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REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

DEFINITION: The vector space over C with the same basis is called a

complexification of V , denoted V ⊗R C.

CLAIM: For an appropriate basis in V ⊗RC, the complex structure operatorcan
be written as

I =



√
−1 0 0 . . . 0 0 0
0

√
−1 0 . . . 0 0 0

0 0
√
−1 . . . 0 0 0

... ... ... . . . ... ... ...
0 0 0 . . . −

√
−1 0 0

0 0 0 . . . 0 −
√
−1 0

0 0 0 . . . 0 0 −
√
−1


,

with the eigenspaces of equal dimension.
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REMINDER: Hermitian structures

DEFINITION: Let (V, I) be a real vector space with a complex structure.

A scalar product is called I-invariant, if g(Ix, Iy) = g(x, y). An I-invariant

positive definite scalar product on (V, I) is called an Hermitian metric on

V , and (V, I, g) – an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space

V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)

is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =

−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other

two.
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REMINDER: tensor product

DEFINITION: Let V,W be vector spaces over a field k = R or C, and V ∗,W ∗

the dual spaces. Denote by Bil(V ×W,k) the space of bilinear maps from V,W

to k, and let V ⊗W denote Bil(V ∗ ×W ∗, k), where V ∗,W ∗ are dual spaces to

V,W . The space V ⊗W is called the tensor product of V,W .

DEFINITION: Given v, w ∈ V,W , one has an element v⊗w ∈ Bil(V ∗×W ∗, k),

mapping a pair of functionals λ ∈ V ∗, µ ∈ W ∗ to λ(v)µ(w). This vector is

called the tensor product of v and w.

CLAIM: If {vi, i = 1, ..., n} is a basis in V , {wj, j = 1, ...,m} a basis in W , the

vectors {vi⊗wj, i = 1, ..., n, j = 1, ...,m} give a basis in V ⊗W . In particuler,

V ⊗W is (dimV · dimW )-dimensional.

REMARK: The tensor product is uniquely defined by the following universal

property. Each bilinear map B : (V,W )−→ k can be extended uniquely to

the map B⊗ : V ⊗W −→ k, in such a way that B⊗(v ⊗ w) = B(v, w).

EXERCISE: Prove this.
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REMINDER: tensor algebra

DEFINITION: Given several vector spaces V1, ..., Vn, their tensor product

V1 ⊗ V2 ⊗ ...⊗ Vn is defined as V1 ⊗ (V2 ⊗ (V2 ⊗ ...Vn))...).

CLAIM: The tensor product operation is commutative and associative.

Moreover, the space V1⊗V2⊗...⊗Vn is isomorphic to the space B(V ∗1 , V
∗

2 , ..., V
∗
n )

of polylinear maps from V ∗1 , V
∗

2 , ..., V
∗
n to k.

EXERCISE: Prove this.

REMARK: Given vectors in v ∈ V1⊗ V2⊗ ...⊗ Vn and w ∈W1⊗W2⊗ ...⊗Wm,

the tensor product v ⊗ w sits in V1 ⊗ V2 ⊗ ...⊗ Vn ⊗W1 ⊗W2 ⊗ ...⊗Wm.

CLAIM: This defines the structure of an algebra on T⊗V = k ⊕ V ⊕ V ⊗ V ⊕
...⊕ V ⊗n, where V ⊗n is a tensor product of n copies of V .

EXERCISE: Prove this.

DEFINITION: The algebra T⊗V is called the tensor algebra, or free al-

gebra generated by V .
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REMINDER: The Grassmann algebra

EXERCISE: Prove that any algebra generated by V can be obtained as

a quotient of T⊗V by an ideal.

EXERCISE: Let v1, ..., vn ∈ V be a basis. Prove that the polynomial algebra

k[v1, ..., vn] is a quotient of T⊗V by an ideal generated by x ⊗ y − y ⊗ x,

for all x, y ∈ V .

DEFINITION: A Grassmann algebra Λ∗V is a quotient of T⊗V by an ideal

generated by x⊗y+y⊗x, for all x, y ∈ V . The multiplication in Λ∗V is denoted

by x, y −→ x ∧ y, called the wedge product.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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REMINDER: Vector fields

DEFINITION: Let X be the vector field on a manifold M , and f a function.
Denote by LieX f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R
d−→ R

satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring C∞M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C∞M . This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by Λ1M or
T ∗ the dual bundle, called the bundle of 1-forms. For any f ∈ C∞M , the
operation X −→ LieX f is linear as a function of X, hence it defines a section
of T ∗M . We denote this section df , and call it the differential of f .
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REMINDER: de Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

EXERCISE: Prove it.

DEFINITION: A form η is called closed if dη = 0, exact if ηin im d. The
group ker d

im d is called de Rham cohomology of M .
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REMINDER: Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map
N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-
resent N as a section of Λ2,0(M)⊗ T0,1M.

