Kähler geometry

lecture 3

Misha Verbitsky

University of Science and Technology China, Hefei
July 10, 2012

REMINDER: Complex structure on vector spaces

DEFINITION: Let V be a vector space over \mathbb{R}, and $I: V \longrightarrow V$ an automorphism which satisfies $I^{2}=-\mathrm{Id}_{V}$. Such an automorphism is called a complex structure operator on V.

DEFINITION: The vector space over \mathbb{C} with the same basis is called a complexification of V, denoted $V \otimes_{\mathbb{R}} \mathbb{C}$.

CLAIM: For an appropriate basis in $V \otimes_{\mathbb{R}} \mathbb{C}$, the complex structure operatorcan be written as

$$
I=\left(\begin{array}{ccccccc}
\sqrt{-1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \sqrt{-1} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \sqrt{-1} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -\sqrt{-1} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & -\sqrt{-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & -\sqrt{-1}
\end{array}\right),
$$

with the eigenspaces of equal dimension.

REMINDER: Hermitian structures

DEFINITION: Let (V, I) be a real vector space with a complex structure. A scalar product is called I-invariant, if $g(I x, I y)=g(x, y)$. An I-invariant positive definite scalar product on (V, I) is called an Hermitian metric on V, and (V, I, g) - an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space V, and g - a Hermitian metric. Then the bilinear form $\omega(x, y):=g(x, I y)$ is skew-symmetric. Indeed, $\omega(x, y)=g(x, I y)=g\left(I x, I^{2} y\right)=-g(I x, y)=$ $-\omega(y, x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called an Hermitian form on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other two.

REMINDER: Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\mathrm{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0} M$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map
$N:=\Lambda^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

EXAMPLE: Symmetric spaces.
EXAMPLE: $\mathbb{C} P^{n}$.

REMINDER: Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{2}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

REMINDER: Projective manifolds.

Definition: Let $M=\mathbb{C} P^{n}$ be a complex projective space, and g a $U(n+1)$ invariant Riemannian form. It is called Fubini-Study form on $\mathbb{C} P^{n}$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with $U(n+1)$ using the Haar measure on $U(n+1)$.

Claim: Fubini-Study form is Kähler. Indeed, $\left.d \omega\right|_{x}$ is a $U(n)$-invariant 3form on \mathbb{C}^{n}, but such a form must vanish, because - Id $\in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C} P^{n}$) is Kähler. Indeed, a restriction of a closed form is again closed.

REMINDER: Connections

Notation: Let M be a smooth manifold, $T M$ its tangent bundle, $\wedge^{i} M$ the bundle of differential i-forms, $C^{\infty} M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \xrightarrow{\nabla} \Lambda^{1} M \otimes B$ which satisfies

$$
\nabla(f b)=d f \otimes b+f \nabla b
$$

for all $b \in B, f \in C^{\infty} M$.

REMARK: For any tensor bundle $\mathcal{B}_{1}:=B^{*} \otimes B^{*} \otimes \ldots \otimes B^{*} \otimes B \otimes B \otimes \ldots \otimes B$ a connection on B defines a connection on \mathcal{B}_{1} using the Leibniz formula.

REMINDER: Levi-Civita connection

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is called orthogonal if $\nabla(g)=0$. It is called Levi-Civita if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) The complex structure I is integrable, and the Hermitian form ω is closed.
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection.

REMINDER: Ambrose-Singer theorem

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma, \nabla}:\left.\left.B\right|_{x} \longrightarrow B\right|_{x}$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma, \nabla}$, for all loops γ. If one takes all contractible loops instead, $V_{\gamma, \nabla}$ generates the local holonomy, or the restricted holonomy group.

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^{2}(M) \otimes \operatorname{End}(B)$ its curvature, and $a, b \in T_{x} M$ tangent vectors. An endomorphism $\Theta(a, b) \in$ End $\left.(B)\right|_{x}$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\left.\Theta(a, b) \in \operatorname{End}(B)\right|_{x}$ transported to z along all paths.

REMINDER: Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on $T M$.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_{x} M=V_{1} \oplus V_{2}$. Then M locally splits as $M=M_{1} \times M_{2}$, with $V_{1}=T M_{1}, V_{2}=T M_{2}$.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. Then either M is locally symmetric, or $\mathcal{H O I}(M)$ acts transitively on the unit sphere in $T_{x} M$.

Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$S O(n)$ acting on \mathbb{R}^{n}	Riemannian manifolds
$U(n)$ acting on $\mathbb{R}^{2 n}$	Kähler manifolds
$S U(n)$ acting on $\mathbb{R}^{2 n}, n>2$	Calabi-Yau manifolds
$S p(n)$ acting on $\mathbb{R}^{4 n}$	hyperkähler manifolds
$S p(n) \times S p(1) /\{ \pm 1\}$ acting on $\mathbb{R}^{4 n}, n>1$	quaternionic-Kähler
G_{2} acting on \mathbb{R}^{7}	manifolds
$S p i n(7)$ acting on \mathbb{R}^{8}	G_{2}-manifolds

REMARK: There is one more group acting transitively on a sphere: $\operatorname{Spin}(9)$ acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy $\operatorname{Spin}(9)$ is automatically locally symmetric.
REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).

Holomorphic vector bundles

DEFINITION: A (smooth) vector bundle on a smooth manifold is a locally trivial sheaf of $C^{\infty} M$-modules.

DEFINITION: A holomorphic vector bundle on a complex manifold is a locally trivial sheaf of $\mathcal{O}_{M^{-}}$modules.

REMARK: A section b of a bundle B is often denoted as $b \in B$.

CLAIM: Let B be a holomorphic vector bundle. Consider the sheaf B_{C} := $B \otimes \mathcal{O}_{M} C^{\infty} M$. It is clearly locally trivial, hence $B_{C} \infty$ is a smooth vector bundle.

DEFINITION: $B_{C^{\infty}}$ is called a smooth vector bundle underlying B.

A holomorphic structure operator
DEFINITION: Let $d=d^{0,1}+d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1}: \Lambda^{p, q}(M) \longrightarrow \Lambda^{p, q+1}(M)$ and $d^{1,0}: \wedge^{p, q}(M) \longrightarrow \wedge^{p+1, q}(M)$. The operators $d^{0,1}, d^{1,0}$ are denoted $\bar{\partial}$ and ∂ and called the Dolbeault differentials.

REMARK: From $d^{2}=0$, one obtains $\bar{\partial}^{2}=0$ and $\partial^{2}=0$.

REMARK: The operator $\bar{\partial}$ is \mathcal{O}_{M}-linear.
DEFINITION: Let B be a holomorphic vector bundle, and $\bar{\partial}: B_{C} \infty \longrightarrow B_{C^{\infty}} \otimes$ $\Lambda^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \bar{\partial} f$, where $b \in B$ is a holomorphic section, and f a smooth function. This operator is called a holomorphic structure operator on B. It is correctly defined, because $\bar{\partial}$ is $\mathcal{O}_{M^{-}}$linear.

REMARK: The kernel of $\bar{\partial}$ coincides with the set of holomorphic sections of B.

The $\bar{\partial}$-operator on vector bundles
DEFINITION: A $\bar{\partial}$-operator on a smooth bundle is a map $V \xrightarrow{\bar{\partial}} \Lambda^{0,1}(M) \otimes$ V, satisfying $\bar{\partial}(f b)=\bar{\partial}(f) \otimes b+f \bar{\partial}(b)$ for all $f \in C^{\infty} M, b \in V$.

REMARK: A $\bar{\partial}$-operator on B can be extended to

$$
\bar{\partial}: \wedge^{0, i}(M) \otimes V \longrightarrow \wedge^{0, i+1}(M) \otimes V,
$$

using $\bar{\partial}(\eta \otimes b)=\bar{\partial}(\eta) \otimes b+(-1)^{\tilde{\eta}} \eta \wedge \bar{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0, i}(M)$.
REMARK: If $\bar{\partial}$ is a holomorphic structure operator, then $\bar{\partial}^{2}=0$.
THEOREM: (Atiyah-Bott) Let $\bar{\partial}: V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\bar{\partial}$-operator, satisfying $\bar{\partial}^{2}=0$. Then $B:=\operatorname{ker} \bar{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

REMARK: This statement is a vector bundle analogue of Newlander-Nirenberg theorem.

