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Hyperkähler manifolds (reminder)

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Main result of lecture 2:

DEFINITION: A symplectic structure ω on a hyperkähler manifold is called

standard if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a

torus is of this type. It was conjectured that non-standard symplectic

structures don’t exist.

THEOREM: (E. Amerik, V.)

Let M be a maximal holonomy hyperkähler manifold. Then the period map

Per : Teichs −→H2(M,R) is an open embedding on the set of all standard

symplectic structures, and its image is the set of all cohomology classes

v such that q(ω, ω) > 0, where q is a quadratic form on cohomology defined

below.
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Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki) Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2−3,3). It is positive definite on 〈Ω,Ω, ω〉, where

ω is a Kähler form.
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Ergodicity of mapping class group action

THEOREM: (V., 2009)

Let M be a maximal holonomy hyperkähler manifold. Then the image of

the mapping class group Γ in O(H2(M,Z)) has finite index.

COROLLARY: Γ acts on Teichs with dense orbits.

Proof: We use a theorem of Calvin Moore:

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact

simple Lie group G with finite center, and H ⊂ G a non-compact semisimple

Lie subgroup. Then the left action of Γ on G/H is ergodic.

Applying this theorem to Γ inside G = SO(H2(M,R), q) and H the stabilizer

of ω ∈ H2(M,R), we obtain that the action of Γ on Teichs ⊂ H2(M,R) is

ergodic on the set of symplectic form of a given volume, hence has

dense orbits.

COROLLARY: Any continuous invariant of symplectic structures is con-

stant!
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Let’s look for such invariants!
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Plan:

1. Symplectic packing and Gromov capacities.

2. Symplectic cut and symplectic blow-up

3. Full symplectic packing for hyperkähler manifolds
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Full symplectic packing

DEFINITION: A symplectic ball is a ball of radius r in R2n, equipped with

a standard symplectic structure ω =
∑
dpi ∧ dqi.

DEFINITION: Let M be a compact symplectic manifold of volume V . We

say that M admits a full, or unobstructed, symplectic packing if for any

disconnected union S of symplectic balls of total volume less than V , S admits

a symplectic embedding to M .

DEFINITION: A symplectic structure ω on a torus is called standard if there

exists a flat torsion-free connection preserving ω.

THEOREM: (Latschev, McDuff, Schlenk, 2011)

All 4-dimensional tori with standard symplectic structures admit full

symplectic packing.
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Main result

DEFINITION: Let M be a compact symplectic manifold of volume V . We
say that M admits a full, or unobstructed, symplectic packing if for any
disconnected union S of symplectic balls of total volume less than V , S admits
a symplectic embedding to M .

DEFINITION: A symplectic structure ω on a torus is called standard if there
exists a flat torsion-free connection preserving ω. A symplectic structure ω

on a hyperkähler manifold is called standard if ω is a Kähler form for some
hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a
torus is of this type. It was conjectured that non-standard symplectic
structures don’t exist.

THEOREM: (M. Entov, V.)
Let M be a compact even-dimensional torus, or a hyperkähler manifold (such
as a K3 surface), and ω a standard symplectic form. Then (M,ω) admits a
full symplectic packing.

REMARK: In this talk, all tori are compact, even-dimensional, and sat-
isfy dimRM > 4.
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Gromov Capacity

DEFINITION: Let M be a symplectic manifold. Define Gromov capac-

ity µ(M) as the supremum of radii r, for all symplectic embeddings from a

symplectic balls Br to M .

DEFINITION: Define symplectic volume of a symplectic manifold (M,ω)

as
∫
M ω

1
2 dimRM .

REMARK: Gromov capacity is obviously bounded by the symplectic volumes:

a manifold of Gromov capacity r has volume ≥ Vol(Br). However, there are

manifolds of infinite volume with finite Gromov capacity.

THEOREM: (Gromov)

Consider a symplectic cylinder Cr := R2n−2×Br with the product symplectic

structure. Then the Gromov capacity of Cr is r.

