
Kähler manifolds, lecture 3 M. Verbitsky

Kähler geometry
lecture 3

Misha Verbitsky

University of Science and Technology China, Hefei

July 10, 2012

1



Kähler manifolds, lecture 3 M. Verbitsky

REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

DEFINITION: The vector space over C with the same basis is called a

complexification of V , denoted V ⊗R C.

CLAIM: For an appropriate basis in V ⊗RC, the complex structure operatorcan
be written as

I =



√
−1 0 0 . . . 0 0 0
0

√
−1 0 . . . 0 0 0

0 0
√
−1 . . . 0 0 0

... ... ... . . . ... ... ...
0 0 0 . . . −

√
−1 0 0

0 0 0 . . . 0 −
√
−1 0

0 0 0 . . . 0 0 −
√
−1


,

with the eigenspaces of equal dimension.
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REMINDER: Hermitian structures

DEFINITION: Let (V, I) be a real vector space with a complex structure.

A scalar product is called I-invariant, if g(Ix, Iy) = g(x, y). An I-invariant

positive definite scalar product on (V, I) is called an Hermitian metric on

V , and (V, I, g) – an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space

V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)

is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =

−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other

two.
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REMINDER: Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map
N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-
resent N as a section of Λ2,0(M)⊗ T0,1M.

EXAMPLE: Symmetric spaces.

EXAMPLE: CPn.
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REMINDER: Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ2(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.

5



Kähler manifolds, lecture 3 M. Verbitsky

REMINDER: Projective manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1) using the Haar measure on U(n+ 1).

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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REMINDER: Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the

bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula.
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REMINDER: Levi-Civita connection

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is

closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.
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REMINDER: Ambrose-Singer theorem

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-

tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be

the corresponding parallel transport along the connection. The holonomy

group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes

all contractible loops instead, Vγ,∇ generates the local holonomy, or the

restricted holonomy group.

DEFINITION: Let (B,∇) be a bundle with connection, Θ ∈ Λ2(M)⊗End(B)

its curvature, and a, b ∈ TxM tangent vectors. An endomorphism Θ(a, b) ∈
End(B)|x is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,∇ at

z ∈ M is a Lie group, with its Lie algebra generated by all curvature

elements Θ(a, b) ∈ End(B)|x transported to z along all paths.
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REMINDER: Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.

A holonomy representation is the natural action of G on TM .

THEOREM: (de Rham) Suppose that the holonomy representation is not

irreducible: TxM = V1 ⊕ V2. Then M locally splits as M = M1 ×M2, with

V1 = TM1, V2 = TM2.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-

terexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.

Then either M is locally symmetric, or Hol(M) acts transitively on the

unit sphere in TxM.
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Berger’s theorem

THEOREM: (Berger’s theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S15 ⊂ R16. In 1968, D. Alekseevsky has shown that a manifold
with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion

(Merkulov, Schwachhöfer, 1999).
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Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally

trivial sheaf of C∞M-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a

locally trivial sheaf of OM-modules.

REMARK: A section b of a bundle B is often denoted as b ∈ B.

CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf BC∞ :=

B ⊗OM C∞M . It is clearly locally trivial, hence BC∞ is a smooth vector

bundle.

DEFINITION: BC∞ is called a smooth vector bundle underlying B.
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A holomorphic structure operator

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de

Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and

d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

REMARK: From d2 = 0, one obtains ∂
2

= 0 and ∂2 = 0.

REMARK: The operator ∂ is OM-linear.

DEFINITION: Let B be a holomorphic vector bundle, and ∂ : BC∞ −→BC∞⊗
Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where b ∈ B is a holomorphic

section, and f a smooth function. This operator is called a holomorphic

structure operator on B. It is correctly defined, because ∂ is OM-linear.

REMARK: The kernel of ∂ coincides with the set of holomorphic sections

of B.
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The ∂-operator on vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

REMARK: If ∂ is a holomorphic structure operator, then ∂
2

= 0.

THEOREM: (Atiyah-Bott) Let ∂ : V −→ Λ0,1(M) ⊗ V be a ∂-operator,

satisfying ∂
2

= 0. Then B := ker ∂ ⊂ V is a holomorphic vector bundle of

the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg

theorem.

DEFINITION: ∂-operator ∂ : V −→ Λ0,1(M) ⊗ V on a smooth manifold is

called a holomorphic structure operator, if ∂
2

= 0.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Curvature of a connection

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.
Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is
called the curvature of ∇.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.
The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence
it is C∞M-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Using the graded Jacobi identity, we
obtain [∇,∇2] = [∇2,∇] + [∇,∇2] = 0, hence [∇,∇2] = 0. This gives Bianchi
identity: ∇(ΘB) = 0.

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: The cohomology class c1(B) :=
√
−1
2π [ΘB] ∈ H2(M) is called

the real first Chern class of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.
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Curvature of a holomorphic line bundle

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate section. Denote by η a (1,0)-form which satisfies ∇1,0b = η ⊗ b.
Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b = ∂|b|2

|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f

CLAIM: Let η be a closed (1,1)-form in the same cohomology class as ΘB,h.
Then η is a curvature of a Chern connection on B, for some metric h′.

Proof: The difference ΘB,h− η is an exact (1,1)-form, hence belongs to an
image of ∂∂ (“∂∂-lemma”): ΘB,h − η = −2∂∂f. Then the curvature of a
metric h′ := e2fh satisfies ΘB,h −ΘB,h′ = −2∂∂f, hence η = ΘB,h′.

REMARK: Such metric is unique, up to a constant.
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

we obtain 0−→H1(M, (C∞M)∗)−→H2(M,Z)−→ 0.

DEFINITION: Let B be a complex line bundle, and ξB its defining element
in H1(M, (C∞M)∗). Its image in H2(M,Z) is called the integer first Chern
class of B.

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c1(B,Z) under the natural homomorphism
H2(M,Z)−→H2(M,R).

DEFINITION: A first Chern class of a complex n-manifold is c1(Λn,0(M)).

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.
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Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. We consider K(M) as a holomorphic line bundle,

K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→
α ∧ α′

ωn
.

Denote by ΘK the curvature of the Chern connection on K(M). The Ricci

curvature Ric of M is symmetric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature

vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.
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Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section
of K(M), Then |Ω|2 = Ω∧Ω

ωn If ω1 is a new Kaehler metric on (M, I), h, h1 the

associated metrics on K(M), then h
h1

=
ωn1
ωn

COROLLARY: A metric ω1 = ω + ∂∂ϕ is Ricci-flat if and only if (ω +
∂∂ϕ)n = ωnef , where −2∂∂f = ΘK,ω.

Proof: For such f , ϕ, one has log h
h1

= −f . This gives

ΘK,ω1
= ΘK,ω + ∂∂

h

h1
= ΘK,ω − 2∂∂f = 0.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ϕ such that (ω + ddcϕ)n = Aefωn, where A is a positive constant
obtained from the formula

∫
M Aefωn =

∫
M ωn.

REMARK:

(ω + ddcϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at

most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then
ωn1 = ωn2. By ddc-lemma, one has ω2 = ω1 + ddcψ. We need to show

ψ = const.

Step 2: This gives

0 = (ω1 + ddcψ)n − ωn1 = ddcψ ∧
n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a positive (n − 1, n − 1)-form.

There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since ddcψ∧P = 0, this gives ψddcψ∧P = 0. Stokes’ formula implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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