Kähler geometry

lecture 4

Misha Verbitsky

University of Science and Technology China, Hefei
July 12, 2012

REMINDER: The Grassmann algebra

REMARK: Given vectors in $v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n}$ and $w \in W_{1} \otimes W_{2} \otimes \ldots \otimes W_{m}$, the tensor product $v \otimes w$ sits in $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{n} \otimes W_{1} \otimes W_{2} \otimes \ldots \otimes W_{m}$.

CLAIM: This defines the structure of an algebra on $T^{\otimes} V=k \oplus V \oplus V \otimes V \oplus$ $\ldots \oplus V^{\otimes n}$, where $V^{\otimes n}$ is a tensor product of n copies of V.

DEFINITION: The algebra $T^{\otimes} V$ is called the tensor algebra, or free algebra generated by V.

EXERCISE: Prove that any algebra generated by V can be obtained as a quotient of $T^{\otimes} V$ by an ideal.

DEFINITION: A Grassmann algebra $\Lambda^{*} V$ is a quotient of $T^{\otimes} V$ by an ideal generated by $x \otimes y+y \otimes x$, for all $x, y \in V$. The multiplication in $\Lambda^{*} V$ is denoted by $x, y \longrightarrow x \wedge y$, called the wedge product.

Properties of Grassmann algebra:

1. $\operatorname{dim} \wedge^{i} V:=\binom{\operatorname{dim} V}{i}, \operatorname{dim} \wedge^{*} V=2^{\operatorname{dim} V}$.
2. $\wedge^{*}(V \oplus W)=\wedge^{*}(V) \otimes \wedge^{*}(W)$.

REMINDER: de Rham algebra

DEFINITION: Let $\wedge^{*} M$ denote the vector bundle with the fiber $\wedge^{*} T_{x}^{*} M$ at $x \in M\left(\Lambda^{*} T^{*} M\right.$ is the Grassman algebra of the cotangent space $\left.T_{x}^{*} M\right)$. The sections of $\wedge^{i} M$ are called differential i-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty} M$-linear; the space $\wedge^{*} M$ of all differential forms is called the de Rham algebra.

REMARK: $\wedge^{0} M=C^{\infty} M$.
THEOREM: There exists a unique operator $C^{\infty} M \xrightarrow{d} \Lambda^{1} M \xrightarrow{d} \Lambda^{2} M \xrightarrow{d}$ $\wedge^{3} M \xrightarrow{d} \ldots$ satisfying the following properties

1. On functions, d is equal to the differential.
2. $d^{2}=0$
3. $d(\eta \wedge \xi)=d(\eta) \wedge \xi+(-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta}=0$ where $\eta \in \lambda^{2 i} M$ is an even form, and $\eta \in \lambda^{2 i+1} M$ is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.
DEFINITION: A form η is called closed if $d \eta=0$, exact if η in im d. The group $\frac{\mathrm{ker} d}{\mathrm{im} d}$ is called de Rham cohomology of M.

REMINDER: The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure. The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C}:=V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$-eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$-eigenspace.

CLAIM: $\wedge^{*}(V \oplus W)=\wedge^{*}(V) \otimes \wedge^{*}(W)$

REMARK: Let $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. The decomposition $V_{\mathbb{C}}=V^{1,0} \oplus V^{0,1}$ induces $\Lambda_{\mathbb{C}}^{*}(V)=\Lambda_{\mathbb{C}}^{*}\left(V^{0,1}\right) \otimes \Lambda_{\mathbb{C}}^{*}\left(V^{1,0}\right)$, giving

$$
\wedge^{d} V_{\mathbb{C}}=\bigoplus_{p+q=d} \wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}
$$

We denote $\wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}$ by $\wedge^{p, q} V$. The resulting decomposition $\wedge^{n} V_{\mathbb{C}}=$ $\bigoplus_{p+q=}{ }_{n} \wedge^{p, q} V$ is called the Hodge decomposition of the Grassmann algebra.

REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold, in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form $\eta \in$ $\wedge^{1}(M)$ is of type $(\mathbf{1}, \mathbf{0})$ if $I(\eta)=\sqrt{-1} \eta$, and of type $(0,1)$ if $I(\eta)=-\sqrt{-1} \eta$. The corresponding vector bundles are denoted by $\wedge^{1,0}(M)$ and $\Lambda^{0,1}(M)$.

REMARK: Cauchy-Riemann equations can be written as $d f \in \Lambda^{1,0}(M)$. That is, a function $f \in C_{\mathbb{C}}^{\infty}(M)$ is holomorphic if and only if $d f \in \Lambda^{1,0}(M)$.

