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What are the limits of Ricci-flat metrics
on Calabi-Yau manifolds?

Let (M, I) be a holomorphically symplectic manifold with maximal holonomy

and Picard group of non-maximal rank, and VI the set of all Ricci-flat Kähler

metrics on (M, I). By Calabi-Yau theorem, VI is identified with the Kähler

cone of (M, I), which is b2 − 2-dimensional.

Let V be the set of all Ricci-flat Kähler metrics on M obtained as deformations

of h ∈ VI. This set has real dimension 3b2 − 5.

The main result of today’s lecture.

THEOREM: All h ∈ V can be obtained as Gromov-Hausdorff limits of

the sequences {hi} ∈ VI.
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Limits of hyperkähler metrics

Couple of simple observations.

1. The boundary of the Kähler cone of (M, I) in the Gromov space of all
metric spaces seem to be some sort of a strange fractal, much bigger
dimension than the cone itself. It is not clear if we have other (even more
strange) metric spaces in this boundary, the dimension is also unknown.

2. The limits of the Ricci-flat Kähler forms in the space of currents are quite
well-behaved.

3. These results are also true for a torus, where they can be accessed
geometrically.

Plan:

1. State global Torelli theorem.

2. Explain the ergodic nature of the mapping group action.

3. Deduce the main theorem from the ergodicity phenomenon.
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Teichmüller spaces

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

REMARK: Let Comp be the space of such tensors equipped with a topology

of convergence of all derivatives. It is a Fréchet manifold.

REMARK: The diffeomorphism group Diff is a Fréchet Lie group acting on

a Fréchet manifold Comp in a natural way.

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Let Teich := Comp /Diff0(M). We call it the Teichmüller space.

REMARK: The set of equivalence classes of complex structures is identified

with Teich /Γ, where Γ is the mapping class group, Γ = Diff /Diff0.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: Let ωI , ωJ , ωK be the Kähler symplectic forms associated with
I, J,K. A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1ωK is a holomorphic symplectic form on (M, I). Converse is also true:

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called maximal holon-
omy manifold, or simple, or IHS if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: (Bogomolov, 1974) Any hyperkähler mani-
fold admits a finite covering which is a product of a torus and several maximal
holonomy (simple) hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It

has signature (3, b2−3). The sign is chosen in such a way that q is positive on

the triple of Kähler forms ωI , ωJ , ωK, and negative on their orthogonal

complement.

THEOREM: (V., 1996, 2009) Let M be a simple hyperkähler manifold, and

Γ0 = Aut(H∗(M,Z). Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.
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The period map

REMARK: To simplify the language, we redefine Teich and Comp for hy-

perkähler manifolds, restricting to complex structures of Kähler type and

admitting a holomorphic symplectic form. Since the Hodge numbers are con-

stant in families of Kähler manifolds, for any J ∈ Teich, (M,J) is also a

simple hyperkähler manifold, hence H2,0(M,J) is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts, 2001) Two points I, I ′ ∈ Teich are non-separable

if and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have belong to

a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: (V., 2009) The period map Teichb
Per−→ Per is an isomor-

phism, for each connected component of Teichb.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

DEFINITION: A complex structure I ∈ Teich is called ergodic if its orbit is

dense in its connected component in Teich.

CLAIM: Let (M, I) be a manifold with an ergodic complex structure, and

I ′ its deformation. Then there exists a sequence of diffeomorphisms νi
such that νi(I) converges to I ′ in C∞-topology. Moreover, this property

is equivalent to ergodicity of I.

THEOREM: Let M be a compact torus, dimCM > 2, or a simple hyperkähler

manifold. A complex structure on M is ergodic if and only if Pic(M) is

not of maximal rank.
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Gromov-Hausdorff metrics

DEFINITION: Let X ⊂M be a subset of a metric space, and y ∈M a point.
Distance from a y to X is infx∈X d(x, y). Hausdorff distance dH(X,Y ) be-
tween to subsets X,Y ⊂M of a metric space is max(supx∈X d(x, Y ), supy∈Y d(y,X)).
Gromov-Hausdorff distance between complete metric spaces X,Y of diam-
eter 6 d is an infimum of dH(ϕ(X), ψ(Y )) taken over all isometric embeddings
ϕ : X −→ Z, ψ : Y −→ Z to a third metric space.

