Kähler geometry

lecture 2

Misha Verbitsky

University of Science and Technology China, Hefei
July 09, 2012

Some textbooks

Arthur L. Besse, Einstein Manifolds, Springer-Verlag (Berlin, 1987).
P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978).
D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, 2000

Jean-Pierre Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

Claire Voisin, Hodge theory and complex algebraic geometry, Cambridge University Press, 2007
D. Huybrechts, Complex geometry: an introduction, Springer Universitext, 2004

REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over \mathbb{R}, and $I: V \longrightarrow V$ an automorphism which satisfies $I^{2}=-\mathrm{Id}_{V}$. Such an automorphism is called a complex structure operator on V.

DEFINITION: The vector space over \mathbb{C} with the same basis is called a complexification of V, denoted $V \otimes_{\mathbb{R}} \mathbb{C}$.

CLAIM: For an appropriate basis in $V \otimes_{\mathbb{R}} \mathbb{C}$, the complex structure operatorcan be written as

$$
I=\left(\begin{array}{ccccccc}
\sqrt{-1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \sqrt{-1} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \sqrt{-1} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -\sqrt{-1} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & -\sqrt{-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & -\sqrt{-1}
\end{array}\right),
$$

with the eigenspaces of equal dimension.

REMINDER: Hermitian structures

DEFINITION: Let (V, I) be a real vector space with a complex structure. A scalar product is called I-invariant, if $g(I x, I y)=g(x, y)$. An I-invariant positive definite scalar product on (V, I) is called an Hermitian metric on V, and (V, I, g) - an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space V, and g - a Hermitian metric. Then the bilinear form $\omega(x, y):=g(x, I y)$ is skew-symmetric. Indeed, $\omega(x, y)=g(x, I y)=g\left(I x, I^{2} y\right)=-g(I x, y)=$ $-\omega(y, x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called an Hermitian form on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other two.

REMINDER: tensor product

DEFINITION: Let V, W be vector spaces over a field $k=\mathbb{R}$ or \mathbb{C}, and V^{*}, W^{*} the dual spaces. Denote by $\operatorname{Bil}(V \times W, k)$ the space of bilinear maps from V, W to k, and let $V \otimes W$ denote $\operatorname{Bil}\left(V^{*} \times W^{*}, k\right)$, where V^{*}, W^{*} are dual spaces to V, W. The space $V \otimes W$ is called the tensor product of V, W.

DEFINITION: Given $v, w \in V, W$, one has an element $v \otimes w \in \operatorname{Bil}\left(V^{*} \times W^{*}, k\right)$, mapping a pair of functionals $\lambda \in V^{*}, \mu \in W^{*}$ to $\lambda(v) \mu(w)$. This vector is called the tensor product of v and w.

CLAIM: If $\left\{v_{i}, i=1, \ldots, n\right\}$ is a basis in $V,\left\{w_{j}, j=1, \ldots, m\right\}$ a basis in W, the vectors $\left\{v_{i} \otimes w_{j}, i=1, \ldots, n, j=1, \ldots, m\right\}$ give a basis in $V \otimes W$. In particuler, $V \otimes W$ is $(\operatorname{dim} V \cdot \operatorname{dim} W)$-dimensional.

REMARK: The tensor product is uniquely defined by the following universal property. Each bilinear map $B:(V, W) \longrightarrow k$ can be extended uniquely to the map $B^{\otimes}: V \otimes W \longrightarrow k$, in such a way that $B^{\otimes}(v \otimes w)=B(v, w)$.

EXERCISE: Prove this.

REMINDER: tensor algebra

DEFINITION: Given several vector spaces V_{1}, \ldots, V_{n}, their tensor product $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n}$ is defined as $\left.V_{1} \otimes\left(V_{2} \otimes\left(V_{2} \otimes \ldots V_{n}\right)\right) \ldots\right)$.

CLAIM: The tensor product operation is commutative and associative. Moreover, the space $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n}$ is isomorphic to the space $B\left(V_{1}^{*}, V_{2}^{*}, \ldots, V_{n}^{*}\right)$ of polylinear maps from $V_{1}^{*}, V_{2}^{*}, \ldots, V_{n}^{*}$ to k.

EXERCISE: Prove this.