REMARK: This result was used by Gromov to study symplectic packing in

CP2. He proved that there is no full symplectic packing, and found precise

bounds.
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Symplectic packing in CP2 (Gromov, McDuff, Polterovich, Biran)

THEOREM: Let vN be a supremum of number V such that a collection of
N equal symplectic balls of total volume V can be embedded to symplectic
CP2 of volume 1. Then

N 1 2 3 4 5 6 7 8 9 N > 9

νN 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1 1

The first few numbers are due to Gromov, last to Biran, the rest are
McDuff-Polterovich.

REMARK: These numbers are related to Nagata conjecture, which is
still unsolved (Biran used Taubes’ work on Seiberg-Witten invariants to avoid
proving it).

CONJECTURE: Suppose p1, ..., pr are very general points in CP2 and that
m1, ...,mr are given positive integers. Then for any r > 9 any curve C in
CP2 that passes through each of the points pi with multiplicity mi must
satisfy degC > 1√

r

∑r
i=1mi.

REMARK: Nagata conjecture was known already to Nagata when r is a full
square, and unknown for all other r, even when p1, ..., pr are generic.
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Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let M , N be symplectic manifolds, and ϕ : M −→N a diffeomorphism.

Suppose that for all sufficiently small, convex open sets U ⊂ M , Gromov

capacity satisfies µ(U) = µ(ϕ(U)). Then ϕ is a symplectomorphism.

REMARK: This can be used to define C0- (continuous) symplectomor-

phisms.

REMARK: Ekeland-Hofer theorem implies a theorem of Gromov-Eliashberg:

symplectomorphism group is C0-closed in the group of diffeomorphisms.
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McDuff and Polterovich for Kähler manifolds

DEFINITION: Let M be a symplectic manifold, x1, ..., xn ∈M distinct points,

and r1, ..., rn a set of positive numbers. We say that M admits symplectic

packing with centers x1, ..., xn and radii r1, ..., rn if there exists a symplectic

embedding from a disconnected union of symplectic balls of radii r1, ..., rn to

M mapping centers of balls to x1, ..., xn.

THEOREM: (McDuff, Polterovich, 1995)

Let (M,ω) be a Kähler manifold, M̃
ν−→ M its blow-up in x1, ..., xn, Ei the cor-

responding exceptional divisors, and [Ei] their fundamental classes. Assume

that the class ν∗ω −
∑
i ci[Ei] is Kähler, for some ci > 0. Then M admits a

symplectic packing with radii ri = π−1√ci.

REMARK: Converse is also true (see below).
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Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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Kähler manifolds (reminder)

DEFINITION: A Riemannian metric g on an almost complex manifold M is
called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω

is called the Kähler class of M . The set of all Kähler classes is called the

Kähler cone.
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Kähler structure on a blow-up

DEFINITION: Let S be a total space of a line bundle O(−1) on CPn,

identified with a space of pairs (z ∈ CPn, t ∈ z), where t is a point on a line

z ⊂ Cn+1 representing z. The forgetful map π : S −→ Cn+1 is called a blow-

up of Cn+1 in 0. Given an open ball B ⊂ Cn+1, the map π : π−1(B)−→B is

called a blow-up of B in 0. To blow up a point in a complex manifold M ,

we remove a ball B around this point, and replace it with a blown-up ball B̃,

gluing B\x ⊂ B̃ with B\x ⊂M .

PROBLEM: Suppose that M is Kähler, and M̃ is its blow-up. Find a Kähler

metric on M̃ and write it explicitly.

Answer: Symplectic blow-up!

REMARK: In this talk, I would often drop all π and other constants from

the equations.
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Symplectic quotient

DEFINITION: Let ρ be an S1-action on a symplectic manifold (M,ω) pre-
serving the symplectic structure, and ~v its unit tangent vector. Cartan’s
formula gives 0 = Lie~v ω = d(ωy~v), hence ωy~v is a closed 1-form. Hamilto-
nian, or moment map of ρ is an S1-invariant function µ such that dµ = ωy~v,
and symplectic quotient M//cS1 is µ−1(c)/Sn.

