{i \in \mathbb{Z}} \operatorname{End}^i(V^*)$ is also graded, with $\operatorname{End}^i(V^*) = \bigoplus_{j \in \mathbb{Z}} \operatorname{Hom}(V^j, V^{i+j})$.

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

DEFINITION: An operator on a graded vector space is called **even** (**odd**) if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a,b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

Loday bracket

From now on, we use the notation $[\cdot,\cdot]$ for the supercommutator.

DEFINITION: Let $A = \bigoplus A^i$ be a graded associative algebra, and $d: A \longrightarrow A$ an odd endomorphism satisfying $d^2 = 0$. Define the Loday bracket $[a,b]_d := (-1)^{\tilde{a}}[d(a),b]$.

EXERCISE: Prove that the Loday bracket satisfies the graded Jacobi identity:

$$[a, [b, c]_d]_d = [[a, b]_d, c]_d + (-1)^{\tilde{a}\tilde{b}}[b, [a, c]_d]_d.$$

Loday gracket on endomorphisms of de Rham algebra

CLAIM: Now let A be the superalgebra $\operatorname{End}(\Lambda^*M)$, where M is a smooth manifold, and d the de Rham differential, acting on A as d(a) = [d, a]. Then $[e_{\eta}, e_{\eta'}]_d = 0$ and

$$[i_x, i_y]_d = i_{[x,y]}$$

 $[e_{\eta}, i_x]_d = [e_{d\eta}, i_x] = e_{i_x(d\eta)}$
 $[i_x, e_{\eta}]_d = \text{Lie}_x e_{\eta} = e_{\text{Lie}_x \eta}$

for all $x, y \in TM, \eta, \eta' \in \Lambda^1M$.

Proof. Step 1: Cartan's formula gives $[d, i_v] = \text{Lie}_v$ (we use $[\cdot, \cdot]$ for the supercommutator). Then $[i_x, i_y]_d = [\text{Lie}_x, i_y] = i_{\text{Lie}_x y} = i_{[x,y]}$.

Step 2: Since i_x is a derivation of the de Rham algebra (prove this), the commutator $[i_x, e_{\eta}]$ is linear, and this gives $[i_x, e_{\xi}](a) = i_x e_{\xi}(1) \cdot a = i_x(\xi) \cdot a$. Then $[e_{\eta}, i_x]_d = e_{d\eta \perp x}$.

Step 3: The last formula follows from $[d, i_x] = \operatorname{Lie}_x$ and $[\operatorname{Lie}_x, e_{\eta}] = e_{\operatorname{Lie}_x \eta}$.

Courant bracket

COROLLARY: Let $V:=TM\oplus T^*M$. Consider the Clifford multiplication map $\Gamma: V\otimes \Lambda^*M\longrightarrow \Lambda^*M$, and let $x,x'\in V$, with $x=(x,\nu),x'=(v',\nu')$. Then $[\Gamma_x,\Gamma_{x'}]_d=\Gamma_y$, where $y=([v,v'],i_v(d\nu')-\mathrm{Lie}_{v'}\nu)$.

DEFINITION: We define the Courant bracket on $TM \oplus T^*M$:

$$[(v, \nu), (v', \nu')]_d := ([v, v'], i_v(d\nu') - \mathsf{Lie}_{v'}\nu).$$

REMARK: The **Courant bracket is Loday bracket** applied to the Clifford multiplication operators.

CLAIM: $[a,b]_d + [v,u]_d = -d\langle a,b\rangle$

Proof: $d\langle x, \eta \rangle = d(i_x \eta) = \text{Lie}_x \eta - i_x(d\eta) \blacksquare$

REMARK: The skew-symmetric bracket $[a,b]_D := [a,b]_d - [b,a]_d$ is called the **Dorfman bracket**, after I. Ya. Dorfman.

Complex structures

DEFINITION: Let V be a real vector space. A complex structure operator on V is $I \in \text{Hom}(V, V)$ satisfying $I^2 = -\text{Id}_V$.

