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REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 12 = —Idy,. Such an automorphism is called a complex
structure operator on V.

DEFINITION: The vector space over C with the same basis is called a
complexification of V, denoted V Qp C.

CLAIM: For an appropriate basis in V®RrC, the complex structure operatorcan
be written as

(V=1 0 0 0 0 0 \
0 =1 0 0 0 0
0 0 =1 0 0 0
I = : : : : : : ,
0 0 0 /=1 0 0
0 0 0 0 —v=1 0
\ 0 0 0 0 0 —v=1)

with the eigenspaces of equal dimension.



Kahler manifolds, lecture 2 M. Verbitsky

REMINDER: Hermitian structures

DEFINITION: Let (V,I) be a real vector space with a complex structure.
A scalar product is called I-invariant, if g(Ix,Iy) = g(x,y). An I-invariant
positive definite scalar product on (V,I) is called an Hermitian metric on
V, and (V,I,g) — an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =

DEFINITION: A skew-symmetric form w(z,vy) is called an Hermitian form
on (V,I).

REMARK: In the triple I,g,w, each element can recovered from the other
two.
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REMINDER: tensor product

DEFINITION: Let V,W be vector spaces over a field k =R or C, and V* W*
the dual spaces. Denote by Bil(V x W, k) the space of bilinear maps from V, W
to k, and let V@ W denote Bil(V* x W*, k), where V* W* are dual spaces to
V,W. The space V ® W is called the tensor product of V. W.

DEFINITION: Given v,w € V,W, one has an element v®@w € Bil(V*x W* k),
mapping a pair of functionals A € V*,u € W* to A(v)u(w). This vector is
called the tensor product of v and w.

CLAIM: If {v;,¢ =1,...,n} is a basis in V, {w;,7 = 1,...,m} a basis in W, the
vectors {v;®w;, i =1,...,n,7 = 1,...,m} give a basis in V@ W. In particuler,
VeoWis (dimV .-dim W)-dimensional.

REMARK: The tensor product is uniquely defined by the following universal
property. Each bilinear map B : (V,W) — k can be extended uniquely to
the map B : V@ W — k, in such a way that B®(v ® w) = B(v,w).

EXERCISE: Prove this.
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REMINDER: tensor algebra

DEFINITION: Given several vector spaces Vq,...,V,, their tensor product
VioVo®..® Vy,is defined as V1 @ (Vo ® (Vo ® ...VR))...).

CLAIM: The tensor product operation iIs commutative and associative.
Moreover, the space V1 ®Vo®...QV, is isomorphic to the space B(V{, V5, ..., V)
of polylinear maps from V* V5, ..., V} to k.

EXERCISE: Prove this.

REMARK: Given vectorsinv e Vi@ VWmh®...Vyandw e Wi QWo ® ... W,
the tensor product v@w sits in Vi @ Vo ® ... Vi, W1 9 Wo ® ... @ Wiy,

CLAIM: This defines the structure of an algebra on TV =k V AV QV &
LB VO where VO is a tensor product of n copies of V.

EXERCISE: Prove this.
DEFINITION: The algebra T®V is called the tensor algebra, or free al-

gebra generated by V.
6
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REMINDER: The Grassmann algebra

EXERCISE: Prove that any algebra generated by V can be obtained as
a quotient of T®V by an ideal.

EXERCISE: Letvq,...,vp, € V be a basis. Prove that the polynomial algebra
k[vq,...,vn] is @ quotient of T®V by an ideal generated by z ®y — y ® «,
for all z,yc V.

DEFINITION: A Grassmann algebra A*V is a quotient of T®V by an ideal
generated by xrQy+y®x, for all x,y € V. The multiplication in A*V is denoted
by x,y — x Ay, called the wedge product.

Properties of Grassmann algebra:

1. dim AV = (9TV), dim A*Y = 2dimV,

2. A (VW) = A (V) @ A*(W).
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REMINDER: Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function.
Denote by Lieyx f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R i> R
satisfying the Leibniz identity d(xy) = d(z)y + xd(y).

THEOREM: Each derivation of the ring C°°M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C°°M. This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by T'M the bundle of vector fields, and by ALM or
T* the dual bundle, called the bundle of 1-forms. For any f € C°°M, the
operation X — Liex f is linear as a function of X, hence it defines a section
of T*M. We denote this section df, and call it the differential of f.

3
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REMINDER: de Rham algebra

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A*M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

REMARK: NOM = C>®M.

THEOdREM: There exists a unique operator C°M -4 Alpr -4 A2p -9
A3M -5 ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinAE) =dm) ANE+ (=1 Ad(€), where 7 = 0 where n € A% M is an even
form, and n € \2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.

DEFINITION: A form n is called closed if dn = 0, exact if minimd. The

group 8¢ is called de Rham cohomology of M.

9
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REMINDER: Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies 12 = —Idp,,.

T he eigenvalues of this operator are +v/—1. The corresponding eigenvalue
decomposition is denoted TM = 7% M @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TlvOM,
one has [X,Y] € TVOM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C*°M-linear map
N := N2(T19) — 10101, called the Nijenhuis tensor of I. One can rep-
resent N as a section of A29(M) @ TO 1.

EXAMPLE: Symmetric spaces.

EXAMPLE: CP".
10
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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, [%y) =
—qg(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € A2(M) is called the Hermitian
form of (M, 1,gq).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.

Definition: Let M = CP"™ be a complex projective space, and g a U(n 4+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n 4+ 1) using the Haar measure on U(n + 1).

