Kähler geometry

lecture 2

Misha Verbitsky

University of Science and Technology China, Hefei

July 09, 2012

Some textbooks

Arthur L. Besse, Einstein Manifolds, Springer-Verlag (Berlin, 1987).

P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978).

D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, 2000

Jean-Pierre Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

Claire Voisin, Hodge theory and complex algebraic geometry, Cambridge University Press, 2007

D. Huybrechts, Complex geometry: an introduction, Springer Universitext, 2004

REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over \mathbb{R} , and $I : V \longrightarrow V$ an automorphism which satisfies $I^2 = -\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

DEFINITION: The vector space over \mathbb{C} with the same basis is called **a** complexification of V, denoted $V \otimes_{\mathbb{R}} \mathbb{C}$.

CLAIM: For an appropriate basis in $V \otimes_{\mathbb{R}} \mathbb{C}$, the complex structure operatorcan be written as

$$I = \begin{pmatrix} \sqrt{-1} & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \sqrt{-1} & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \sqrt{-1} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -\sqrt{-1} & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & -\sqrt{-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & -\sqrt{-1} \end{pmatrix},$$

with the eigenspaces of equal dimension.

REMINDER: Hermitian structures

DEFINITION: Let (V, I) be a real vector space with a complex structure. A scalar product is called *I*-invariant, if g(Ix, Iy) = g(x, y). An *I*-invariant positive definite scalar product on (V, I) is called **an Hermitian metric on** V, and (V, I, g) – an Hermitian space.

REMARK: Let *I* be a complex structure operator on a real vector space *V*, and *g* – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called **an Hermitian form** on (V, I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

REMINDER: tensor product

DEFINITION: Let V, W be vector spaces over a field $k = \mathbb{R}$ or \mathbb{C} , and V^*, W^* the dual spaces. Denote by $\text{Bil}(V \times W, k)$ the space of bilinear maps from V, W to k, and let $V \otimes W$ denote $\text{Bil}(V^* \times W^*, k)$, where V^*, W^* are dual spaces to V, W. The space $V \otimes W$ is called **the tensor product** of V, W.

DEFINITION: Given $v, w \in V, W$, one has an element $v \otimes w \in Bil(V^* \times W^*, k)$, mapping a pair of functionals $\lambda \in V^*, \mu \in W^*$ to $\lambda(v)\mu(w)$. This vector is called **the tensor product** of v and w.

CLAIM: If $\{v_i, i = 1, ..., n\}$ is a basis in V, $\{w_j, j = 1, ..., m\}$ a basis in W, the vectors $\{v_i \otimes w_j, i = 1, ..., n, j = 1, ..., m\}$ give a basis in $V \otimes W$. In particuler, $V \otimes W$ is $(\dim V \cdot \dim W)$ -dimensional.

REMARK: The tensor product is uniquely defined by the following **universal** property. Each bilinear map $B : (V, W) \longrightarrow k$ can be extended uniquely to the map $B^{\otimes} : V \otimes W \longrightarrow k$, in such a way that $B^{\otimes}(v \otimes w) = B(v, w)$.

EXERCISE: Prove this.

REMINDER: tensor algebra

DEFINITION: Given several vector spaces $V_1, ..., V_n$, their **tensor product** $V_1 \otimes V_2 \otimes ... \otimes V_n$ is defined as $V_1 \otimes (V_2 \otimes (V_2 \otimes ... V_n))...)$.

CLAIM: The tensor product operation is commutative and associative. Moreover, the space $V_1 \otimes V_2 \otimes ... \otimes V_n$ is isomorphic to the space $B(V_1^*, V_2^*, ..., V_n^*)$ of polylinear maps from $V_1^*, V_2^*, ..., V_n^*$ to k.

EXERCISE: Prove this.

REMARK: Given vectors in $v \in V_1 \otimes V_2 \otimes ... \otimes V_n$ and $w \in W_1 \otimes W_2 \otimes ... \otimes W_m$, the tensor product $v \otimes w$ sits in $V_1 \otimes V_2 \otimes ... \otimes V_n \otimes W_1 \otimes W_2 \otimes ... \otimes W_m$.