EXAMPLE: Symmetric spaces.

EXAMPLE: CPn.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ2(M) is called the Hermitian
form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if
dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler
class of M , and ω the Kähler form.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CPn. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1) using the Haar measure on U(n+ 1).

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant
multiplier).
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Examples of Kähler manifolds.

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

DEFINITION: An almost complex submanifold X ⊂ M of an almost

complex manifold (M, I) is a smooth submanifold which satisfies I(TX) ⊂ TX.

EXERCISE: Let X ⊂M be an almost complex submanifold of (M, I), where

I is integrable. Prove that (X, I|TX ) is a complex manifold.

DEFINITION: In this situation, X is called a complex submanifold of M .

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the
bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on
the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Torsion

DEFINITION: The torsion of a connection Λ1 ∇−→ Λ1M ⊗ Λ1M is a map

Alt ◦∇ − d, where Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication. It is a

map T∇ : Λ1M −→ Λ2M .

EXERCISE: Prove that torsion is a C∞M-linear.

REMARK: The dual operator x, y −→∇xY −∇yX − [X,Y ] is also called the

torsion of ∇. It is a map Λ2TM −→ TM .

EXERCISE: Prove that these two tensors are dual.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.
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Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is

closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) ⇒ (i) is clear. Indeed, [X,Y ] = ∇XY −
∇YX, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I

is integrable. Also, dω = 0, because ∇ is torsion-free, and dω = Alt(∇ω).

The implication (i)⇒ (ii) is proven by the same argument as used to construct

the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes
all contractible loops instead, Vγ,∇ generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x ∈M.
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Curvature of a connection

Let M be a manifold, B a bundle, ΛiM the differential forms, and ∇ :
B −→B ⊗ Λ1M a connection. We extend ∇ to B ⊗ ΛiM

∇−→ B ⊗ Λi+1M

in a natural way, using the formula

∇(b⊗ η) = ∇(b) ∧ η + b⊗ dη,
and define the curvature Θ∇ of ∇ as ∇ ◦∇ : B −→B ⊗ Λ2M .

CLAIM: This operator is C∞M-linear.

REMARK: We shall consider Θ∇ as an element of Λ2M ⊗EndB, that is, an
EndB-valued 2-form.

REMARK: Given vector fields X,Y ∈ TM , the curvature can be written in
terms of a connection as follows

Θ∇(b) = ∇X∇Y b−∇Y∇XB −∇[X,Y ]b.

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let ∇ be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Λ1⊗ g(B). Then Θ∇ lies
in Λ2M ⊗ g(B).
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The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then any contractible loop γ is a product of several lasso,

with working part of each inside some Ui.
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The Ambrose-Singer theorem

DEFINITION: Let (B,∇) be a bundle with connection, Θ ∈ Λ2(M)⊗End(B)

its curvature, and a, b ∈ TxM tangent vectors. An endomorphism Θ(a, b) ∈
End(B)|x is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,∇ at

z ∈ M is a Lie group, with its Lie algebra generated by all curvature

elements Θ(a, b) ∈ End(B)|x transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on TM .

THEOREM: (de Rham) Suppose that the holonomy representation is not
irreducible: TxM = V1 ⊕ V2. Then M locally splits as M = M1 ×M2, with
V1 = TM1, V2 = TM2.

Proof. Step 1: Using the parallel transform, we extend V1⊕V2 to a splitting
of vector bundles TM = B1 ⊕B2, preserved by holonomy.

Step 2: The sub-bundles B1, B2 ⊂ TM are integrable: [B1, B1] ⊂ Bi (the
Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a
local decomposition M = M1 ×M2, with V1 = TM1, V2 = TM2.

Step 4: Since the splitting TM = B1 ⊕ B2 is preserved by the connection,
the leaves M1,M2 are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = M1 ×M2, where M1,M2 are any leaves of these foliations.

20



Kähler manifolds, lecture 2 M. Verbitsky

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Hol0(M)
ρ−→ End(TxM)

a reduced holonomy representation. Suppose that ρ is reducible: TxM =

V1 ⊕ V2 ⊕ ... ⊕ Vk. Then G = Hol0(M) also splits: G = G1 × G2 × ... × Gk,
with each Gi acting trivially on all Vj with j 6= i.

Proof: Locally, this statement follows from the local splitting of M proven

above. To obtain it globally in M , use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-

terexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.

Then either M is locally symmetric, or Hol(M) acts transitively on the

unit sphere in TxM.
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Berger’s theorem

THEOREM: (Berger’s theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S15 ⊂ R16. In 1968, D. Alekseevsky has shown that a manifold
with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion

(Merkulov, Schwachhöfer, 1999).
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