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REMINDER: The Grassmann algebra

REMARK: Given vectors in v ∈ V1⊗ V2⊗ ...⊗ Vn and w ∈W1⊗W2⊗ ...⊗Wm,
the tensor product v ⊗ w sits in V1 ⊗ V2 ⊗ ...⊗ Vn ⊗W1 ⊗W2 ⊗ ...⊗Wm.

CLAIM: This defines the structure of an algebra on T⊗V = k ⊕ V ⊕ V ⊗ V ⊕
...⊕ V ⊗n, where V ⊗n is a tensor product of n copies of V .

DEFINITION: The algebra T⊗V is called the tensor algebra, or free al-
gebra generated by V .

EXERCISE: Prove that any algebra generated by V can be obtained as
a quotient of T⊗V by an ideal.

DEFINITION: A Grassmann algebra Λ∗V is a quotient of T⊗V by an ideal
generated by x⊗y+y⊗x, for all x, y ∈ V . The multiplication in Λ∗V is denoted
by x, y −→ x ∧ y, called the wedge product.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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REMINDER: de Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

EXERCISE: Prove it.

DEFINITION: A form η is called closed if dη = 0, exact if ηin im d. The
group ker d

im d is called de Rham cohomology of M .
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REMINDER: The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

CLAIM: Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W )

REMARK: Let VC := V ⊗R C. The decomposition VC = V 1,0 ⊕ V 0,1 induces

Λ∗C(V ) = Λ∗C(V 0,1)⊗ Λ∗C(V 1,0), giving

ΛdVC =
⊕

p+q=d

ΛpV 1,0 ⊗ ΛqV 0,1.

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold,

in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form η ∈
Λ1(M) is of type (1,0) if I(η) =

√
−1η, and of type (0,1) if I(η) = −

√
−1η.

The corresponding vector bundles are denoted by Λ1,0(M) and Λ0,1(M).

REMARK: Cauchy-Riemann equations can be written as df ∈ Λ1,0(M). That

is, a function f ∈ C∞C (M) is holomorphic if and only if df ∈ Λ1,0(M).

REMARK: Let (M, I) be a complex manifold, and z1, ..., zn holomorphic co-

ordinate system in U ⊂ M , with zi being holomorphic functions on U . Then

dz1, ..., dzn generate the bundle Λ1,0(M), and dz1, ..., dzn generate Λ0,1(M).

EXERCISE: Prove this.
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REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, {Ui} its covering, and and
z1, ..., zn holomorphic coordinate system on each covering patch. The bundle
Λp,q(M, I) of (p, q)-forms on (M, I) is generated locally on each coordinate
patch by monomials dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzip+1

∧ ... ∧ dzip+q
. The Hodge

decomposition is a decomposition of vector bundles:

ΛdC(M) =
⊕

p+q=d

Λp,q(M).

REMARK: One has Λp,q(M) = Λp,0(M)⊗ Λ0,q(M). This gives
rk Λp,q(M) =

(
n
p

)
·
(
n
q

)
, where n = dimCM .

EXERCISE: Prove that the de Rham differential on a complex manifold
has only two Hodge components:

d (Λp,q(M)) ⊂ Λp+1,q(M)⊕ Λp,q+1(M).

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de
Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and
d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.
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REMINDER: Holomorphic vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)

is a vector bundle equipped with a ∂-operator which satisfies ∂
2

= 0. In this

case, ∂ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential ∂ : Λp,0(M)−→ Λp,1(M) =

Λp,0(M)⊗Λ0,1(M). Prove that it is a holomorphic structure operator on

Λp,0(M).

DEFINITION: The corresponding holomorphic vector bundle (Λp,0(M), ∂) is

called the bundle of holomorphic p-forms, denoted by Ωp(M).

7



Kähler manifolds, lecture 4 M. Verbitsky

REMINDER: Chern connection

DEFINITION: Let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure operator ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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REMINDER: Curvature of a connection

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.

Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is

called the curvature of ∇.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.

The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence

it is C∞M-linear. We consider it as an End(B)-valued 2-form on M.

PROPOSITION: (Bianchi identity) Clearly, [∇,∇2] = [∇2,∇] + [∇,∇2] = 0,

hence [∇,∇2] = 0. This gives Bianchi identity: ∇(ΘB) = 0, where Θ is con-

sidered as a section of Λ2(M)⊗End(B), and ∇ : Λ2(M)⊗End(B)−→ Λ3(M)⊗
End(B). the operator defined above
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The coho-
mology class c1(B) :=

√
−1
2π [ΘB] ∈ H2(M) is called the real first Chern class

of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by η a (1,0)-form which satisfies
∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f

10



Kähler manifolds, lecture 4 M. Verbitsky

∂∂-lemma

THEOREM: (“∂∂-lemma”)

Let M be a compact Kaehler manifold, and ηΛp,q(M) an exact form. Then

η = ∂∂α, for some α ∈ Λp−1,q−1(M).

