Kähler geometry

lecture 1

Misha Verbitsky

University of Science and Technology China, Hefei
July 05, 2012

Complex structure on vector spaces

DEFINITION: Let V be a vector space over \mathbb{R}, and $I: V \longrightarrow V$ an automorphism which satisfies $I^{2}=-\mathrm{Id}_{V}$. Such an automorphism is called a complex structure operator on V.

We extend the action of I on the tensor spaces $V \otimes V \otimes \ldots \otimes V \otimes V^{*} \otimes V^{*} \otimes \ldots \otimes$ V^{*} by multiplicativity: $I\left(v_{1} \otimes \ldots \otimes w_{1} \otimes \ldots \otimes w_{n}\right)=I\left(v_{1}\right) \otimes \ldots \otimes I\left(w_{1}\right) \otimes \ldots \otimes I\left(w_{n}\right)$.

Trivial observations:

1. The eigenvalues α_{i} of I are $\pm \sqrt{-1}$. Indeed, $\alpha_{i}^{2}=-1$.
2. V admits an I-invariant, positive definite scalar product ("metric")
g. Take any metric g_{0}, and let $g:=g_{0}+I\left(g_{0}\right)$.
3. I is orthogonal for such g.

Indeed, $g(I x, I y)=g_{0}(x, y)+g_{0}(I x, I y)=g(x, y)$.
4. I diagonalizable over \mathbb{C}. Indeed, any orthogonal matrix is diagonalizable.

Hermitian structures

5. There are as many $\sqrt{-1}$-eigenvalues as there are $-\sqrt{-1}$-eigenvalues.

Denote by ν the real structure operator, $\nu\left(\sum \lambda_{i} w_{i}\right)=\sum \bar{\lambda}_{i} w_{i}$, where $w_{i} \in V$ is a basis. Then $\nu(I(z))=I(\nu(z))$, that is, I is real. For any $\sqrt{-1}$-eigenvector w, one has $I(\nu(w))=\nu(I(w))=\nu(\sqrt{-1} w)=-\sqrt{-1} w$, hence ν exchanges $\sqrt{-1}$-eigenvectors and $-\sqrt{-1}$-eigenvectors.

DEFINITION: An I-invariant positive definite scalar product on (V, I) is called an Hermitian metric, and (V, I, g) - an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space V, and g - a Hermitian metric. Then the bilinear form $\omega(x, y):=g(x, I y)$ is skew-symmetric. Indeed, $\omega(x, y)=g(x, I y)=g\left(I x, I^{2} y\right)=-g(I x, y)=$ $-\omega(y, x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called an Hermitian form on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other two.

The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by $\wedge^{i} V$ the space of antisymmetric polylinear i-forms on V^{*}, and let $\wedge^{*} V:=\oplus \wedge^{i} V$. Denote by $T^{\otimes i} V$ the algebra of all polylinear i-forms on V^{*} ("tensor algebra"), and let Alt : $T^{\otimes i} V \longrightarrow \Lambda^{i} V$ be the antisymmetrization,

$$
\operatorname{Alt}(\eta)\left(x_{1}, \ldots, x_{i}\right):=\frac{1}{i!} \sum_{\sigma \in \Sigma_{i}}(-1)^{\tilde{\sigma}^{\prime}} \eta\left(x_{\sigma_{1}}, \ldots, x_{\sigma_{i}}\right)
$$

where Σ_{i} is the group of permutations, and $\tilde{\sigma}=1$ for odd permutations, and 0 for even. Consider the multiplicative operation ("wedge-product") on $\wedge^{*} V$, denoted by $\eta \wedge \nu:=\operatorname{Alt}(\eta \otimes \nu)$. The space $\wedge^{*} V$ with this operation is called the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.
Properties of Grassmann algebra:

1. $\operatorname{dim} \wedge^{i} V:=\left(\operatorname{dim}_{i} V\right), \operatorname{dim} \wedge^{*} V=2^{\operatorname{dim} V}$.
2. $\wedge^{*}(V \oplus W)=\wedge^{*}(V) \otimes \wedge^{*}(W)$.

The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure. The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C}:=V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$-eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$-eigenspace.

REMARK: Let $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\wedge^{n} V_{\mathbb{C}}:=\wedge_{\mathbb{R}}^{n} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$
\wedge^{n} V_{\mathbb{C}}=\bigoplus_{p+q=n} \wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}
$$

We denote $\wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}$ by $\wedge^{p, q} V$. The resulting decomposition $\wedge^{n} V_{\mathbb{C}}=$ $\oplus_{p+q=}{ }_{n} \wedge^{p, q} V$ is called the Hodge decomposition of the Grassmann algebra.

REMARK: The operator I induces $U(1)$-action on V by the formula $\rho(t)(v)=$ $\cos t \cdot v+\sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.
$U(1)$-representations and the weight decomposition

REMARK: Any complex representation W of $U(1)$ is written as a sum of 1-dimensional representations $W_{i}(p)$, with $U(1)$ acting on each $W_{i}(p)$ as $\rho(t)(v)=e^{\sqrt{-1} p t}(v)$. The 1-dimensional representations are called weight p representations of $U(1)$.

DEFINITION: A weight decomposition of a $U(1)$-representation W is a decomposition $W=\oplus W^{p}$, where each $W^{p}=\oplus_{i} W_{i}(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\wedge^{n} V_{\mathbb{C}}=\oplus_{p+q=n} \wedge^{p, q} V$ is a weight decomposition, with $\wedge^{p, q} V$ being a weight $p-q$-component of $\wedge^{n} V_{\mathbb{C}}$.

REMARK: $V^{p, p}$ is the space of $U(1)$-invariant vectors in $\wedge^{2 p} V$.

Further on, $T M$ is the tangent bundle on a manifold, and $\wedge^{i} M$ the space of differential i-forms. It is a Grassmann algebra on $T M$.

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\mathrm{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0} M$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map
$N:=\wedge^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

EXAMPLE: Symmetric spaces.
EXAMPLE: $\mathbb{C} P^{n}$.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \wedge^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.
DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Examples of Kähler manifolds.

Definition: Let $M=\mathbb{C} P^{n}$ be a complex projective space, and g a $U(n+1)$ invariant Riemannian form. It is called Fubini-Study form on $\mathbb{C} P^{n}$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with $U(n+1)$.

Remark: For any $x \in \mathbb{C} P^{n}$, the stabilizer $S t(x)$ is isomorphic to $U(n)$. FubiniStudy form on $T_{x} \mathbb{C} P^{n}=\mathbb{C}^{n}$ is $U(n)$-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $\left.d \omega\right|_{x}$ is a $U(n)$-invariant 3form on \mathbb{C}^{n}, but such a form must vanish, because - Id $\in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C} P^{n}$) is Kähler. Indeed, a restriction of a closed form is again closed.

