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Almost complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called

Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) = −g(y, Ix),

hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

REMARK: This is equivalent to ∇ω = 0, where ∇ is Levi-Civita connection.

REMARK: Since restriction of a closed form is closed, a complex subman-

ifold of a Kähler manifold is again Kähler.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called the Fubini-Study form on CPn.

The Fubini-Study form is obtained by taking arbitrary Riemannian form and

averaging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω
∣∣∣
x

is a U(n)-invariant 3-form

on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM, satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is

called a hyperkähler manifold.

LEMMA: Let (M, I, J,K) be hyperkähler. Then the form Ω := ωJ+
√
−1ωK

is a holomorphic symplectic 2-form on (M, I).

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry

THEOREM: (E. Calabi, 1952, S.-T. Yau, 1978)

Let M be a compact, holomorphically symplectic manifold admitting a Kähler

metric. Then M admits a hyperkähler metric, which is uniquely deter-

mined by the cohomology class of its Kähler form.
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HYPERCOMPLEX MANIFOLDS

a. k. a “Hyperkähler manifolds without a metric”

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =
IJK = − Id . Suppose that I, J, K are integrable almost complex structures.
Then (M, I, J,K) is called a hypercomplex manifold.

EXAMPLES:
1. In dimension 1 (real dimension 4), we have a complete classification of
compact hypercomplex manifolds, due to C. P. Boyer (1988).

2. Many homogeneous examples, due to D. Joyce and physicists Ph.
Spindel, A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds and solvmanifolds admit locally homogeneous hyper-
complex structure (M. L. Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation or as
fiber bundles.

In dimension > 1, no classification results are known (and no conjectures
either).
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

THEOREM: (M. Obata, 1952) Let (M, I, J,K) be a hypercomplex mani-

fold. Then M admits a unique torsion-free affine connection preserving

I, J,K.

Converse is also true. Suppose that I, J,K are operators defining quater-

nionic structure on TM , and ∇ a torsion-free, affine connection preserving I,

J, K. Then I, J, K are integrable almost complex structures, and (M, I, J,K)

is hypercomplex.

Holonomy of Obata connection lies in GL(n,H). Conversely, a mani-

fold equipped with an affine, torsion-free connection with holonomy in

GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.
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QUESTIONS

1. Given a complex manifold M , when M admits a hypercomplex structure?

How many?

2. What are possible holonomies of Obata connection, for a compact hyper-

complex manifold? Can SL(n,H) be a local holonomy group of a compact

manifold? GL(n,H) can (Andrey Soldatenkov, 2012).

3. Describe the structure of automorphism group of a hypercomplex manifold.

The main result of today’s talk.

THEOREM: Let (M, I, J,K) be a compact hypercomplex manifold. Assume

that the complex manifold (M, I) admits a Kähler structure. Then (M, I) is

hyperkähler.
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Quaternionic Hermitian structures

DEFINITION: Let (M, I, J,K) be a hypercomplex manifold, and g a Rieman-

nian metric. We say that g is quaternionic Hermitian if I, J,K are orthogonal

with respect to g.

REMARK: A quaternionic Hermitian can be obtained as follows: take any

Riemannian metric, and average it with respect to I, J,K.

CLAIM: Given a quaternionic Hermitian metric g on (M, I, J,K), consider

its Hermitian forms ωI(·, ·) = g(·, I·), ωJ , ωK (real, but not closed). Then

Ω = ωJ +
√
−1 ωK is C-linear with respect to I.

REMARK: Denote the space of C-linear p-forms on (M, I) by Λp,0(M, I).

Then complex linearity of Ω can be written as Ω ∈ Λ2,0(M, I).

REMARK: This argument also implies that c1(M, I) = 0. Indeed, the

top exterior power of Ω is a non-degenerate section of the canonical bundle

Λ2n,0(M, I), and c1(M, I) = c1(Λ2n,0(M, I)).
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HKT manifolds

REMARK: Let (M, I, J,K, g) be a quaternionic Hermitian manifold, and Ω =

ωJ +
√
−1 ωK the corresponding (2,0)-form, and dΩ = 0, (M, I, J,K, g) is

hyperkähler (this is one of the definitions). Consider a weaker condition:

∂Ω = 0. Here, ∂ : Λ2,0(M, I)−→ Λ3,0(M, I) is the “Dolbeault differential”:

de Rham differential restricted to complex linear forms).

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J,K) be a hypercomplex manifold, g a quaternionic Hermitian met-

ric, and Ω = ωJ +
√
−1 ωK the corresponding (2,0)-form. We say that g is

HKT (“weakly hyperkähler with torsion”) if ∂Ω = 0.

REMARK: This definition is due to Grantcharov and Poon, the definition

of Howe-Papadopoulos is given in terms of the Bismut connections.

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.
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HKT manifolds with trivial canonical bundle

DEFINITION: The bundle of (p,0)-forms on a complex manifold (M, I),

dimCM = d has a natural holomorphic structure. The line bundle Λd,0(M, I)

is called canonical bundle, or canonical class.

1. HKT metrics admit a smooth potential (locally). There is a notion

of an “HKT-class” (similar to Kähler class) in a certain finite-dimensional

coholology group. Two metrics in the same HKT-class differ by ∂J∂J of

a a potential, which is a function.