DEFINITION: $\bar{\partial}$-operator $\bar{\partial}: V \longrightarrow \wedge^{0,1}(M) \otimes V$ on a smooth manifold is called a holomorphic structure operator, if $\bar{\partial}^{2}=0$.

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\bar{\partial} B \longrightarrow \wedge^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla=\nabla^{0,1}+\nabla^{1,0}$,

$$
\nabla^{0,1}: V \longrightarrow \wedge^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \wedge^{1,0}(M) \otimes V .
$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1}=\bar{\partial}$.
DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

Curvature of a connection

DEFINITION: Let $\nabla: B \longrightarrow B \otimes \wedge^{1} M$ be a connection on a smooth budnle. Extend it to an operator on B-valued forms

$$
B \xrightarrow{\nabla} \wedge^{1}(M) \otimes B \xrightarrow{\nabla} \wedge^{2}(M) \otimes B \xrightarrow{\nabla} \wedge^{3}(M) \otimes B \xrightarrow{\nabla} \ldots
$$

using $\nabla(\eta \otimes b)=d \eta+(-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^{2}: B \longrightarrow B \otimes \wedge^{2}(M)$ is called the curvature of ∇.

REMARK: The algebra of End (B)-valued forms naturally acts on $\wedge^{*} M \otimes B$. The curvature satisfies $\nabla^{2}(f b)=d^{2} f b+d f \wedge \nabla b-d f \wedge \nabla b+f \nabla^{2} b=f \nabla^{2} b$, hence it is $C^{\infty} M$-linear. We consider it as an $\operatorname{End}(B)$-valued 2-form on M.

PROPOSITION: (Bianchi identity) Using the graded Jacobi identity, we obtain $\left[\nabla, \nabla^{2}\right]=\left[\nabla^{2}, \nabla\right]+\left[\nabla, \nabla^{2}\right]=0$, hence $\left[\nabla, \nabla^{2}\right]=0$. This gives Bianchi identity: $\nabla\left(\Theta_{B}\right)=0$.

REMARK: If B is a line bundle, End B is trivial, and the curvature Θ_{B} of B is a closed 2-form.

DEFINITION: The cohomology class $c_{1}(B):=\frac{\sqrt{-1}}{2 \pi}\left[\Theta_{B}\right] \in H^{2}(M)$ is called the real first Chern class of a line bunlde B.

An exercise: Check that $c_{1}(B)$ is independent from a choice of ∇.

Curvature of a holomorphic line bundle

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its nondegenerate section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0} b=\eta \otimes b$. Then $d|b|^{2}=\operatorname{Re} g\left(\nabla^{1,0} b, b\right)=\operatorname{Re} \eta|b|^{2}$. This gives $\nabla^{1,0} b=\frac{\partial|b|^{2}}{|b|^{2}} b=2 \partial \log |b| b$.

REMARK: Then $\Theta_{B}(b)=2 \bar{\partial} \partial \log |b| b$, that is, $\Theta_{B}=-2 \partial \bar{\partial} \log |b|$.
COROLLARY: If $g^{\prime}=e^{2 f} g$ - two metrics on a holomorphic line bundle, Θ, Θ^{\prime} their curvatures, one has $\Theta^{\prime}-\Theta=-2 \partial \bar{\partial} f$

CLAIM: Let η be a closed (1,1)-form in the same cohomology class as $\Theta_{B, h}$. Then η is a curvature of a Chern connection on B, for some metric h^{\prime}.

Proof: The difference $\Theta_{B, h}-\eta$ is an exact (1,1)-form, hence belongs to an image of $\partial \bar{\partial}$ (" $\partial \bar{\partial}$-lemma"): $\Theta_{B, h}-\eta=-2 \partial \bar{\partial} f$. Then the curvature of a metric $h^{\prime}:=e^{2 f} h$ satisfies $\Theta_{B, h}-\Theta_{B, h^{\prime}}=-2 \partial \bar{\partial} f$, hence $\eta=\Theta_{B, h^{\prime}}$.

REMARK: Such metric is unique, up to a constant.

Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$
0 \longrightarrow \mathbb{Z}_{M} \longrightarrow C^{\infty} M \longrightarrow\left(C^{\infty} M\right)^{*} \longrightarrow 0,
$$

we obtain $0 \longrightarrow H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right) \longrightarrow H^{2}(M, \mathbb{Z}) \longrightarrow 0$.
DEFINITION: Let B be a complex line bundle, and ξ_{B} its defining element in $H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right)$. Its image in $H^{2}(M, \mathbb{Z})$ is called the integer first Chern class of B.