REMARK: Let (M, I) be a complex manifold, and z_{1}, \ldots, z_{n} holomorphic coordinate system in $U \subset M$, with z_{i} being holomorphic functions on U. Then $d z_{1}, \ldots, d z_{n}$ generate the bundle $\wedge^{1,0}(M)$, and $d \bar{z}_{1}, \ldots, d \bar{z}_{n}$ generate $\wedge^{0,1}(M)$.

EXERCISE: Prove this.

REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, $\left\{U_{i}\right\}$ its covering, and and z_{1}, \ldots, z_{n} holomorphic coordinate system on each covering patch. The bundle $\wedge^{p, q}(M, I)$ of (p, q)-forms on (M, I) is generated locally on each coordinate patch by monomials $d z_{i_{1}} \wedge d z_{i_{2}} \wedge \ldots \wedge d z_{i_{p}} \wedge d \bar{z}_{i_{p+1}} \wedge \ldots \wedge d z_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

$$
\wedge_{\mathbb{C}}^{d}(M)=\bigoplus_{p+q=d} \wedge^{p, q}(M) .
$$

REMARK: One has $\wedge^{p, q}(M)=\wedge^{p, 0}(M) \otimes \wedge^{0, q}(M)$. This gives $r k \wedge \wedge^{p, q}(M)=\binom{n}{p} \cdot\binom{n}{q}$, where $n=\operatorname{dim}_{\mathbb{C}} M$.

EXERCISE: Prove that the de Rham differential on a complex manifold has only two Hodge components:

$$
d\left(\wedge^{p, q}(M)\right) \subset \wedge^{p+1, q}(M) \oplus \wedge^{p, q+1}(M)
$$

DEFINITION: Let $d=d^{0,1}+d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1}: \wedge^{p, q}(M) \longrightarrow \wedge^{p, q+1}(M)$ and $d^{1,0}: \wedge^{p, q}(M) \longrightarrow \wedge^{p+1, q}(M)$. The operators $d^{0,1}, d^{1,0}$ are denoted $\bar{\partial}$ and ∂ and called the Dolbeault differentials.

REMINDER: Holomorphic vector bundles

DEFINITION: A $\bar{\partial}$-operator on a smooth bundle is a map $V \xrightarrow{\bar{\partial}} \Lambda^{0,1}(M) \otimes$ V, satisfying $\bar{\partial}(f b)=\bar{\partial}(f) \otimes b+f \bar{\partial}(b)$ for all $f \in C^{\infty} M, b \in V$.

REMARK: A $\bar{\partial}$-operator on B can be extended to

$$
\bar{\partial}: \wedge^{0, i}(M) \otimes V \longrightarrow \wedge^{0, i+1}(M) \otimes V,
$$

using $\bar{\partial}(\eta \otimes b)=\bar{\partial}(\eta) \otimes b+(-1)^{\tilde{\eta}} \eta \wedge \bar{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0, i}(M)$.

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I) is a vector bundle equipped with a $\bar{\partial}$-operator which satisfies $\bar{\partial}^{2}=0$. In this case, $\bar{\partial}$ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential $\bar{\partial}: \wedge^{p, 0}(M) \longrightarrow \wedge^{p, 1}(M)=$ $\wedge^{p, 0}(M) \otimes \Lambda^{0,1}(M)$. Prove that it is a holomorphic structure operator on $\wedge^{p, 0}(M)$.

DEFINITION: The corresponding holomorphic vector bundle ($\left.\wedge^{p, 0}(M), \bar{\partial}\right)$ is called the bundle of holomorphic p-forms, denoted by $\Omega^{p}(M)$.

REMINDER: Chern connection

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\bar{\partial} B \longrightarrow \wedge^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla=\nabla^{0,1}+\nabla^{1,0}$,

$$
\nabla^{0,1}: V \longrightarrow \wedge^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \wedge^{1,0}(M) \otimes V .
$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1}=\bar{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure operator $\bar{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

REMINDER: Curvature of a connection

DEFINITION: Let $\nabla: B \longrightarrow B \otimes \wedge^{1} M$ be a connection on a smooth budnle. Extend it to an operator on B-valued forms

$$
B \xrightarrow{\nabla} \wedge^{1}(M) \otimes B \xrightarrow{\nabla} \wedge^{2}(M) \otimes B \xrightarrow{\nabla} \wedge^{3}(M) \otimes B \xrightarrow{\nabla} \ldots
$$

using $\nabla(\eta \otimes b)=d \eta+(-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^{2}: B \longrightarrow B \otimes \wedge^{2}(M)$ is called the curvature of ∇.