REMARK: In these assumptions, restriction of the symplectic form ω to
µ−1(c) vanishes on ~v, hence it is obtained as a pullback of a closed 2-
form ω// on M//cS1.

THEOREM: The form ω// is a symplectic form on M//cS1. In other words,
the symplectic quotient is a symplectic manifold.

REMARK: If, in addition, M is equipped with a Kähler structure (I, ω), and
S1-action preserves the complex structure, the symplectic quotient M//cS1

inherits the Kähler structure. In this case it is called a Kähler quotient.
Whenever the S1-action can be integrated to holomorphic C∗-action, the
Kähler quotient is identified with an open subset of its orbit space.

REMARK: The moment map is defined by dµ = ωy~v uniquely up to a
constant. However, the symplectic quotient M//cS1 = µ−1(c)/Sn depends
heavily on the choice of c ∈ R.
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Symplectic blow-up

CLAIM: Consider the standard S1-action on Cn, and let W ⊂ Cn be an S1-

invariant open subset. Consider the product V := W × C with the standard

symplectic structure and take the S1-action on C opposite to the standard

one. Then its moment map is w − t, where w(x) = |x|2 is the length

function on W and r(t) = |t|2 the length function on C.

DEFINITION: Symplectic cut of W is (W × C)//cS1.

REMARK: Geometrically, the symplectic cut is obtained as follows. Take

c ∈ R, and let Wc := {w ∈ W | |w|2 6 c}. Then Wc is a manifold with

boundary ∂Wc, which is a sphere |w|2 = c. Then (W ×C)//cS1 = (Wc×C)//cS1

is obtained from Wc by gluing each S1-orbit which lies on ∂Wc to a point.

Combinatorially, (W × C)//cS1 is Cn with 0 replaced with CPn−1.

DEFINITION: In these assumptions, symplectic blow-up of radius λ =
√
c

of W in 0 is (W × C)//cS1. Symplectic blow-up of a symplectic manifold

M is obtained by removing a symplectic ball W and gluing back a blown-up

symplectic ball (W × C)//cS1.
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McDuff and Polterovich: symplectic packing from symplectic blow-ups

DEFINITION: Let M be a symplectic manifold, x1, ..., xn ∈M distinct points,
and r1, ..., rn a set of positive numbers. We say that M admits symplectic
packing with centers x1, ..., xn and radii r1, ..., rn if there exists a symplectic
embedding from a disconnected union of symplectic balls of radii r1, ..., rn to
M mapping centers of balls to x1, ..., xn.

REMARK: The choice of xi is irrelevant, because the group of symplectic
authomorphisms acts on M infinitely transitively.

Theorem 1: (McDuff-Polterovich)
Let (M,ω) be a symplectic manifold, x1, ..., xn ∈M distinct points, and c1, ..., cn
a set of positive numbers. Let π : M̃ −→M be a symplectic blow-up with
centers in xi, and Ei ∈ H2(M̃,Z) the fundamental classes of its exceptional
divisors. Then the following conditions are equivalent.

(i) M admits a symplectic packing with radii ri = π−1√ci

(ii) For any α ∈ [0,1], there exists a form ωα(c1, ..., cn) cohomologically
equivalent to π∗ω −

∑
απciEi, symplectic for α > 0, smoothly depending on

α, and satisfying ω0(c1, ..., cn) = π∗ω.
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McDuff and Polterovich for Kähler manifolds

REMARK: In Kähler situation, the smooth dependence condition is

trivial, because for any two Kähler forms ω, ω′, straight interval connecting ω

to ω′ consists of Kähler forms (indeed, the set of Kähler forms is convex).

This brings the following corollary.

Corollary 1: Let (M,ω) be a Kähler manifold, M̃
π−→ M its blow-up in

x1, ..., xn, Ei the corresponding exceptional divisors, and [Ei] their fundamental

classes. Assume that the class π∗ω−
∑
i ci[Ei] is Kähler, for some ci > 0. Then

M admits a symplectic packing with radii ri = π−1√ci.
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McDuff and Polterovich for tamed manifold

DEFINITION: An almost complex structure I on M is tamed by a sym-

plectic form ω ∈ Λ2M if ω(x, Ix) > 0 for any non-zero tangent vector x ∈ TM .

