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Plan:

1. Hyperkähler manifolds: basic facts

2. Teichmüller space of hyperkähler structures

3. Teichmüller space of symplectic structures of a hyperkähler manifold.

4. Ergodic action of the mapping class group on the space of symplectic

structures.
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Teichmüller space for symplectic structures (reminder)

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M)

as a Frechet Lie group, and denote its connected component (“group of iso-

topies”) by Diff0. The quotient group Γ := Diff /Diff0 is called the mapping

class group of M .

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0. The quotient Teichs /Γ = Symp /Diff,

is called the moduli space of symplectic structures.
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Moser’s theorem (reminder)

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping

a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ωt, t ∈ S be a smooth family of symplectic structures, parametrized by

a connected manifold S. Assume that the cohomology class [ωt] ∈ H2(M) is

constant in t. Then all ωt are diffeomorphic.
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Non-Hausdorff points on symplectic Teichmüller space

Example of D. McDuff found in Salamon, Dietmar, Uniqueness of symplectic

structures, Acta Math. Vietnam. 38 (2013), no. 1, 123-144.

Let M = S1 × Z1 × S2 × S2 with coordinates θ1, θ2 ∈ S1 ⊂ C∗ and z1, z2 ∈ S2.

Let ϕθ,z CP1 −→ CP1 be a rotation around the axis z ∈ CP1 by the angle

θ. Consider the diffeomorphism Ψ : M −→M mapping (θ1, θ2, z1, z2) to

(θ1, θ2, z1, ϕθ1,z1
(z2)).

THEOREM: Let ωλ be the product symplectic form on M = T2×CP1×CP1

obtained as a product of symplectic forms of volume 1, 1, λ on T2, CP1, CP1.

The form Ψ∗(ω1) is homologous, but not diffeomorphic to ω1. However,

the form Ψ∗(ωλ) is diffeomorphic to ωλ for any λ 6= 1.

(D. McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), 13-36.)
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is de-

fined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -

eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called

Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) = −g(y, Ix),

hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

REMARK: This is equivalent to ∇ω = 0, where ∇ is Levi-Civita connection.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation
along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The
subgroup of GL(TxM) generated by parallel translations (along all paths) is
called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

CLAIM: A compact hyperkähler manifold M has maximal holonomy of
Levi-Civita connection Sp(n) if and only if π1(M) = 0, h2,0(M) = 1.

THEOREM: (Bogomolov decomposition)
Any compact hyperkähler manifold has a finite covering isometric to
a product of a torus and several maximal holonomy hyperkähler mani-
folds.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: In this talk, all holomorphically symplectic manifolds are assumed

to be Kähler and compact.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

CLAIM: In these assumptions, ωJ +
√
−1 ωK is holomorphic symplectic on

(M, I).

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hy-

perkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold of maximal holon-

omy.
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EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and
let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic
to the Kummer surface ˜T/±1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkähler. Then M is either
a torus or a K3 surface.
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Hilbert schemes

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized
Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the two series: Hilbert schemes of K3, and
generalized Kummer.
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Main result

DEFINITION: A symplectic structure ω on a hyperkähler manifold is called

standard if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a

torus is of this type. It was conjectured that non-standard symplectic

structures don’t exist.

THEOREM: (E. Amerik, V.) Let M be a maximal holonomy hyperkähler

manifold. Then the period map Per : Teichs −→H2(M,R) is an open em-

bedding on the set of all standard symplectic structures, and its image

is the set of all cohomology classes v such that q(ω, ω) > 0, where q is a

quadratic form on cohomology defined below.
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Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki) Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2−3,3). It is positive definite on 〈Ω,Ω, ω〉, where

ω is a Kähler form.
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MBM classes

DEFINITION: Kähler cone of a Kähler manifold is the set of all cohomology

classes ω ∈ H1,1(M)

DEFINITION: Face of a Kähler cone K is a subset V ∩ ∂K containing an

open subset of V , for some hyperplane V ⊂ H1,1(M).

DEFINITION: Let M be a hyperkähler manifold. A homology class z ∈
H2(M,Q) is called an MBM class (monodromy birational minimal) if for

some complex structure in the same deformation class, the annihilator z⊥

contains a face of its Kähler cone.

DEFINITION: A cohomology class z ∈ H2(M,Q) is called MBM class if it

becomes MBM after an identification H2(M,Q) ∼= H2(M,Q) provided by the

Bogomolov-Beauville-Fujiki form.
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Properties of MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)

satisfying q(η, η) < 0.

THEOREM: (E. Amerik, V.) Let (M, I) be a hyperkähler manifold, rkH1,1(M,Z) =

1, and z ∈ H1,1(M, I) a non-zero negative class. Then z is MBM if and

only if ±z is Q-effective, that is, λz is represented by a complex curve.