REMARK: The algebra of End (B)-valued forms naturally acts on $\wedge^{*} M \otimes B$. The curvature satisfies $\nabla^{2}(f b)=d^{2} f b+d f \wedge \nabla b-d f \wedge \nabla b+f \nabla^{2} b=f \nabla^{2} b$, hence it is $C^{\infty} M$-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Clearly, $\left[\nabla, \nabla^{2}\right]=\left[\nabla^{2}, \nabla\right]+\left[\nabla, \nabla^{2}\right]=0$, hence $\left[\nabla, \nabla^{2}\right]=0$. This gives Bianchi identity: $\nabla\left(\Theta_{B}\right)=0$, where Θ is considered as a section of $\wedge^{2}(M) \otimes \operatorname{End}(B)$, and $\nabla: \wedge^{2}(M) \otimes \operatorname{End}(B) \longrightarrow \wedge^{3}(M) \otimes$ End (B). the operator defined above

REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, End B is trivial, and the curvature Θ_{B} of B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The cohomology class $c_{1}(B):=\frac{\sqrt{-1}}{2 \pi}\left[\Theta_{B}\right] \in H^{2}(M)$ is called the real first Chern class of a line bunlde B.

An exercise: Check that $c_{1}(B)$ is independent from a choice of ∇.
REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0} b=\eta \otimes b$. Then $d|b|^{2}=\operatorname{Re} g\left(\nabla^{1,0} b, b\right)=\operatorname{Re} \eta|b|^{2}$. This gives $\nabla^{1,0} b=$ $\frac{\partial|b|^{2}}{|b|^{2}} b=2 \partial \log |b| b$.

REMARK: Then $\Theta_{B}(b)=2 \bar{\partial} \partial \log |b| b$, that is, $\Theta_{B}=-2 \partial \bar{\partial} \log |b|$.
COROLLARY: If $g^{\prime}=e^{2 f} g$ - two metrics on a holomorphic line bundle, Θ, Θ^{\prime} their curvatures, one has $\Theta^{\prime}-\Theta=-2 \partial \bar{\partial} f$
$\partial \bar{\partial}$-lemma

THEOREM: (" $\partial \bar{\partial}$-lemma")
Let M be a compact Kaehler manifold, and $\eta \Lambda^{p, q}(M)$ an exact form. Then $\eta=\partial \bar{\partial} \alpha$, for some $\alpha \in \wedge^{p-1, q-1}(M)$.

Its proof uses Hodge theory.

COROLLARY: Let (L, h) be a holomorphic line bundle on a compact complex manifold, Θ its curvature, and η a (1,1)-form in the same cohomology class as $[\Theta]$. Then there exists a Hermitian metric h^{\prime} on L such that its curvature is equal to η.

Proof: Let Θ^{\prime} be the curvature of the Chern connection associated with h^{\prime}. Then $\Theta^{\prime}-\Theta=-2 \partial \bar{\partial} f$, wgere $f=\log \left(h^{\prime} h^{-1}\right)$. Then $\Theta^{\prime}-\Theta=\eta-\Theta=-2 \partial \bar{\partial} f$ has a solution f by $\partial \bar{\partial}$-lemma, because $\eta-\Theta$ is exact.

Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$
0 \longrightarrow \mathbb{Z}_{M} \longrightarrow C^{\infty} M \longrightarrow\left(C^{\infty} M\right)^{*} \longrightarrow 0,
$$

we obtain $0 \longrightarrow H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right) \longrightarrow H^{2}(M, \mathbb{Z}) \longrightarrow 0$.
DEFINITION: Let B be a complex line bundle, and ξ_{B} its defining element in $H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right)$. Its image in $H^{2}(M, \mathbb{Z})$ is called the integer first Chern class of B, denoted by $c_{1}(B, \mathbb{Z})$ or $c_{1}(B)$.

REMARK: A complex line bundle B is (topologically) trivial if and only if $c_{1}(B, \mathbb{Z})=0$.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an image of the integer Chern class $c_{1}(B, \mathbb{Z})$ under the natural homomorphism $H^{2}(M, \mathbb{Z}) \longrightarrow H^{2}(M, \mathbb{R})$.

DEFINITION: A first Chern class of a complex n-manifold is $c_{1}\left(\Lambda^{n, 0}(M)\right)$.
DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with $c_{1}(M, \mathbb{Z})=0$.

Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and $K(M):=\wedge^{n, 0}(M)$ its canonical bundle. We consider $K(M)$ as a holomorphic line bundle, $K(M)=\Omega^{n} M$. The natural Hermitian metric on $K(M)$ is written as

$$
\left(\alpha, \alpha^{\prime}\right) \longrightarrow \frac{\alpha \wedge \bar{\alpha}^{\prime}}{\omega^{n}} .
$$

Denote by Θ_{K} the curvature of the Chern connection on $K(M)$. The Ricci curvature Ric of M is symmetric 2-form $\operatorname{Ric}(x, y)=\Theta_{K}(x, I y)$.