THEOREM: (McDuff-Polterovich, 1995) Let (M,ω) be a compact sym-

plectic manifold, M̃
ν−→ M its symplectic blow-up in x1, ..., xn, Ei the cor-

responding exceptional divisors, [Ei] their fundamental classes, and r1, . . . , rk
a collection of positive numbers. Assume there exists an almost complex

structure I of on M tamed by ω and a symplectic form ω̃ on M̃ taming the

pullback almost complex structure Ĩ so that [ω̃] = ν∗[ω]−π
∑k
i=1 r

2
i [Ei]. Then

(M,ω) admits a symplectic embedding of
k⊔
i=1

B2n(ri).
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Hyperkähler manifolds (reminder)

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

COROLLARY: The group SU(2) of orthogonal quaternions acts on triples

(I, J,K) producing new hyperkähler structures.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Calabi-Yau and Bogomolov decomposition theorem (reminder)

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

CLAIM: A compact hyperkähler manifold M has maximal holonomy of

Levi-Civita connection Sp(n) if and only if π1(M) = 0, h2,0(M) = 1.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to

a product of a torus and several maximal holonomy hyperkähler mani-

folds.
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Campana simple manifolds

DEFINITION: A complex manifold M , dimCM > 1, is called Campana
simple if the union U of all complex subvarieties Z ⊂M satisfying 0 < dimZ <
dimM has measure 0. A point which belongs to M\U is called generic.

REMARK: Campana simple manifolds are non-algebraic. Indeed, a man-
ifold which admits a globally defined meromorphic function f is a union of
zero divisors for the functions f −a, for all a ∈ C, and the zero divizor for f−1.
Hence Campana simple manifolds admit no globally defined meromor-
phic functions.

EXAMPLE: A general complex torus has no non-trivial complex sub-
varieties, hence it is Campana simple.

EXAMPLE: Let (M, I, J,K) be a hyperkähler manifold, and L = aI+bJ+cK,
a2 + b2 + c2 = 1 be a complex structure induced by quaternions. Then for all
such (a, b, c) outside of a countable set, all complex subvarieties Z ⊂ (M,L)
are hyperkähler, and (unless M a finite quotient of a product)

⋃
Z Z 6= M

(V., 1994, 1996). Therefore, (M,L) is Campana simple.

CONJECTURE: (Campana)
Let M be a Campana simple Kähler manifold. Then M is bimeromorphic
to a finite quotient of a hyperkähler orbifold or a torus.
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Demailly-Paun theorem

REMARK: Let M be a compact Kähler manifold. Recall that the coho-

mology space H2(M,C) is decomposed as H2(M,C) = H2,0(M)⊕H1,1(M)⊕
H0,2(M) with H1,1(M) identified with the space of I-invariant harmonic 2-

forms, and H2,0(M)⊕H0,2(M) the space of I-antiinvariant harmonic 2-forms.

This decomposition is called Hodge decomposition. The space H1,1(M) is

a complexification of a real space H1,1(M,R) = {ν ∈ H2(M,R) | I(ν) = ν}.

THEOREM: (Demailly-Pǎun, 2002)

Let M be a compact Kähler manifold, and K̂(M) ⊂ H1,1(M,R) a subset

consisting of all (1,1)-forms η which satisfy
∫
Z η

k > 0 for any k-dimensional

complex subvariety Z ⊂ M . Then the Kähler cone of M is one of the

connected components of K̂(M).
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Kähler cone for blow-ups of Campana simple manifolds

Theorem 2: Let M be a Campana simple compact Kähler manifold, and

x1, ..., xn distinct generic points of M . Consider the blow-up M̃ of M in

x1, ..., xn, let Ei be the corresponding blow-up divisors, and [Ei] ∈ H2(M,Z) its

fundamental classes. Decompose H1,1(M̃,R) as H1,1(M̃,R) = H1,1(M,R) ⊕⊕
R[Ei]. Assume that η0 is a Kähler class on M . Then for any η = η0+ci[Ei],

the following conditions are equivalent.

