Teichmüller spaces and moduli of geometric structures (2)

Misha Verbitsky

TWENTY-THIRD GÖKOVA GEOMETRY / TOPOLOGY CONFERENCE May 30 - June 4 (2016)

Gökova, Turkey

Plan:

- 1. Hyperkähler manifolds: basic facts
- 2. Teichmüller space of hyperkähler structures
- 3. Teichmüller space of symplectic structures of a hyperkähler manifold.

4. Ergodic action of the mapping class group on the space of symplectic structures.

Teichmüller space for symplectic structures (reminder)

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and Symp $\subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M) as a Frechet Lie group, and denote its connected component ("group of isotopies") by Diff₀. The quotient group $\Gamma := \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀. The quotient Teich_s / Γ = Symp / Diff, is called **the moduli space of symplectic structures**.

Moser's theorem (reminder)

DEFINITION: Define the period map Per: Teich_s $\longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are diffeomorphic.

Non-Hausdorff points on symplectic Teichmüller space

Example of D. McDuff found in Salamon, Dietmar, *Uniqueness of symplectic structures*, Acta Math. Vietnam. 38 (2013), no. 1, 123-144.

Let $M = S^1 \times Z^1 \times S^2 \times S^2$ with coordinates $\theta_1, \theta_2 \in S^1 \subset \mathbb{C}^*$ and $z_1, z_2 \in S^2$. Let $\varphi_{\theta,z} \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a rotation around the axis $z \in \mathbb{C}P^1$ by the angle θ . Consider the diffeomorphism $\Psi : M \longrightarrow M$ mapping $(\theta_1, \theta_2, z_1, z_2)$ to $(\theta_1, \theta_2, z_1, \varphi_{\theta_1, z_1}(z_2))$.

THEOREM: Let ω_{λ} be the product symplectic form on $M = T^2 \times \mathbb{C}P^1 \times \mathbb{C}P^1$ obtained as a product of symplectic forms of volume 1, 1, λ on T^2 , $\mathbb{C}P^1$, $\mathbb{C}P^1$. **The form** $\Psi^*(\omega_1)$ **is homologous, but not diffeomorphic to** ω_1 . However, **the form** $\Psi^*(\omega_{\lambda})$ **is diffeomorphic to** ω_{λ} **for any** $\lambda \neq 1$.

(D. McDuff, *Examples of symplectic structures*, Invent. Math. 89 (1987), 13-36.)

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}} := \Lambda^n_{\mathbb{R}} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann algebra**.

REMARK: The operator I induces U(1)-action on V by the formula $\rho(t)(v) = \cos t \cdot v + \sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.

Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

REMARK: This is equivalent to $\nabla \omega = 0$, where ∇ is Levi-Civita connection.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

CLAIM: A compact hyperkähler manifold M has maximal holonomy of Levi-Civita connection Sp(n) if and only if $\pi_1(M) = 0$, $h^{2,0}(M) = 1$.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to a product of a torus and several maximal holonomy hyperkähler manifolds.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: In this talk, all holomorphically symplectic manifolds are assumed to be Kähler and compact.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

CLAIM: In these assumptions, $\omega_J + \sqrt{-1} \omega_K$ is holomorphic symplectic on (M, I).

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold of maximal holonomy.

EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^* \mathbb{C}P^n$ (Calabi).

```
REMARK: T^* \mathbb{C}P^1 is a resolution of a singularity \mathbb{C}^2/\pm 1.
```

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A complex surface is called **K3 surface** if it a deformation of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Fujiki, Beauville) **A Hilbert scheme of a hyperkähler surface is hyperkähler.**

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the two series:** Hilbert schemes of K3, and generalized Kummer.

Main result

DEFINITION: A symplectic structure ω on a hyperkähler manifold is called **standard** if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a torus is of this type. **It was conjectured that non-standard symplectic structures don't exist.**

THEOREM: (E. Amerik, V.) Let M be a maximal holonomy hyperkähler manifold. Then the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that $q(\omega, \omega) > 0$, where q is a quadratic form on cohomology defined below.

Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki) Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(b_2-3,3)$. It is positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

MBM classes

DEFINITION: Kähler cone of a Kähler manifold is the set of all cohomology classes $\omega \in H^{1,1}(M)$

DEFINITION: Face of a Kähler cone K is a subset $V \cap \partial K$ containing an open subset of V, for some hyperplane $V \subset H^{1,1}(M)$.

DEFINITION: Let M be a hyperkähler manifold. A homology class $z \in H_2(M, \mathbb{Q})$ is called **an MBM class** (monodromy birational minimal) if for some complex structure in the same deformation class, the annihilator z^{\perp} contains a face of its Kähler cone.

DEFINITION: A cohomology class $z \in H^2(M, \mathbb{Q})$ is called **MBM class** if it becomes MBM after an identification $H^2(M, \mathbb{Q}) \cong H_2(M, \mathbb{Q})$ provided by the Bogomolov-Beauville-Fujiki form.

Properties of MBM classes

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$.

THEOREM: (E. Amerik, V.) Let (M, I) be a hyperkähler manifold, $\operatorname{rk} H^{1,1}(M, \mathbb{Z}) =$ 1, and $z \in H_{1,1}(M, I)$ a non-zero negative class. Then z is MBM if and only if $\pm z$ is Q-effective, that is, λz is represented by a complex curve.