REMARK: Given vectors in $v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n}$ and $w \in W_{1} \otimes W_{2} \otimes \ldots \otimes W_{m}$, the tensor product $v \otimes w$ sits in $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n} \otimes W_{1} \otimes W_{2} \otimes \ldots \otimes W_{m}$.

CLAIM: This defines the structure of an algebra on $T^{\otimes} V=k \oplus V \oplus V \otimes V \oplus$ $\ldots \oplus V^{\otimes n}$, where $V^{\otimes n}$ is a tensor product of n copies of V.

EXERCISE: Prove this.

DEFINITION: The algebra $T^{\otimes} V$ is called the tensor algebra, or free algebra generated by V.

REMINDER: The Grassmann algebra

EXERCISE: Prove that any algebra generated by V can be obtained as a quotient of $T^{\otimes} V$ by an ideal.

EXERCISE: Let $v_{1}, \ldots, v_{n} \in V$ be a basis. Prove that the polynomial algebra $k\left[v_{1}, \ldots, v_{n}\right]$ is a quotient of $T^{\otimes} V$ by an ideal generated by $x \otimes y-y \otimes x$, for all $x, y \in V$.

DEFINITION: A Grassmann algebra $\Lambda^{*} V$ is a quotient of $T^{\otimes} V$ by an ideal generated by $x \otimes y+y \otimes x$, for all $x, y \in V$. The multiplication in $\Lambda^{*} V$ is denoted by $x, y \longrightarrow x \wedge y$, called the wedge product.

Properties of Grassmann algebra:

1. $\operatorname{dim} \wedge^{i} V:=\left(\operatorname{dim}_{i} V\right), \operatorname{dim} \wedge^{*} V=2^{\operatorname{dim} V}$.
2. $\wedge^{*}(V \oplus W)=\wedge^{*}(V) \otimes \wedge^{*}(W)$.

REMINDER: Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function. Denote by $\mathrm{Lie}_{X} f$ the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map $R \xrightarrow{d} R$ satisfying the Leibniz identity $d(x y)=d(x) y+x d(y)$.

THEOREM: Each derivation of the ring $C^{\infty} M$ of smooth functions on M is given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a derivation.

REMARK: Vector fields are the same as derivations of $C^{\infty} M$. This allows us to define the commutator of two vector fields as the commutator of the corresponding derivations.

DEFINITION: Denote by $T M$ the bundle of vector fields, and by $\Lambda^{1} M$ or T^{*} the dual bundle, called the bundle of 1-forms. For any $f \in C^{\infty} M$, the operation $X \longrightarrow \operatorname{Lie}_{X} f$ is linear as a function of X, hence it defines a section of $T^{*} M$. We denote this section $d f$, and call it the differential of f.

REMINDER: de Rham algebra

DEFINITION: Let $\wedge^{*} M$ denote the vector bundle with the fiber $\wedge^{*} T_{x}^{*} M$ at $x \in M\left(\Lambda^{*} T^{*} M\right.$ is the Grassman algebra of the cotangent space $\left.T_{x}^{*} M\right)$. The sections of $\wedge^{i} M$ are called differential i-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty} M$-linear; the space $\wedge^{*} M$ of all differential forms is called the de Rham algebra.

REMARK: $\wedge^{0} M=C^{\infty} M$.
THEOREM: There exists a unique operator $C^{\infty} M \xrightarrow{d} \Lambda^{1} M \xrightarrow{d} \Lambda^{2} M \xrightarrow{d}$ $\wedge^{3} M \xrightarrow{d} \ldots$ satisfying the following properties

1. On functions, d is equal to the differential.
2. $d^{2}=0$
3. $d(\eta \wedge \xi)=d(\eta) \wedge \xi+(-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta}=0$ where $\eta \in \lambda^{2 i} M$ is an even form, and $\eta \in \lambda^{2 i+1} M$ is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.
DEFINITION: A form η is called closed if $d \eta=0$, exact if η in im d. The group $\frac{\mathrm{ker} d}{\mathrm{im} d}$ is called de Rham cohomology of M.

REMINDER: Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\operatorname{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0} M$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map
$N:=\Lambda^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

EXAMPLE: Symmetric spaces.
EXAMPLE: $\mathbb{C} P^{n}$.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{2}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Definition: Let $M=\mathbb{C} P^{n}$ be a complex projective space, and g a $U(n+1)$ invariant Riemannian form. It is called Fubini-Study form on $\mathbb{C} P^{n}$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with $U(n+1)$ using the Haar measure on $U(n+1)$.