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant
multiplier).
11
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Examples of Kahler manifolds.

Remark: For any x € CP"™, the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on T,CP™ = C" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw|; is a U(n)-invariant 3-
form on C", but such a form must vanish, because —1Id € U(n)

REMARK: The same argument works for all symmetric spaces.

DEFINITION: An almost complex submanifold X C M of an almost
complex manifold (M, I) is a smooth submanifold which satisfies I(TX) C TX.

EXERCISE: Let X C M be an almost complex submanifold of (M, I), where
I is integrable. Prove that (X, I|rx) Is a complex manifold.

DEFINITION: In this situation, X is called a complex submanifold of M.
Corollary: Every projective manifold (complex submanifold of CP") is

Kahler. Indeed, a restriction of a closed form is again closed.
12
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, A'M the
bundle of differential -forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B isa map B — AlM® B
which satisfies

V(fb) =df @ b+ fVb
forallbe B, f e C°°M.

REMARK: A connection V on B gives a connection B* 2 ALM @ B* on
the dual bundle, by the formula

d({b, 8)) = (Vb,B) + (b, V"B)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle B .= B*®B*"®..QB* R BQB®..® B a
connection on B defines a connection on B; using the Leibniz formula:

V(b1 ®bp) =V (b1) @by + b1 @ V(b2).
13
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Torsion

DEFINITION: The torsion of a connection Al -5 ALM @ ALM is a map
AltoV — d, where Alt : ALM @ ALM —s A2M is exterior multiplication. It is a
map Ty : AN1M — A2M.

EXERCISE: Prove that torsion is a C°°M-linear.

REMARK: The dual operator z,y — VY — VX — [X, Y] is also called the
torsion of V. It is a map A2TM —s T M.

EXERCISE: Prove that these two tensors are dual.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry’)
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.

14



Kahler manifolds, lecture 2 M. Verbitsky

Levi-Civita connection and Kahler geometry

THEOREM: Let (M, 1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form w is
closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
REMARK: The implication (ii) = (i) is clear. Indeed, [X,Y] = VxY —
Vy X, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I

Is integrable. Also, dw = 0, because V is torsion-free, and dw = Alt(Vw).

The implication (i) = (ii) is proven by the same argument as used to construct
the Levi-Civita connection.

15
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, ¢ : Bz — B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~v. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥" g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point = € M.

16
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Curvature of a connection

Let M be a manifold, B a bundle, A'M the differential forms, and V :

B—s B &AM a connection. We extend V to B ® APM -V B & ATl

in @ natural way, using the formula
Vibn) =V(b) An+ bR dn,
and define the curvature ©y of Vas VoV : B— B® A2M.

CLAIM: This operator is C°°M-linear.

REMARK: We shall consider ©g as an element of A°M ® End B, that is, an
End B-valued 2-form.

REMARK: Given vector fields X,Y € T'M, the curvature can be written in
terms of a connection as follows

@v(b) — Vvab — VYVXB — V[X,Y]b'

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let V be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Al ® g(B). Then Oy lies
in A2M ® g(B).

17
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T he Lasso lemma

DEFINITION: A lasso is a loop of the following form:

,,,/

The round part is called a working part of a loop.
REMARK: (“The Lasso Lemma’”) Let {U;} be a covering of a manifold,

and ~ a loop. Then any contractible loop ~ is a product of several lasso,
with working part of each inside some U,.

18
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The Ambrose-Singer theorem

DEFINITION: Let (B, V) be a bundle with connection, © € A2(M)®End(B)
its curvature, and a,b € T, M tangent vectors. An endomorphism ©(a,b) €
End(B)|, is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,V at
z € M is a Lie group, with its Lie algebra generated by all curvature
elements ©(aq,b) € End(B)|, transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.

19



Kahler manifolds, lecture 2 M. Verbitsky

Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on T'M.

THEOREM: (de Rham) Suppose that the holonomy representation is not
irreducible: T, M = V7 & Vo. Then M locally splits as M = My x M>, with
Vi=TMq, Vo =TM>.

Proof. Step 1: Using the parallel transform, we extend V7 @& V5 to a splitting
of vector bundles T'M = By & B>, preserved by holonomy.

Step 2: The sub-bundles By, B> C TM are integrable: [By,B1] C B; (the
Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a
local decomposition M = My x M»>, with V7 =TMq, Vo =T Mo>.

Step 4: Since the splitting T'M = By & B> is preserved by the connection,
the leaves M4, M> are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = My x Mo, where M1, M> are any leaves of these foliations. =

20
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Holg(M) Ly End(TxM)
a reduced holonomy representation. Suppose that p is reducible: T,M =
VieVod..d V. Then G = Holg(M) also splits: G = G1 x Gy X ... X Gy,
with each G; acting trivially on all V; with j 7 i.

Proof: Locally, this statement follows from the local splitting of M proven
above. To obtain it globally in M, use the Lasso Lemma. m

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-
terexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.
Then either M is locally symmetric, or Hol(M) acts transitively on the
unit sphere in 7T, M.

21
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Berger’s theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R=" Kahler manifolds
SU(n) acting on R°", n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkihler manifolds
Sp(n) x Sp(1)/{+1} quaternionic-Kahler
acting on R4, n > 1 manifolds
G- acting on R’ Go-manifolds
Spin(7) acting on R® Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S1° ¢ R16. In 1968, D. Alekseevsky has shown that a manifold
with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion
(Merkulov, Schwachhofer, 1999).
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