Its proof uses Hodge theory.

COROLLARY: Let (L, h) be a holomorphic line bundle on a compact com-

plex manifold, Θ its curvature, and η a (1,1)-form in the same cohomology

class as [Θ]. Then there exists a Hermitian metric h′ on L such that its

curvature is equal to η.

Proof: Let Θ′ be the curvature of the Chern connection associated with h′.
Then Θ′−Θ = −2∂∂f , wgere f = log(h′h−1). Then Θ′−Θ = η−Θ = −2∂∂f

has a solution f by ∂∂-lemma, because η −Θ is exact.
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact
sequence of cohomology associated with the exponential sequence

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

we obtain 0−→H1(M, (C∞M)∗)−→H2(M,Z)−→ 0.

DEFINITION: Let B be a complex line bundle, and ξB its defining element
in H1(M, (C∞M)∗). Its image in H2(M,Z) is called the integer first Chern
class of B, denoted by c1(B,Z) or c1(B).

REMARK: A complex line bundle B is (topologically) trivial if and only
if c1(B,Z) = 0.

THEOREM: (Gauss-Bonnet) A real Chern class of a vector bundle is an
image of the integer Chern class c1(B,Z) under the natural homomorphism
H2(M,Z)−→H2(M,R).

DEFINITION: A first Chern class of a complex n-manifold is c1(Λn,0(M)).

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.
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Calabi-Yau theorem

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. We consider K(M) as a holomorphic line bundle,

K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→
α ∧ α′

ωn
.

Denote by ΘK the curvature of the Chern connection on K(M). The Ricci

curvature Ric of M is symmetric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature

vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.
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Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section
of K(M), Then |Ω|2 = Ω∧Ω

ωn . If ω1 is a new Kaehler metric on (M, I), h, h1

the associated metrics on K(M), then h
h1

=
ωn1
ωn.

COROLLARY: A metric ω1 = ω + ∂∂ϕ is Ricci-flat if and only if (ω +
∂∂ϕ)n = ωnef , where −2∂∂f = ΘK,ω.

Proof: For such f , ϕ, one has log h
h1

= −f . This gives

ΘK,ω1
= ΘK,ω + ∂∂

h

h1
= ΘK,ω − 2∂∂f = 0.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ϕ such that (ω+

√
−1∂∂ϕ)n = Aefωn, where A is a positive constant

obtained from the formula
∫
M Aefωn =

∫
M ωn.

REMARK:

(ω +
√
−1 ∂∂ϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then
ωn1 = ωn2. By construction, one has ω2 = ω1 +

√
−1 ∂∂ψ. We need to show

ψ = const.

Step 2: ω2 = ω1 +
√
−1 ∂∂ψ gives

0 = (ω1 +
√
−1 ∂∂ψ)n − ωn1 =

√
−1 ∂∂ψ ∧

n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a positive (n − 1, n − 1)-form.

There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since
√
−1 ∂∂ψ ∧ P = 0, this gives ψ∂∂ψ ∧ P = 0. Stokes’ formula

implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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Exercises

PROBLEM: Suppose that dimRM = 2. Prove that any almost complex
structure on M is integrable.

PROBLEM: Construct a non-integrable almost complex structure on a man-
ifold M with dimRM = 4.

PROBLEM: Let (M, I) be a smooth almost complex manifold equipped
with a transitive action of a group G. Assume that I is G-invariant (such a
manifold is called homogeneous). Assume, moreover, that for some x ∈ M
there exists τx ∈ G fixing x. Consider the action of τx on TxM ; denote this
operator by τ .

1. Suppose that τ = λ Id, where λ ∈ R. Prove that for all λ 6= 1, the almost
complex structure I is integrable.

2. Construct examples of such (M, I), G and τx for each λ ∈ R.

3. Construct a homogeneous almost complex manifold which is not integrable.

4. Suppose that τ is not a scalar, but all its eigenvalues αi satisfy 9 < |αi| < 10.
Prove that the almost complex structure I is integrable.

Please bring these assignments in writing to the next lecture (Monday, 16.07.2012).
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