EXERCISE: Prove that the Fubini-Study form is unique (up to a constant multiplier).

Examples of Kähler manifolds.

Remark: For any $x \in \mathbb{C} P^{n}$, the stabilizer $S t(x)$ is isomorphic to $U(n)$. FubiniStudy form on $T_{x} \mathbb{C} P^{n}=\mathbb{C}^{n}$ is $U(n)$-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $\left.d \omega\right|_{x}$ is a $U(n)$-invariant 3form on \mathbb{C}^{n}, but such a form must vanish, because - Id $\in U(n)$

REMARK: The same argument works for all symmetric spaces.

DEFINITION: An almost complex submanifold $X \subset M$ of an almost complex manifold (M, I) is a smooth submanifold which satisfies $I(T X) \subset T X$.

EXERCISE: Let $X \subset M$ be an almost complex submanifold of (M, I), where I is integrable. Prove that $\left(X,\left.I\right|_{T X}\right)$ is a complex manifold.

DEFINITION: In this situation, X is called a complex submanifold of M.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C} P^{n}$) is Kähler. Indeed, a restriction of a closed form is again closed.

Connections

Notation: Let M be a smooth manifold, $T M$ its tangent bundle, $\Lambda^{i} M$ the bundle of differential i-forms, $C^{\infty} M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \xrightarrow{\nabla} \Lambda^{1} M \otimes B$ which satisfies

$$
\nabla(f b)=d f \otimes b+f \nabla b
$$

for all $b \in B, f \in C^{\infty} M$.
REMARK: A connection ∇ on B gives a connection $B^{*} \xrightarrow{\nabla^{*}} \wedge^{1} M \otimes B^{*}$ on the dual bundle, by the formula

$$
d(\langle b, \beta\rangle)=\langle\nabla b, \beta\rangle+\left\langle b, \nabla^{*} \beta\right\rangle
$$

These connections are usually denoted by the same letter ∇.
REMARK: For any tensor bundle $\mathcal{B}_{1}:=B^{*} \otimes B^{*} \otimes \ldots \otimes B^{*} \otimes B \otimes B \otimes \ldots \otimes B$ a connection on B defines a connection on \mathcal{B}_{1} using the Leibniz formula:

$$
\nabla\left(b_{1} \otimes b_{2}\right)=\nabla\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla\left(b_{2}\right)
$$

Torsion

DEFINITION: The torsion of a connection $\Lambda^{1} \xrightarrow{\nabla} \Lambda^{1} M \otimes \Lambda^{1} M$ is a map Alt $\circ \nabla-d$, where Alt : $\wedge^{1} M \otimes \wedge^{1} M \longrightarrow \Lambda^{2} M$ is exterior multiplication. It is a map $T_{\nabla}: \wedge^{1} M \longrightarrow \wedge^{2} M$.

EXERCISE: Prove that torsion is a $C^{\infty} M$-linear.

REMARK: The dual operator $x, y \longrightarrow \nabla_{x} Y-\nabla_{y} X-[X, Y]$ is also called the torsion of ∇. It is a map $\wedge^{2} T M \longrightarrow T M$.

EXERCISE: Prove that these two tensors are dual.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is called orthogonal if $\nabla(g)=0$. It is called Levi-Civita if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) The complex structure I is integrable, and the Hermitian form ω is closed.
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X, Y]=\nabla_{X} Y-$ $\nabla_{Y} X$, hence it is a $(1,0)$-vector field when X, Y are of type $(1,0)$, and then I is integrable. Also, $d \omega=0$, because ∇ is torsion-free, and $d \omega=\operatorname{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma, \nabla}:\left.\left.B\right|_{x} \longrightarrow B\right|_{x}$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma, \nabla}$, for all loops γ. If one takes all contractible loops instead, $V_{\gamma, \nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its restricted holonomy vanishes.