CLAIM: This defines the structure of an algebra on $T^{\otimes}V = k \oplus V \oplus V \otimes V \oplus ... \oplus V^{\otimes n}$, where $V^{\otimes n}$ is a tensor product of n copies of V.

EXERCISE: Prove this.

DEFINITION: The algebra $T^{\otimes}V$ is called **the tensor algebra**, or **free algebra** generated by V.

REMINDER: The Grassmann algebra

EXERCISE: Prove that any algebra generated by V can be obtained as a quotient of $T^{\otimes}V$ by an ideal.

EXERCISE: Let $v_1, ..., v_n \in V$ be a basis. Prove that the polynomial algebra $k[v_1, ..., v_n]$ is a quotient of $T^{\otimes}V$ by an ideal generated by $x \otimes y - y \otimes x$, for all $x, y \in V$.

DEFINITION: A Grassmann algebra Λ^*V is a quotient of $T^{\otimes}V$ by an ideal generated by $x \otimes y + y \otimes x$, for all $x, y \in V$. The multiplication in Λ^*V is denoted by $x, y \longrightarrow x \land y$, called **the wedge product**.

Properties of Grassmann algebra:

1. dim
$$\Lambda^i V := {\dim V \choose i}$$
, dim $\Lambda^* V = 2^{\dim V}$.

2. $\Lambda^*(V \oplus W) = \Lambda^*(V) \otimes \Lambda^*(W)$.

M. Verbitsky

REMINDER: Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function. Denote by $\text{Lie}_X f$ the derivative of f along X.

DEFINITION: A derivation on a commutative ring is a map $R \xrightarrow{d} R$ satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring $C^{\infty}M$ of smooth functions on M is given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a derivation.

REMARK: Vector fields are the same as derivations of $C^{\infty}M$. This allows us to define the commutator of two vector fields as the commutator of the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by $\Lambda^1 M$ or T^* the dual bundle, called **the bundle of 1-forms**. For any $f \in C^{\infty}M$, the operation $X \longrightarrow \text{Lie}_X f$ is linear as a function of X, hence it defines a section of T^*M . We denote this section df, and call it **the differential** of f.

REMINDER: de Rham algebra

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassman algebra of the cotangent space T_x^*M). The sections of $\Lambda^i M$ are called **differential** *i*-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

REMARK: $\Lambda^0 M = C^{\infty} M$.

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

1. On functions, d is equal to the differential.

2. $d^2 = 0$

3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

EXERCISE: Prove it.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta in \operatorname{im} d$. The group $\frac{\ker d}{\operatorname{im} d}$ is called **de Rham cohomology** of M.

M. Verbitsky

REMINDER: Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. One can represent *N* as a section of $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

EXAMPLE: Symmetric spaces.

EXAMPLE: $\mathbb{C}P^n$.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^2(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1) using the Haar measure on U(n + 1).

EXERCISE: Prove that **the Fubini-Study form is unique** (up to a constant multiplier).

Examples of Kähler manifolds.

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

DEFINITION: An almost complex submanifold $X \subset M$ of an almost complex manifold (M, I) is a smooth submanifold which satisfies $I(TX) \subset TX$.

EXERCISE: Let $X \subset M$ be an almost complex submanifold of (M, I), where I is integrable. **Prove that** $(X, I|_{TX})$ is a complex manifold.

DEFINITION: In this situation, X is called a complex submanifold of M.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

M. Verbitsky

Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential *i*-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle *B* is a map $B \xrightarrow{\nabla} \Lambda^1 M \otimes B$ which satisfies

$$\nabla(fb) = df \otimes b + f\nabla b$$

for all $b \in B$, $f \in C^{\infty}M$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Torsion

DEFINITION: The torsion of a connection $\Lambda^1 \xrightarrow{\nabla} \Lambda^1 M \otimes \Lambda^1 M$ is a map $Alt \circ \nabla - d$, where $Alt : \Lambda^1 M \otimes \Lambda^1 M \longrightarrow \Lambda^2 M$ is exterior multiplication. It is a map $T_{\nabla} : \Lambda^1 M \longrightarrow \Lambda^2 M$.