CLAIM: The eigenvalues α_i of I are $\pm \sqrt{-1}$. Moreover, I diagonalizable over \mathbb{C} .

DEFINITION: Let V be a vector space, and $I \in \operatorname{End}(V)$ a complex structure operator. The eigenvalue decomposition $V \otimes_{\mathbb{R}} \mathbb{C} = V^{1,0} \oplus V^{0,1}$ is called **the Hodge decomposition**; here $I|_{V^{1,0}} = \sqrt{-1}$ Id, and $I|_{V^{0,1}} = -\sqrt{-1}$ Id.

REMARK: One can reconstruct I from the space $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$. Indeed, take $V^{0,1} = \overline{V^{1,0}}$, and let I act on $V^{0,1}$ as $\sqrt{-1}$ Id, and on $V^{0,1}$ as $-\sqrt{-1}$ Id. Since thus defined operator $I \in \operatorname{End}(V \otimes_{\mathbb{R}} \mathbb{C})$ commutes with the complex conjugation, it is **real**, that is, preserves $V \subset V \otimes_{\mathbb{R}} \mathbb{C}$. This gives **an identification between the set of complex structures on** $V, \dim_{\mathbb{R}} V = 2n$, **and an open part of the Grassmann space** $Gr_n(V \otimes_{\mathbb{R}} \mathbb{C})$ **consisting of all subspaces** $W \subset V \otimes_{\mathbb{R}} \mathbb{C}$ **satisfying** $W \cap \overline{W} = 0$.

DEFINITION: An almost complex structure on a real 2n-manifold M is an operator $I \in \operatorname{End}(TM)$ satisfying $I^2 = -\operatorname{Id}_{TM}$, or, equivalently, an n-dimensional sub-bundle $T^{1,0}M \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ such that $T^{1,0}M \cap \overline{T^{1,0}M} = 0$. The almost complex structure called **integrable** (and M a complex manifold) if $T^{1,0}M$ satisfies $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$.

Generalized almost complex structures

DEFINITION: Let M be a real 2n-manifold, and $V = TM \oplus T^*M$. Consider the standard symmetric pairing on V of signature (2n, 2n),

$$\langle (v,\nu),(v',\nu')\rangle := \nu(v') + \nu'(v).$$

Let $I \in \text{End } V$ an orthogonal operator satisfying $I^2 = -\text{Id}_V$. Then I is called a generalized almost complex structure.

DEFINITION: Let V be an even-dimensional vector space equipped with a non-degenerate scalar product h, and $W \subset V$ a subspace. Then W is called isotropic if $h|_W = 0$, and maximal isotropic if $\dim W = \frac{1}{2}\dim V$.

EXERCISE: Prove the dimension of an isotropic subspace is always $\leq \frac{1}{2} \dim V$.

REMARK: Let $V = TM \oplus T^*M$, $I \in \text{End}(V)$ a generalized almost complex structure, and $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ be the $\sqrt{-1}$ -eigenspace. Then $V^{1,0}$ is maximal isotropic. Indeed, $\langle v, v' \rangle = \langle Iv, Iv' \rangle = -\langle v, v' \rangle$ for all $v, v' \in V^{1,0}$.

Generalized almost complex structures and maximal isotropic subspaces

CLAIM: Let M be a smooth manifold, $V = TM \oplus T^*M$. The **generalized** almost complex structures $I \in \text{End}(V)$ are in bijective correspondence with maximal isotropic subbundles $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $V^{1,0} \cap \overline{V^{1,0}} = 0$.

Proof. Step 1: Let $I \in \text{End}(V)$ a generalized almost complex structure, and $V^{1,0} \subset V \otimes_{\mathbb{R}} \mathbb{C}$ its $\sqrt{-1}$ -eigenspace. As shown above, $V^{1,0}$ is maximal isotropic. It remains to show that this correspondence is bijective.