REMARK: If $\nabla(\varphi)=0$ for some tensor $\varphi \in B^{\otimes i} \otimes\left(B^{*}\right)^{\otimes j}$, the holonomy group preserves φ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O\left(T_{x} M,\left.g\right|_{x}\right)=O(n)$.
EXAMPLE: Holonomy of a Kähler manifold lies in $U\left(T_{x} M,\left.g\right|_{x},\left.I\right|_{x}\right)=U(n)$.
REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Curvature of a connection

Let M be a manifold, B a bundle, $\Lambda^{i} M$ the differential forms, and ∇ : $B \longrightarrow B \otimes \wedge^{1} M$ a connection. We extend ∇ to $B \otimes \wedge^{i} M \xrightarrow{\nabla} B \otimes \wedge^{i+1} M$ in a natural way, using the formula

$$
\nabla(b \otimes \eta)=\nabla(b) \wedge \eta+b \otimes d \eta
$$

and define the curvature Θ_{∇} of ∇ as $\nabla \circ \nabla: B \longrightarrow B \otimes \wedge^{2} M$.
CLAIM: This operator is $C^{\infty} M$-linear.
REMARK: We shall consider Θ_{∇} as an element of $\Lambda^{2} M \otimes$ End B, that is, an End B-valued 2-form.

REMARK: Given vector fields $X, Y \in T M$, the curvature can be written in terms of a connection as follows

$$
\Theta_{\nabla}(b)=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} B-\nabla_{[X, Y]} b .
$$

CLAIM: Suppose that the structure group of B is reduced to its subgroup G, and let ∇ be a connection which preserves this reduction. This is the same as to say that the connection form takes values in $\Lambda^{1} \otimes \mathfrak{g}(B)$. Then Θ_{∇} lies in $\Lambda^{2} M \otimes \mathfrak{g}(B)$.

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\left\{U_{i}\right\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_{i}.

The Ambrose-Singer theorem

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^{2}(M) \otimes \operatorname{End}(B)$ its curvature, and $a, b \in T_{x} M$ tangent vectors. An endomorphism $\Theta(a, b) \in$ End $\left.(B)\right|_{x}$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\left.\Theta(a, b) \in \operatorname{End}(B)\right|_{x}$ transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.

Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on $T M$.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_{x} M=V_{1} \oplus V_{2}$. Then M locally splits as $M=M_{1} \times M_{2}$, with $V_{1}=T M_{1}, V_{2}=T M_{2}$.

Proof. Step 1: Using the parallel transform, we extend $V_{1} \oplus V_{2}$ to a splitting of vector bundles $T M=B_{1} \oplus B_{2}$, preserved by holonomy.

Step 2: The sub-bundles $B_{1}, B_{2} \subset T M$ are integrable: [$\left.B_{1}, B_{1}\right] \subset B_{i}$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M=M_{1} \times M_{2}$, with $V_{1}=T M_{1}, V_{2}=T M_{2}$.

Step 4: Since the splitting $T M=B_{1} \oplus B_{2}$ is preserved by the connection, the leaves M_{1}, M_{2} are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold): $M=M_{1} \times M_{2}$, where M_{1}, M_{2} are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H} \mathrm{ol}_{0}(M) \xrightarrow{\rho} \operatorname{End}\left(T_{x} M\right)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_{x} M=$ $V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$. Then $G=\mathcal{H o l}_{0}(M)$ also splits: $G=G_{1} \times G_{2} \times \ldots \times G_{k}$, with each G_{i} acting trivially on all V_{j} with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. Then either M is locally symmetric, or $\mathcal{H} \circ(M)$ acts transitively on the unit sphere in $T_{x} M$.

Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$S O(n)$ acting on \mathbb{R}^{n}	Riemannian manifolds
$U(n)$ acting on $\mathbb{R}^{2 n}$	Kähler manifolds
$S U(n)$ acting on $\mathbb{R}^{2 n}, n>2$	Calabi-Yau manifolds
$S p(n)$ acting on $\mathbb{R}^{4 n}$	hyperkähler manifolds
$S p(n) \times S p(1) /\{ \pm 1\}$ acting on $\mathbb{R}^{4 n}, n>1$	quaternionic-Kähler
G_{2} acting on \mathbb{R}^{7}	manifolds
$S p i n(7)$ acting on \mathbb{R}^{8}	G_{2}-manifolds

REMARK: There is one more group acting transitively on a sphere: $\operatorname{Spin}(9)$ acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy $\operatorname{Spin}(9)$ is automatically locally symmetric.
REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).