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the

two components of {
v ∈ H1,1(M,R) |

∫
M
η ∧ η > 0

}
which contains a Kähler form.

THEOREM: (E. Amerik, V.) Let (M, I) be a hyperkähler manifold, and

S ⊂ H1,1(M, I) the set of all MBM classes in H1,1(M, I). Consider the corre-

sponding set of hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then

the Kähler cone of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥,

where Pos(M, I) is a positive cone of (M, I).
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Teichmüller space of hyperkähler structures

DEFINITION: Consider the space Hyp of all hyperkähler structures (I, J,K, g),
let Teichh := Hyp /Diff0 be the corresponding Teichmüller space, called Te-
ichmüller space of hyperkähler structures.

DEFINITION: Consider the space Perh of all triples x, y, z ∈ H2(M,R) satis-
fying x2 = y2 = z2 > 0. Let Per : Teichh −→ Perh the map associating to a
hyperkähler structure (M, I, J,K, g) the triple ωI , ωJ , ωK. This map called the
period map for the Teichmüller space of hyperkähler structures, and
Perh the period space of hyperkähler structures.

THEOREM: (E. Amerik, V.) Let M be a hyperkähler manifold of maximal
holonomy, and Per : Teichh −→ Perh the period map for the Teichmüller space
of hyperkähler structures. Then Per is an open embedding for each con-
nected component. Moreover, its image is the set of all spaces W ∈ Perh
such that the orthogonal complement W⊥ contains no MBM classes.

Ingredients of its proof: Follows from Calabi-Yau theorem, global Torelli
theorem for complex structures of hyperkähler type, and the description of
the Kähler cone in terms of the MBM classes. Main idea: bijective corre-
spondence between hyperkähler structures and pairs (I, [ω]), where I
is a complex structure of hyperkähler type, and [ω] a Kähler class on
(M, I).
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Torelli theorem for symplectic structures

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then

the period map Per : Teichs −→H2(M,R) is an open embedding on the

set of all standard symplectic structures, and its image is the set of all

cohomology classes v such that q(v, v) > 0.

Proof. Step 1: Let P : Teichh −→ Teichs be the forgetful map putting

ωI , ωJ , ωK to ωI. Calabi-Yau implies that P is surjective. Indeed, any Kähler

form can be deformed to a Ricci-flat Kähler form in the same cohomology

class.

Step 2: From Torelli theorem for hyperkähler structures it follows that the

fiber P−1(ω) of P is the space of pairs x, y ∈ H2(M) satisfying x2 = y2 =

ω2, such that the space 〈ω, x, y〉⊥ contains no MBM classes.

Step 3: Since the fibers of P are complements to subsets of codimension 2,

they are connected. By Moser’s theorem, for each (M,ωI , ωJ , ωK) ∈ P−1(ω)

the symplectic forms ωI are diffeomorphic.
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Torelli theorem for symplectic structures (2)

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then

the period map Per : Teichs −→H2(M,R) is an open embedding on the

set of all standard symplectic structures, and its image is the set of all

cohomology classes v such that q(v, v) > 0.

Step 4: Consider the diagram

Teichh
P−→ TeichsyPerh Pers

y
{x, y, z ∈ H2(M)|x2 = y2 = z2 > 0,
〈x, y, z〉⊥ contains no MBM classes}

P ′−→ {x ∈ H2(M)|x2 > 0}

The map Perh is an isomorphism as shown, and the fibers of P are identified

with fibers of P ′ as follows from Moser’s theorem and Step 3. Therefore,

Pers is injective. The rest of the arrows are surjective as shown, hence Pers
is also surjective.
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Ergodicity of mapping class group action

THEOREM: (V., 2009)

Let M be a maximal holonomy hyperkähler manifold. Then the image of

the mapping class group Γ in O(H2(M,Z)) has finite index.

COROLLARY: Γ acts on Teichs with dense orbits.

Proof: We use a theorem of Calvin Moore:

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact

simple Lie group G with finite center, and H ⊂ G a non-compact semisimple

Lie subgroup. Then the left action of Γ on G/H is ergodic.

Applying this theorem to Γ inside G = SO(H2(M,R), q) and H the stabilizer

of ω ∈ H2(M,R), we obtain that the action of Γ on Teichs ⊂ H2(M,R) is

ergodic, hence has dense orbits.

QUESTION: The Teichmüller space of standard symplectic structures on K3

is Hausdorff, as shown above. Are there any non-Hausdorff non-standard

symplectic structures in the same connected component of Teichs?
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