(i) η is Kähler on M̃ .

(ii) all ci are negative, and
∫
M ηdimCM > 0.

Proof of (ii) ⇒ (i). Step 1:

All proper complex subvarieties of M̃ are either contained in Ei, or do not

intersect Ei. The condition “η0 is Kähler on M” implies
∫
Z η

k > 0 for all

subvarieties not intersecting Ei. Since [Ei] restricted to Ei is −[ωEi], where

ωEi is the Fubini-Study form, ci < 0 implies that
∫
Z η

k > 0 for all subvarieties

which lie in Ei. Finally, the integral of η over M̃ is positive by the assumtion∫
M ηdimCM > 0. Therefore, the condition (ii) implies that η ∈ K̂(M̃).
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Kähler cone for blow-ups of Campana simple manifolds (cont.)

Theorem 2: Let M be a Campana simple compact Kähler manifold, and
x1, ..., xn distinct generic points of M . Consider the blow-up M̃ of M in
x1, ..., xn, let Ei be the corresponding blow-up divisors, and [Ei] ∈ H2(M,Z) its
fundamental classes. Decompose H1,1(M̃,R) as H1,1(M̃,R) = H1,1(M,R) ⊕⊕

R[Ei]. Assume that η0 is a Kähler class on M . Then for any η = η0+ci[Ei],
the following conditions are equivalent.

(i) η is Kähler on M̃ .
(ii) all ci are negative, and

∫
M ηdimCM > 0.

Proof of (ii) ⇒ (i). Step 2:
The form η0 is Kähler on M , hence it lies on the boundary of the Kähler cone
of M̃ , and η0 can be obtained as a limit

η0 = lim
ε→0

η0 + εci[Ei]

of forms which lie in the same connected component of K̂(M̃). Therefore, η
belongs to the same connected component of K̂(M̃) as a Kähler form.
By Demailly-Pǎun, this implies that η is Kähler.

Proof of (i) ⇒ (ii).
The numerical conditions of (ii) mean that η ∈ K̂(M̃), hence they are satisfied
automatically, as follows from Step 1.
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Campana simple manifolds and symplectic packings

DEFINITION: Let M be a compact symplectic manifold of volume V . We

say that M admits a full symplectic packing if for any disconnected union

S of symplectic balls of total volume less than V , S admits a symplectic

embedding to M .

Theorem 3: Let (M, I, ω0) be a Kähler, compact, Campana simple manifold.

Then M admits a full symplectic packing.

Proof. Step 1: Let x1, ..., xn distinct generic points of M . Consider the

blow-up M̃ of M in x1, ..., xn, let Ei be the corresponding blow-up divisors,

and [Ei] ∈ H2(M,Z) their fundamental classes. As follows from McDuff-

Polterovich, existence of full symplectic packing on M is implied by existence

of a Kähler form ω(c1, ..., cn) on M̃ with cohomology class [ω(c1, ..., cn)] =

[ω0]−
∑
ci[Ei] for all (c1, ..., cn) satisfying

∫
M̃([ω0]−

∑
ci[Ei])

n > 0

Step 2: Such a form exists by Theorem 2.
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Symplectic packing on hyperkähler manifolds and compact tori with
irrational symplectic form

DEFINITION: A symplectic form is called irrational if its cohomology class
is irrational, that is, lies in H2(M,R)\R ·H2(M,Q).

THEOREM: Let M be a hyperkähler manifold or a compact torus, ω an
irrational, standard symplectic form, and T the set of complex structures for
which ω is Kähler. Then the set T0 ⊂ T of Campana simple complex
structures is dense in T and has full measure in the corresponding
moduli space.

Proof: The Hodge loci of hyperkähler manifolds admitting a non-hyperkähler
subvariety have positive codimension, and deformations of hyperkähler suba-
rieties never cover M .

COROLLARY: Let M be a hyperkähler manifold or a compact torus, equipped
with a standard, irrational symplectic form ω. Then M admits full sym-
plectic packing.