Step 2: Let $V^{1,0}\subset V\otimes_{\mathbb{R}}\mathbb{C}$ be a maximal isotropic subbundle, satisfying $V^{1,0}\cap \overline{V^{1,0}}=0$. Then $V\otimes_{\mathbb{R}}\mathbb{C}=V^{1,0}\oplus \overline{V^{1,0}}$. Define $I\in \mathrm{End}(V)$ using $I\big|_{V^{1,0}}=\sqrt{-1}$ Id, and $I\big|_{\overline{V^{1,0}}}=-\sqrt{-1}$ Id. Then $I^2=-\mathrm{Id}_V$. To prove that I is generalized almost complex, it remains only to show that I is orthogonal.

Step 3: $\langle \cdot, \cdot \rangle \Big|_{V^{1,0}} = \langle \cdot, \cdot \rangle \Big|_{\overline{V^{1,0}}} = 0$, because $V^{1,0}$ is isotropic, and for any $v \in V^{1,0}$, $v' \in \overline{V^{1,0}}$, one has $\langle Iv, Iv' \rangle = \langle \sqrt{-1} \ v, -\sqrt{-1} \ v' \rangle = \langle v, v' \rangle$.

Generalized complex structures

DEFINITION: A generalized almost complex structure I on M is **integrable** if $[V^{1,0},V^{1,0}]_d \subset V^{1,0}$. Then I is called a **generalized complex structure**, and M a **generalized complex manifold**.

CLAIM: Let ω be a non-degenerate 2-form on M. Consider an almost complex structure $I \in \operatorname{End}(TM \oplus T^*M)$ written as $I := \begin{pmatrix} 0 & -\omega \\ \omega^{-1} & 0 \end{pmatrix}$.

Then I is integrable if and only if $d\omega = 0$.

Proof: Later today (uses spinors). ■

CLAIM: Let (M,J) be a complex manifold. Consider an almost complex structure $I \in \operatorname{End}(TM \oplus T^*M)$ written as $I := \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}$. Then I is integrable.

Proof: A pair (v, ν) belongs to $V^{1,0}$ if $v \in T^{1,0}M$ and $\nu \in \Lambda^{0,1}(M)$. Writing $[(v, \nu), (v', \nu')]_d = ([v, v'], i_v(d\nu') - \operatorname{Lie}_{v'}\nu)$, we notice that $d\nu'$ is of Hodge type (0,2)+(1,1) by integrability of J, hence $i_v(d\nu')$ is of type (0,1), and $\operatorname{Lie}_{v'}\nu = \{i_{v'}, d\}\nu = i_{v'}(d\nu)$ is of type (0,1) for the same reason.

Pure spinors and generalized complex structures

REMARK: Let (V,h) be a vector space equipped with a scalar product, S the corresponding spinors, and $V \otimes S \longrightarrow S$ the Clifford multiplication. Given a non-zero spinor $\Psi \in S$, consider the space

$$\ker \Psi := \{ v \in V \mid v \cdot \Psi = 0 \}.$$

Then $\ker \Psi$ is isotropic. Indeed, for each $u, v \in \ker \Psi$, one has $0 = uv\Psi + uv\Psi = h(u, v)\Psi$.

DEFINITION: (Cartan, Chevalley)

 $\Psi \in S$ is a pure spinor if ker Ψ is maximal isotropic.

THEOREM: (Chevalley) Let (V,h) be a vector space equipped with a scalar product, and S its spinor space. Then for each maximally isotropic subspace $W \subset V$, one has $W = \ker \Psi$ for some pure spinor $\Psi \in S$, which is unique up to a scalar multiplier.

Proof: Identifying V with $W \oplus W^*$, we obtain an identification $S = \Lambda^*W$ as above. Let $w_1, ..., w_n$ be a basis in W. Then $\ker w_1 \wedge w_2 \wedge ... \wedge w_n = W$.

Converse is also obvious: if $\Psi \in \Lambda^*W$ satisfies $W \wedge \Psi = 0$, one has $\Psi = Cw_1 \wedge w_2 \wedge ... \wedge w_n$.

