Kähler geometry

lecture 5

Misha Verbitsky

University of Science and Technology China, Hefei
July 16, 2012

REMINDER: de Rham algebra

DEFINITION: Let $\wedge^{*} M$ denote the vector bundle with the fiber $\wedge^{*} T_{x}^{*} M$ at $x \in M\left(\wedge^{*} T^{*} M\right.$ is the Grassmann algebra of the cotangent space $\left.T_{x}^{*} M\right)$. The sections of $\wedge^{i} M$ are called differential i-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty} M$-linear; the space $\wedge^{*} M$ of all differential forms is called the de Rham algebra.

REMARK: $\wedge^{0} M=C^{\infty} M$.
THEOREM: There exists a unique operator $C^{\infty} M \xrightarrow{d} \Lambda^{1} M \xrightarrow{d} \Lambda^{2} M \xrightarrow{d}$ $\Lambda^{3} M \xrightarrow{d} \ldots$ satisfying the following properties

1. On functions, d is equal to the differential.
2. $d^{2}=0$
3. $d(\eta \wedge \xi)=d(\eta) \wedge \xi+(-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta}=0$ where $\eta \in \lambda^{2 i} M$ is an even form, and $\eta \in \lambda^{2 i+1} M$ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if $d \eta=0$, exact if η in im d. The group $\frac{\mathrm{ker} d}{\mathrm{im} d}$ is called de Rham cohomology of M.

REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold, in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form $\eta \in$ $\wedge^{1}(M)$ is of type $(\mathbf{1}, \mathbf{0})$ if $I(\eta)=\sqrt{-1} \eta$, and of type $(0,1)$ if $I(\eta)=-\sqrt{-1} \eta$. The corresponding vector bundles are denoted by $\wedge^{1,0}(M)$ and $\wedge^{0,1}(M)$.

REMARK: Cauchy-Riemann equations can be written as $d f \in \Lambda^{1,0}(M)$. That is, a function $f \in C_{\mathbb{C}}^{\infty}(M)$ is holomorphic if and only if $d f \in \Lambda^{1,0}(M)$.

REMARK: Let (M, I) be a complex manifold, and z_{1}, \ldots, z_{n} holomorphic coordinate system in $U \subset M$, with z_{i} being holomorphic functions on U. Then $d z_{1}, \ldots, d z_{n}$ generate the bundle $\wedge^{1,0}(M)$, and $d \bar{z}_{1}, \ldots, d \bar{z}_{n}$ generate $\wedge^{0,1}(M)$.

EXERCISE: Prove this.

REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, $\left\{U_{i}\right\}$ its covering, and and z_{1}, \ldots, z_{n} holomorphic coordinate system on each covering patch. The bundle $\wedge^{p, q}(M, I)$ of (p, q)-forms on (M, I) is generated locally on each coordinate patch by monomials $d z_{i_{1}} \wedge d z_{i_{2}} \wedge \ldots \wedge d z_{i_{p}} \wedge d \bar{z}_{i_{p+1}} \wedge \ldots \wedge d z_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

$$
\wedge_{\mathbb{C}}^{d}(M)=\bigoplus_{p+q=d} \wedge^{p, q}(M) .
$$

REMARK: One has $\wedge^{p, q}(M)=\wedge^{p, 0}(M) \otimes \wedge^{0, q}(M)$. This gives $r k \wedge \wedge^{p, q}(M)=\binom{n}{p} \cdot\binom{n}{q}$, where $n=\operatorname{dim}_{\mathbb{C}} M$.

EXERCISE: Prove that the de Rham differential on a complex manifold has only two Hodge components:

$$
d\left(\wedge^{p, q}(M)\right) \subset \wedge^{p+1, q}(M) \oplus \wedge^{p, q+1}(M)
$$

DEFINITION: Let $d=d^{0,1}+d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1}: \wedge^{p, q}(M) \longrightarrow \wedge^{p, q+1}(M)$ and $d^{1,0}: \wedge^{p, q}(M) \longrightarrow \wedge^{p+1, q}(M)$. The operators $d^{0,1}, d^{1,0}$ are denoted $\bar{\partial}$ and ∂ and called the Dolbeault differentials.