REMARK: A complex line bundle B is (topologically) trivial if and only if $c_{1}(B)=0$.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an image of the integer Chern class $c_{1}(B, \mathbb{Z})$ under the natural homomorphism $H^{2}(M, \mathbb{Z}) \longrightarrow H^{2}(M, \mathbb{R})$.

DEFINITION: A first Chern class of a complex n-manifold is $c_{1}\left(\Lambda^{n, 0}(M)\right)$.
DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with $c_{1}(M, \mathbb{Z})=0$.

Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and $K(M):=\wedge^{n, 0}(M)$ its canonical bundle. We consider $K(M)$ as a holomorphic line bundle, $K(M)=\Omega^{n} M$. The natural Hermitian metric on $K(M)$ is written as

$$
\left(\alpha, \alpha^{\prime}\right) \longrightarrow \frac{\alpha \wedge \bar{\alpha}^{\prime}}{\omega^{n}} .
$$

Denote by Θ_{K} the curvature of the Chern connection on $K(M)$. The Ricci curvature Ric of M is symmetric 2-form $\operatorname{Ric}(x, y)=\Theta_{K}(x, I y)$.

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler n-fold, and Ω a non-degenerate section of $K(M)$, Then $|\Omega|^{2}=\frac{\Omega \wedge \bar{\Omega}}{\omega^{n}}$ If ω_{1} is a new Kaehler metric on $(M, I), h, h_{1}$ the associated metrics on $K(M)$, then $\frac{h}{h_{1}}=\frac{\omega_{1}^{n}}{\omega^{n}}$

COROLLARY: A metric $\omega_{1}=\omega+\partial \bar{\partial} \varphi$ is Ricci-flat if and only if $(\omega+$ $\partial \bar{\partial} \varphi)^{n}=\omega^{n} e^{f}$, where $-2 \partial \bar{\partial} f=\Theta_{K, \omega}$.

Proof: For such f, φ, one has $\log \frac{h}{h_{1}}=-f$. This gives

$$
\Theta_{K, \omega_{1}}=\Theta_{K, \omega}+\partial \bar{\partial} \frac{h}{h_{1}}=\Theta_{K, \omega}-2 \partial \bar{\partial} f=0
$$

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler n-manifold, and f any smooth function. Then there exists a unique up to a constant function φ such that $\left(\omega+d d^{c} \varphi\right)^{n}=A e^{f} \omega^{n}$, where A is a positive constant obtained from the formula $\int_{M} A e^{f} \omega^{n}=\int_{M} \omega^{n}$.

REMARK:

$$
\left(\omega+d d^{c} \varphi\right)^{n}=A e^{f} \omega^{n}
$$

is called the Monge-Ampere equation.

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at most one solution, up to a constant.

Proof. Step 1: Let ω_{1}, ω_{2} be solutions of Monge-Ampere equation. Then $\omega_{1}^{n}=\omega_{2}^{n}$. By $d d^{c}$-lemma, one has $\omega_{2}=\omega_{1}+d d^{c} \psi$. We need to show $\psi=$ const.

Step 2: This gives

$$
0=\left(\omega_{1}+d d^{c} \psi\right)^{n}-\omega_{1}^{n}=d d^{c} \psi \wedge \sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i} .
$$

Step 3: Let $P:=\sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i}$. This is a positive ($n-1, n-1$)-form. There exists a Hermitian form ω_{3} on M such that $\omega_{3}^{n-1}=P$.

Step 4: Since $d d^{c} \psi \wedge P=0$, this gives $\psi d d^{c} \psi \wedge P=0$. Stokes' formula implies

$$
0=\int_{M} \psi \wedge \partial \bar{\partial} \psi \wedge P=-\int_{M} \partial \psi \wedge \bar{\partial} \psi \wedge P=-\int_{M}|\partial \psi|_{3}^{2} \omega_{3}^{n} .
$$

where $\left.\left.\right|_{\cdot}\right|_{3}$ is the metric associated to ω_{3}. Therefore $\bar{\partial} \psi=0$.