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the two components of

$$\left\{ v \in H^{1,1}(M,\mathbb{R}) \mid \int_M \eta \wedge \eta > 0 \right\}$$

which contains a Kähler form.

THEOREM: (E. Amerik, V.) Let (M, I) be a hyperkähler manifold, and $S \subset H_{1,1}(M, I)$ the set of all MBM classes in $H_{1,1}(M, I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M, I)$. Then the Kähler cone of (M, I) is a connected component of $Pos(M, I) \setminus \cup S^{\perp}$, where Pos(M, I) is a positive cone of (M, I).

Teichmüller space of hyperkähler structures

DEFINITION: Consider the space Hyp of all hyperkähler structures (I, J, K, g), let Teich_h := Hyp / Diff₀ be the corresponding Teichmüller space, called **Te-ichmüller space of hyperkähler structures**.

DEFINITION: Consider the space $\mathbb{P}er_h$ of all triples $x, y, z \in H^2(M, \mathbb{R})$ satisfying $x^2 = y^2 = z^2 > 0$. Let $\mathbb{P}er$: $\operatorname{Teich}_h \longrightarrow \mathbb{P}er_h$ the map associating to a hyperkähler structure (M, I, J, K, g) the triple $\omega_I, \omega_J, \omega_K$. This map called **the period map for the Teichmüller space of hyperkähler structures**, and $\mathbb{P}er_h$ the period space of hyperkähler structures.

THEOREM: (E. Amerik, V.) Let M be a hyperkähler manifold of maximal holonomy, and Per : Teich_h $\longrightarrow \mathbb{P}er_h$ the period map for the Teichmüller space of hyperkähler structures. Then Per is an open embedding for each connected component. Moreover, its image is the set of all spaces $W \in \mathbb{P}er_h$ such that the orthogonal complement W^{\perp} contains no MBM classes.

Ingredients of its proof: Follows from Calabi-Yau theorem, global Torelli theorem for complex structures of hyperkähler type, and the description of the Kähler cone in terms of the MBM classes. Main idea: **bijective correspondence between hyperkähler structures and pairs** $(I, [\omega])$, where I is a complex structure of hyperkähler type, and $[\omega]$ a Kähler class on (M, I).

Torelli theorem for symplectic structures

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that q(v, v) > 0.

Proof. Step 1: Let P: Teich_h \rightarrow Teich_s be the forgetful map putting $\omega_I, \omega_J, \omega_K$ to ω_I . Calabi-Yau implies that P is surjective. Indeed, any Kähler form can be deformed to a Ricci-flat Kähler form in the same cohomology class.

Step 2: From Torelli theorem for hyperkähler structures it follows that the fiber $P^{-1}(\omega)$ of P is the space of pairs $x, y \in H^2(M)$ satisfying $x^2 = y^2 = \omega^2$, such that the space $\langle \omega, x, y \rangle^{\perp}$ contains no MBM classes.

Step 3: Since the fibers of *P* are complements to subsets of codimension 2, they are connected. By Moser's theorem, for each $(M, \omega_I, \omega_J, \omega_K) \in P^{-1}(\omega)$ **the symplectic forms** ω_I **are diffeomorphic.**

Torelli theorem for symplectic structures (2)

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that q(v, v) > 0.

Step 4: Consider the diagram

$$\begin{array}{ccc} \operatorname{Teich}_h & \xrightarrow{P} & \operatorname{Teich}_s \\ & & & & \\ & & & \\ \downarrow^{\operatorname{Per}_h} & & \operatorname{Per}_s \\ & & \\ \frac{\{x,y,z \in H^2(M) | x^2 = y^2 = z^2 > 0, \\ \langle x,y,z \rangle^{\perp} \text{ contains no MBM classes} \} & \xrightarrow{P'} & \{x \in H^2(M) | x^2 > 0\} \end{array}$$

The map Per_h is an isomorphism as shown, and the fibers of P are identified with fibers of P' as follows from Moser's theorem and Step 3. Therefore, Per_s is injective. The rest of the arrows are surjective as shown, hence Per_s is also surjective.

Teichmuller space of geometric structures 2

Ergodicity of mapping class group action

THEOREM: (V., 2009) Let M be a maximal holonomy hyperkähler manifold. Then the image of the mapping class group Γ in $O(H^2(M,\mathbb{Z}))$ has finite index.

COROLLARY: Γ acts on Teich_s with dense orbits.

Proof: We use a theorem of Calvin Moore:

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact semisimple Lie subgroup. Then the left action of Γ on G/H is ergodic.

Applying this theorem to Γ inside $G = SO(H^2(M, \mathbb{R}), q)$ and H the stabilizer of $\omega \in H^2(M, \mathbb{R})$, we obtain that the action of Γ on Teich_s $\subset H^2(M, \mathbb{R})$ is ergodic, hence has dense orbits.

QUESTION: The Teichmüller space of standard symplectic structures on K3 is Hausdorff, as shown above. **Are there any non-Hausdorff non-standard symplectic structures in the same connected component of** Teich_s?