REMARK: This definition puts the structure of a metric space on the set
of equivalence classes of all separable metric spaces.

REMARK: Let ϕ : X −→ Y be a map of metric spaces (not necessarily
continuous). Its defect δϕ is infx1,x2∈X |d(x1, x2)− d(ϕ(x1), ϕ(x2))|. Gromov-
Hausdorff distance between metric spaces X,Y is bounded (both directions)
by the quantity d̂GH(X,Y ) = infϕ,ψ max(δψ, δψ), where infimum is taken over
the set of all maps ϕ : X −→ Y , ψ : Y −→X:

C1d̂GH(X,Y ) 6 dGH(X,Y ) 6 C2d̂GH(X,Y )

REMARK: This means that a converging sequence of Riemannian met-
rics converges in Gromov-Hausdorff topology.
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Gromov’s compactness theorem

DEFINITION: A subset X ⊂ M is called precompact if its closure in M is

compact.

DEFINITION: We say that Ricci curvature of a Riemannian manifold

(M, g) is bounded from below by c if the symmetric form Ricg−cg ∈ Sym2 T ∗
M is positive definite.

THEOREM: (Gromov’s compactness theorem)

Let Wd be the Gromov’s space of all metric spaces of diameter d, and Xc,d ⊂
Wd the space of all Riemannian manifolds with Ricci curvature bounded from

below by c. Then Xc,d is precompact.

QUESTION: Let Hypd be the space of all hyperkähler metrics of diameter d

considered as a subset in Wd. What is the shape of Hypd and its closure?
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Space of hyperkähler metrics and its closure

Related question: Consider hyperkähler forms ωI as currents on (M, I), and

let Hypcur be its closure in the space of currents. Is it related by Hypd?

CONJECTURE: (some examples proven by Dinh-Sibony)

For any sequence of Ricci-flat metrics gi on (M, I) such that the cohomology

class of their symplectic forms converges to [ω0] ∈ H1,1(M, I), the sequence

ωi converges to a unique positive current.

Gromov-Hausdorff convergence is entirely different.

THEOREM: Let (M, I) be a hyperkähler manifold with ergodic complex

structure (that is, non-maximal Picard number), and V I the Gromov-Hausdorff

closure of the space VI of all hyperkähler metrics on M . Then V I contains

the space Hyp of all hyperkähler metrics on M obtained by deformation

from VI.

REMARK: dimVI = b2 − 2, and dim Hyp = 3b2 − 5: much bigger!
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Kodaira stability theorem and its application

THEOREM: (Kodaira stability)
Let (M,J, ω) be a closed Kähler manifold, and let {Jt}, t ∈ B, J0 = J, be
a smooth local deformation of J. Then there exists a neighborhood of
U ⊂ B of zero in B such that the complex structure Jt on M is of Kähler
type and [ω]1,1Jt is a Kähler class for all t ∈ U.

THEOREM: Let (M, I) be a hyperkähler manifold with ergodic complex
structure (that is, non-maximal Picard number), and V I the Gromov-Hausdorff
closure of the space VI of all hyperkähler metrics of diameter d on M . Then
V I contains the space Hypd of all hyperkähler metrics on M obtained
by deformation from VI.

Proof. Step 1: Let g ∈ Hypd be a hyperkähler metric on (M,J), and ω its
Kähler form. Since I is ergodic, there exists a sequence Ii ∈ Teich converging
to J ∈ Teich such that Ii = νi(I).

Step 2: By Kodaira’s stability, for i sufficiently big, there exists a Kähler
class [ωi] on (M, Ii) converging to [ω].

Step 3: Let gi be the hyperkähler metric on (M, Ii) associated with the
Kähler class [ωi]. Then (M, gi) converges to (M, g) in C∞-topology, because
the Calabi-Yau metric depends C∞-continuously on (I, [ω]).
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