Proof: By definition of a standard symplectic form, there exists a complex
structure I such that ω is Kähler. Deforming I in T , we obtain a Campana
simple complex structure for which ω is Kähler. Then (M,ω) admits full
symplectic packing by Theorem 3.
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Symplectic cone and Kähler cone

DEFINITION: An almost complex structure I tames a symplectic structure
ω if ω1,1

I is a Hermitian form on (M, I).

PROPOSITION: Let (M, I, ω) be an almost complex tamed symplectic man-
ifold, and η ∈ Λ2,0+0,2(M,R) a closed real (2,0) + (0,2)-form. Then ω+ η is
also a symplectic form. Moreover, the complex structure I is tamed by
ω + η.

Proof. Step 1: Since I(η) = −η for each (2,0) + (0,2)-form η, one has
ω(x, Ix) = ω1,1(x, Ix) > 0 for each non-zero x.

Step 2: Since η1,1 = 0, one has ω + η(x, Ix) = ω1,1(x, Ix) > 0 for each
non-zero x. Therefore, ω + η is non-degenerate.

DEFINITION: A symplectic class of a manifold M is a cohomology class
of a symplectic form on M . Symplectic cone of a symplectic manifold M
is a set Symp(M) ⊂ H2(M,R) of all symplectic classes. Taming cone of
(M, I) is a cone of symplectic classes of all symplectic form taming an almost
complex structure I.

Corollary 1: Let M be a Kähler manifold, and Kah(M) its Kähler cone.
Then the taming cone of M contains Kah(M) +H2,0+0,2(M,R).
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Symplectic cone for blown-up tori and hyperkähler manifolds

Theorem 4: Let (M, I, ωI) be a compact Kähler manifold obtained as a

limit of Campana simple manifolds. Then (M,ωI) admits full symplectic

packing.

Proof. Step 1: Let B be an open neighbourhood of I in the moduli space of

complex structures on M , and B
ϕ−→ H2(M,R) a map putting J to (ωI)

1,1
J .

By Kodaira stability theorem, ϕ(J) is a Kähler class for J sufficiently close to

I. Therefore, there exists a Campana simple complex structure J such

that ωJ := (ωI)
1,1
J is Kähler, arbitrarily close to I in B.

Step 2: By Theorem 3, ηJ := ωJ+
∑
ci[Ei] is a Kähler class on a blow-up of

(M,J), with blow-up points generic. Indeed, the condition
∫
M η

dimCM
J > 0

remains true for J sufficiently close to I.

Step 3: Now, ωI − ωJ is by definition a (2,0) + (0,2)-cohomology class on

(M,J). Therefore, η = ωI +
∑
ci[Ei] is obtained from a Kähler form ηJ by

adding a (2,0)+(0,2)-form on (M,J). This implies that η belongs to taming

cone, and Theorem 4 follows from the taming version of McDuff-Polterovich.
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Further directions

1. We explored symplectic packing by symplectic balls. What about a packing
by other subsets K ⊂ R2n?

1A. Define a packing number ν(K,M) of (K,ω) to M as a supremum of all ε for
which (K, εω) admits a symplectic embedding to M . This function is obviously
semicontinuous on K and M . When K is a union of symplectic balls, and M
a hyperkähler manifold or a torus, ν(K,M) = Vol(M)

Vol(K) . Using ergodicity, it is

possible to show that ν(K,M)
Vol(M) is constant for irrational symplectic structures

on such M . Is it equal to 1? If so, we have “full packing by K”.

2. Replacing blow-ups by orbifold blow-ups and balls by symplectic ellipsoids
with rational axis length, our argument would give full packing by ellipsoids
(paper in preparation, jointly with M. Entov).

3. Let Symp be the infinite-dimensional Frechet manifold of all symplectic
forms on M , and Diff the diffeomorphism group. The full packing phenomena
seems to be related to ergodicity of Diff-action on Symp: the packing defines
a semi-continuous, Diff-invariant function on Symp, which should be a pos-
teriori constant on the set of all symplectic structures with dense Diff-orbits.
One could study other semi-continuous quantities in relation to Diff-action
and ergodicity.
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