Pure spinors and maximally isotropic subspaces in $TM \oplus T^*M$

DEFINITION: Let $V = TM \oplus T^*M$, and $S = \Lambda^*(M)$ the corresponding spinor space. In this situation, a pure spinor is a nowhere vanishing differential form $\Psi \in \Lambda^*(M)$ such that the kernel ker Ψ of the Clifford multiplication $\Gamma_{\Psi}: V \longrightarrow \Lambda^*(M)$ has maximal possible dimension.

EXAMPLE: Let (M, J) be a complex n-manifold, and I the generalized complex structure constructed as in above. The corresponding pure spinor is any non-degenerate section of $\Lambda^{n,0}(M, J)$. (check this).

EXAMPLE: Let (M,ω) be a symplectic n-manifold, and I the generalized complex structure $I:=\begin{pmatrix} 0 & -\omega \\ \omega^{-1} & 0 \end{pmatrix}$ as above. The corresponding pure spinor is $\Psi=e^{\sqrt{-1}\,\omega}$. Indeed, $V^{1,0}$ is spanned by $i_x-\sqrt{-1}\,e_{i_x(\omega)}$, for all $x\in TM$. Since i_x is a derivation, one has $i_x(e^{\sqrt{-1}\,\omega})=\sqrt{-1}\,i_x(\omega)\wedge e^{\sqrt{-1}\,\omega}$, giving

$$i_x - \sqrt{-1} e_{i_x(\omega)}(e^{\sqrt{-1}\omega}) = \sqrt{-1} i_x(\omega) e^{\sqrt{-1}\omega} - \sqrt{-1} e_{i_x(\omega)}(e^{\sqrt{-1}\omega}) = 0.$$

Pure spinors and generalized complex structures

THEOREM: Let L be a maximal isotropic subbundle in $V = TM \oplus T^*M$, and $\Psi \in \Lambda^*M$ the corresponding spinor. Then L satisfies $[L,L]_d \subset L$ if and only if $d\Psi = t\Psi$, for some $t \in V$.

Proof. Step 1: If $u, v \in \ker \Psi$, then

 $[u,v]_d \Psi = [du + ud,v] \Psi = duv \Psi + udv \Psi - vdu \Psi - vud \Psi = -vud \Psi.$

Since $u, v \in \ker \Psi$, this gives $[u, v]_d \Psi = -vud\Psi$. If $d\Psi = t\Psi$, one has $[u, v]_d \Psi = -vut\Psi = vtu\Psi - v(u, t)\Psi = 0$.

Step 2: It remains to show that $[L,L]_d \subset L$ implies that $d\Psi = t\Psi$, where Ψ is a pure spinor such that $L = \ker \Psi$. Consider the filtration on the spinor bundle $S = \Lambda^*(M)$, with $S_0 = \langle \Psi \rangle, S_1 = V \cdot \Psi, ..., S_d = V \cdot S_{d-1}$. Denote $L = \ker \Psi$ by $V^{1,0}$. Let $\Lambda^r V^{1,0} \subset \mathcal{C}l(V)$ be the subspace in the Clifford algebra generated by the monomials of degree r on $V^{1,0}$. Clearly,

$$S_r = \{ s \in S \mid \Lambda^{r+1} V^{1,0} s = 0 \}.$$
 (*)

As shown above, $[L,L]_d \subset L$ is equivalent to $-vud\Psi = 0$ for all $u,v \in L$ By (*), $d\Psi \in S_1$ for all pure spinors Ψ inducing integrable generalized complex structure. However, $S_1 = V \cdot \Psi$.

Pure spinors on symplectic manifolds

COROLLARY: If ω is a symplectic form, the generalized almost complex structure $\begin{pmatrix} 0 & -\omega \\ \omega^{-1} & 0 \end{pmatrix}$ is integrable. Indeed, the corresponding spinor is e^{ω} , and it is closed as a differential form.