2. The canonical bundle Λ2n,0(M, I) of (M, I) is topologically trivial, but When

(M, I) has (holomorphically) trivial canonical bundle, a version of Lefschetz-

type identities can be proven giving an sl(2)-action on cohomology

H∗(M,O(M,I).

REMARK: Using the Calabi-Yau theorem, it is possible to show that any

compact Kähler manifold (M, I) with c1(M,Z) = 0 has holomorphically

trivial canonical bundle. There is a more complicated argument, due to F.

Bogomolov, proving this result without the Calabi-Yau theorem. However, it

all fails for compact non-Kähler manifolds (or non-compact non-Kähler).
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Lefschetz identities for Kähler manifolds.

The usual Lefschetz sl(2)-action is constructed as follows. Let M be a com-

pact Kähler manifold, dimCM = n, ω its Kähler form, L : Λi(M)−→ Λi+2(M)

the operator of multiplication by ω, Λ its Hermitian adjoint, and H acts on

Λi(M) as a scalar multiplication by (i−n). Then (L,Λ, H) is an sl(2)-triple.

It commutes with the Laplacian, giving an sl(2)-action on cohomology.

Main ingredients of the proof:

0. Kähler identities, a. k. a. “supersymmetry”: identities in the Lie

superalgebra a ⊂ End(Λ∗(M)) generated by the Dolbeault differential, its

complex conjugate, their Hermitian adjoint operators, and the sl(2)-action.

1. Use the linear algebra to show that (L,Λ, H) is an sl(2)-triple. This

is true for any almost complex Hermitian manifold

2. Show that (L,Λ, H) commutes with the Laplacian. Need Kähler iden-

tities for this.
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Lefschetz identities for HKT-manifolds with trivial canonical bundle.

THEOREM: Let (M, I, J,K, g) be a hypercomplex manifold, dimH(M) = n.

Assume that the canonical bundle of MI := (M, I), is trivial as a holomor-

phic vector bundle. Consider the Dolbeault resolution for the holomorphic

cohomology H∗(MI ,O)

Λ0(MI)
∂−→ Λ0,1(MI)

∂−→ Λ0,2(MI)
∂−→ ... (∗)

The multiplication map L(η) = η∧Ω commutes with the differential, because

Ω is ∂-closed. Let Λ be its Hermitian adjoint, and H(η) = i − n, for all

η ∈ Λ0,i(MI). Then (L,Λ, H) is an sl(2)-triple acting on cohomology of

(*).

REMARK: This resolution computes the cohomology H∗(MI ,O) of the

sheaf of holomorphic functions on (M, I).

REMARK: From this theorem we immediately obtain that the cohomology

class of Ω in H2(MI ,O) is non-trivial (can be false when the canonical

bundle is non-trivial, or when (M, I, J,K) admits no HKT-structures). Its

top power is non-trivial in H2n(MI ,O) (Lk acts as an isomorphism from

Hn−k(MI ,O) to Hn+k(MI ,O)).
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Hypercomplex structures on Kähler manifolds

0. Let (M, I) be a manifold admitting Kähler structure and a hypercomplex

structure. The canonical class of (M, I) is trivial by Calabi-Yau.

1. From a Kähler form, an HKT form is obtained by averaging with

SU(2) (the group of unitary quaternions, acting on TM).

2. The cohomology class of Ω is non-trivial by HKT-Lefschetz.

3. Since (M, I) is Kähler, this class is represented by a holomorphic form Ω̃.

The top power of this class is non-trivial, by HKT-Lefschetz.

4. The top power of Ω̃n is a non-trivial holomorphic section of the canonical

class, which is trivial. Therefore, Ω̃n is nowhere vanishing, and (M, I) is

holomorphically symplectic.

5. Use Calabi-Yau to obtain that it is hyperkähler.
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Exotic hypercomplex structures

REMARK: The main theorem implies that a compact complex manifold
which admits an Kähler structure and a hypercomplex structure, also admits
a hyperkähler structure. However, this does not rule out the following
scenario.

REMARK: A hypercomplex manifold (M, I, J,K) is hyperkähler of and only
if its Obata holonomy group is compact.

DEFINITION: Let (M, I) be a compact, complex, holomorphically symplec-
tic manifold of Kähler type, and (M, I, J,K) a hypercomplex structure. It is
called exotic if its Obata holonomy is not compact.

QUESTION: Do exotic hypercomplex structures exist?

CONJECTURE: No, they don’t.

REMARK: Should be possible to prove this exlicitly for a torus; it would be a
good master diploma work. In real dimension 4, classification of hypercomplex
structures is due to Boyer, and it also implies the non-existence of exotic
hypercomplex structures. Maybe his argument can be generalized?
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Lefschetz identities for general HKT-manifolds.

A full strength theorem (we don’t need it, in fact it was never used AFAIK).

THEOREM: Let (M, I, J,K, g) be a hypercomplex manifold, K the canonical

bundle of MI := (M, I), K1/2 its square root (considered as a holomorphic

vector bundle). Consider the map

L : Hi(MI ,K
1/2)−→Hi+2(MI ,K

1/2)

mapping a class represented by a form

η ∈ Λ0,p(MI)⊗K1/2

to η ∧ Ω (this defines a correct operation on cohomology, because Ω is ∂-

closed). Then L is an element in an sl(2)-triple acting on Hi(MI ,K
1/2).

It is a theorem about harmonic spinors. When K1/2 is non-trivial, the

cohomology groups Hi(MI ,K
1/2) are often empty.
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