EXERCISE: Prove that torsion is a $C^{\infty}M$ -linear.

REMARK: The dual operator $x, y \longrightarrow \nabla_x Y - \nabla_y X - [X, Y]$ is also called **the** torsion of ∇ . It is a map $\Lambda^2 TM \longrightarrow TM$.

EXERCISE: Prove that these two tensors are dual.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") **For any Riemannian manifold, the Levi-Civita connection exists, and it is unique**.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X,Y] = \nabla_X Y - \nabla_Y X$, hence it is a (1,0)-vector field when X, Y are of type (1,0), and then I is integrable. Also, $d\omega = 0$, because ∇ is torsion-free, and $d\omega = \text{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla} : B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its restricted holonomy vanishes.**

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_x M, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Curvature of a connection

Let M be a manifold, B a bundle, $\Lambda^i M$ the differential forms, and ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ a connection. We extend ∇ to $B \otimes \Lambda^i M \xrightarrow{\nabla} B \otimes \Lambda^{i+1} M$ in a natural way, using the formula

 $\nabla(b\otimes\eta)=\nabla(b)\wedge\eta+b\otimes d\eta,$

and define the curvature Θ_{∇} of ∇ as $\nabla \circ \nabla$: $B \longrightarrow B \otimes \Lambda^2 M$.

CLAIM: This operator is $C^{\infty}M$ -linear.

REMARK: We shall consider Θ_{∇} as an element of $\Lambda^2 M \otimes \text{End } B$, that is, an End *B*-valued 2-form.

REMARK: Given vector fields $X, Y \in TM$, the curvature can be written in terms of a connection as follows

$$\Theta_{\nabla}(b) = \nabla_X \nabla_Y b - \nabla_Y \nabla_X B - \nabla_{[X,Y]} b.$$

CLAIM: Suppose that the structure group of *B* is reduced to its subgroup *G*, and let ∇ be a connection which preserves this reduction. This is the same as to say that the connection form takes values in $\Lambda^1 \otimes \mathfrak{g}(B)$. Then Θ_{∇} lies in $\Lambda^2 M \otimes \mathfrak{g}(B)$.

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\{U_i\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_i .

The Ambrose-Singer theorem

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^2(M) \otimes \text{End}(B)$ its curvature, and $a, b \in T_x M$ tangent vectors. An endomorphism $\Theta(a, b) \in$ $\text{End}(B)|_x$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\Theta(a, b) \in \text{End}(B)|_x$ transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.

Holonomy representation

DEFINITION: Let (M,g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on TM.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_xM = V_1 \oplus V_2$. Then *M* locally splits as $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Proof. Step 1: Using the parallel transform, we extend $V_1 \oplus V_2$ to a **splitting** of vector bundles $TM = B_1 \oplus B_2$, preserved by holonomy.

Step 2: The sub-bundles B_1 , $B_2 \subset TM$ are integrable: $[B_1, B_1] \subset B_i$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Step 4: Since the splitting $TM = B_1 \oplus B_2$ is preserved by the connection, **the leaves** M_1, M_2 are totally geodesic.

Step 5: Therefore, **locally** *M* **splits (as a Riemannian manifold)**: $M = M_1 \times M_2$, where M_1, M_2 are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H}ol_0(M) \xrightarrow{\rho} End(T_xM)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_xM = V_1 \oplus V_2 \oplus \ldots \oplus V_k$. Then $G = \mathcal{H}ol_0(M)$ also splits: $G = G_1 \times G_2 \times \ldots \times G_k$, with each G_i acting trivially on all V_j with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product**.

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. **Then either** M **is locally symmetric, or** $\mathcal{H}ol(M)$ **acts transitively on the unit sphere in** T_xM .

Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) imes Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G_2 -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9) acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).