Kähler geometry

lecture 1

Misha Verbitsky

University of Science and Technology China, Hefei

July 05, 2012

Complex structure on vector spaces

DEFINITION: Let V be a vector space over \mathbb{R} , and $I: V \longrightarrow V$ an automorphism which satisfies $I^2 = -\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

We extend the action of *I* on the tensor spaces $V \otimes V \otimes ... \otimes V \otimes V^* \otimes V^* \otimes ... \otimes V^*$ by multiplicativity: $I(v_1 \otimes ... \otimes w_1 \otimes ... \otimes w_n) = I(v_1) \otimes ... \otimes I(w_1) \otimes ... \otimes I(w_n)$.

Trivial observations:

- 1. The eigenvalues α_i of I are $\pm \sqrt{-1}$. Indeed, $\alpha_i^2 = -1$.
- 2. *V* admits an *I*-invariant, positive definite scalar product ("metric") *g*. Take any metric g_0 , and let $g := g_0 + I(g_0)$.

3. *I* is orthogonal for such *g*. Indeed, $g(Ix, Iy) = g_0(x, y) + g_0(Ix, Iy) = g(x, y)$.

4. I diagonalizable over \mathbb{C} . Indeed, any orthogonal matrix is diagonalizable.

Hermitian structures

5. There are as many $\sqrt{-1}$ -eigenvalues as there are $-\sqrt{-1}$ -eigenvalues.

Denote by ν the real structure operator, $\nu(\sum \lambda_i w_i) = \sum \overline{\lambda}_i w_i$, where $w_i \in V$ is a basis. Then $\nu(I(z)) = I(\nu(z))$, that is, I is real. For any $\sqrt{-1}$ -eigenvector w, one has $I(\nu(w)) = \nu(I(w)) = \nu(\sqrt{-1} w) = -\sqrt{-1} w$, hence ν exchanges $\sqrt{-1}$ -eigenvectors and $-\sqrt{-1}$ -eigenvectors.

DEFINITION: An *I*-invariant positive definite scalar product on (V, I) is called **an Hermitian metric**, and (V, I, g) – an Hermitian space.

REMARK: Let *I* be a complex structure operator on a real vector space *V*, and g – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called **an Hermitian form** on (V, I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by $\Lambda^i V$ the space of antisymmetric polylinear *i*-forms on V^* , and let $\Lambda^* V := \bigoplus \Lambda^i V$. Denote by $T^{\otimes i}V$ the algebra of all polylinear *i*-forms on V^* ("tensor algebra"), and let Alt : $T^{\otimes i}V \longrightarrow \Lambda^i V$ be the antisymmetrization,

$$\mathsf{Alt}(\eta)(x_1,...,x_i) := \frac{1}{i!} \sum_{\sigma \in \Sigma_i} (-1)^{\tilde{\sigma}} \eta(x_{\sigma_1},...,x_{\sigma_i})$$

where Σ_i is the group of permutations, and $\tilde{\sigma} = 1$ for odd permutations, and 0 for even. Consider the multiplicative operation ("wedge-product") on Λ^*V , denoted by $\eta \wedge \nu := \operatorname{Alt}(\eta \otimes \nu)$. The space Λ^*V with this operation is called **the Grassmann algebra**.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim
$$\Lambda^i V := \binom{\dim V}{i}$$
, dim $\Lambda^* V = 2^{\dim V}$.

2. $\Lambda^*(V \oplus W) = \Lambda^*(V) \otimes \Lambda^*(W)$.

The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}} := \Lambda^n_{\mathbb{R}} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann algebra**.

REMARK: The operator I induces U(1)-action on V by the formula $\rho(t)(v) = \cos t \cdot v + \sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.

U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum of 1-dimensional representations $W_i(p)$, with U(1) acting on each $W_i(p)$ as $\rho(t)(v) = e^{\sqrt{-1}pt}(v)$. The 1-dimensional representations are called weight p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a decomposition $W = \bigoplus W^p$, where each $W^p = \bigoplus_i W_i(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is a weight decomposition, with $\Lambda^{p,q} V$ being a weight p - q-component of $\Lambda^n V_{\mathbb{C}}$.

REMARK: $V^{p,p}$ is the space of U(1)-invariant vectors in $\Lambda^{2p}V$.

Further on, TM is the tangent bundle on a manifold, and $\Lambda^i M$ the space of differential *i*-forms. It is a Grassmann algebra on TM.

M. Verbitsky

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. **One can represent** *N* as a section of $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

EXAMPLE: Symmetric spaces.

EXAMPLE: $\mathbb{C}P^n$.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.