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler n-fold, and Ω a non-degenerate section of $K(M)$, Then $|\Omega|^{2}=\frac{\Omega \wedge \Omega}{\omega^{n}}$. If ω_{1} is a new Kaehler metric on $(M, I), h, h_{1}$ the associated metrics on $K(M)$, then $\frac{h}{h_{1}}=\frac{\omega_{1}^{n}}{\omega^{n}}$.

COROLLARY: A metric $\omega_{1}=\omega+\partial \bar{\partial} \varphi$ is Ricci-flat if and only if $(\omega+$ $\partial \bar{\partial} \varphi)^{n}=\omega^{n} e^{f}$, where $-2 \partial \bar{\partial} f=\Theta_{K, \omega}$.

Proof: For such f, φ, one has $\log \frac{h}{h_{1}}=-f$. This gives

$$
\Theta_{K, \omega_{1}}=\Theta_{K, \omega}+\partial \bar{\partial} \frac{h}{h_{1}}=\Theta_{K, \omega}-2 \partial \bar{\partial} f=0 .
$$

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler n-manifold, and f any smooth function. Then there exists a unique up to a constant function φ such that $(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=A e^{f} \omega^{n}$, where A is a positive constant obtained from the formula $\int_{M} A e^{f} \omega^{n}=\int_{M} \omega^{n}$.

REMARK:

$$
(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=A e^{f} \omega^{n}
$$

is called the Monge-Ampere equation.

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at most one solution, up to a constant.

Proof. Step 1: Let ω_{1}, ω_{2} be solutions of Monge-Ampere equation. Then $\omega_{1}^{n}=\omega_{2}^{n}$. By construction, one has $\omega_{2}=\omega_{1}+\sqrt{-1} \partial \bar{\partial} \psi$. We need to show $\psi=$ const.

Step 2: $\omega_{2}=\omega_{1}+\sqrt{-1} \partial \bar{\partial} \psi$ gives

$$
0=\left(\omega_{1}+\sqrt{-1} \partial \bar{\partial} \psi\right)^{n}-\omega_{1}^{n}=\sqrt{-1} \partial \bar{\partial} \psi \wedge \sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i}
$$

Step 3: Let $P:=\sum_{i=0}^{n-1} \omega_{1}^{i} \wedge \omega_{2}^{n-1-i}$. This is a positive ($n-1, n-1$)-form. There exists a Hermitian form ω_{3} on M such that $\omega_{3}^{n-1}=P$.

Step 4: Since $\sqrt{-1} \partial \bar{\partial} \psi \wedge P=0$, this gives $\psi \partial \bar{\partial} \psi \wedge P=0$. Stokes' formula implies

$$
0=\int_{M} \psi \wedge \partial \bar{\partial} \psi \wedge P=-\int_{M} \partial \psi \wedge \bar{\partial} \psi \wedge P=-\int_{M}|\partial \psi|_{3}^{2} \omega_{3}^{n} .
$$

where $\left\|_{\cdot}\right\|_{3}$ is the metric associated to ω_{3}. Therefore $\bar{\partial} \psi=0$.

Exercises

PROBLEM: Suppose that $\operatorname{dim}_{\mathbb{R}} M=2$. Prove that any almost complex structure on M is integrable.

PROBLEM: Construct a non-integrable almost complex structure on a manifold M with $\operatorname{dim}_{\mathbb{R}} M=4$.

PROBLEM: Let (M, I) be a smooth almost complex manifold equipped with a transitive action of a group G. Assume that I is G-invariant (such a manifold is called homogeneous). Assume, moreover, that for some $x \in M$ there exists $\tau_{x} \in G$ fixing x. Consider the action of τ_{x} on $T_{x} M$; denote this operator by τ.

1. Suppose that $\tau=\lambda \mathrm{Id}$, where $\lambda \in \mathbb{R}$. Prove that for all $\lambda \neq 1$, the almost complex structure I is integrable.
2. Construct examples of such $(M, I), G$ and τ_{x} for each $\lambda \in \mathbb{R}$.
3. Construct a homogeneous almost complex manifold which is not integrable.
4. Suppose that τ is not a scalar, but all its eigenvalues α_{i} satisfy $9<\left|\alpha_{i}\right|<10$. Prove that the almost complex structure I is integrable.

Please bring these assignments in writing to the next lecture (Monday, 16.07.2012).