REMINDER: Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^{*}=\oplus_{i \in \mathbb{Z}} V^{i}$.
REMARK: If V^{*} is graded, the endomorphisms space $\operatorname{End}\left(V^{*}\right)=\oplus_{i \in \mathbb{Z}} \operatorname{End}^{i}\left(V^{*}\right)$ is also graded, with $\operatorname{End}^{i}\left(V^{*}\right)=\oplus_{j \in \mathbb{Z}} \operatorname{Hom}\left(V^{j}, V^{i+j}\right)$

DEFINITION: A graded algebra(or "graded associative algebra") is an associative algebra $A^{*}=\oplus_{i \in \mathbb{Z}} A^{i}$, with the product compatible with the grading: $A^{i} \cdot A^{j} \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^{i} \cdot A^{j} \subset A^{i+j}$ is called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of vector spaces with $U(1)$-action, with the weight decomposition providing the grading. Then a graded algebra is an associative algebra in the category of spaces with $U(1)$-action.

DEFINITION: An operator on a graded vector space is called even (odd) if it shifts the grading by even (odd) number. The parity \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\}=a b-(-1)^{\tilde{a} b} b a$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.
DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^{*} equipped with a bilinear graded map $\{\cdot, \cdot\}: \mathfrak{g}^{*} \times \mathfrak{g}^{*} \longrightarrow \mathfrak{g}^{*}$ which is graded anticommutative: $\{a, b\}=-(-1)^{\tilde{a} \tilde{b}}\{b, a\}$ and satisfies the super Jacobi identity $\{c,\{a, b\}\}=\{\{c, a\}, b\}+(-1)^{\tilde{a} \tilde{c}}\{a,\{c, b\}\}$

EXAMPLE: Consider the algebra End $\left(A^{*}\right)$ of operators on a graded vector space, with supercommutator as above. Then End $\left(A^{*}\right),\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\}=$ 0 , and L an even or odd element. Then $\{\{L, d\}, d\}=0$.

Proof: $0=\{L,\{d, d\}\}=\{\{L, d\}, d\}+(-1)^{\tilde{L}}\{d,\{L, d\}\}=2\{\{L, d\}, d\}$.

Hodge * operator

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{k}, x_{1}^{\prime} \otimes x_{2}^{\prime} \otimes \ldots \otimes x_{k}^{\prime}\right)=$ $g\left(x_{1}, x_{1}^{\prime}\right) g\left(x_{2}, x_{2}^{\prime}\right) \ldots g\left(x_{k}, x_{k}^{\prime}\right)$.

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold $(M, g): g(\alpha, \beta):=\int_{M} g(\alpha, \beta) \mathrm{Vol}_{M}$

Another non-degenerate form is provided by the Poincare pairing: $\alpha, \beta \longrightarrow \int_{M} \alpha \wedge \beta$.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge * operator $*: \wedge^{k} M \longrightarrow \wedge^{n-k} M$ by the following relation: $g(\alpha, \beta)=\int_{M} \alpha \wedge * \beta$.

REMARK: The Hodge * operator always exists. It is defined explicitly in an orthonormal basis $\xi_{1}, \ldots, \xi_{n} \in \wedge^{1} M$:

$$
*\left(\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \ldots \wedge \xi_{i_{k}}\right)=(-1)^{s} \xi_{j_{1}} \wedge \xi_{j_{2}} \wedge \ldots \wedge \xi_{j_{n-k}}
$$

where $\xi_{j_{1}}, \xi_{j_{2}}, \ldots, \xi_{j_{n-k}}$ is a complementary set of vectors to $\xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{k}}$, and s the signature of a permutation ($i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}$).

REMARK: $\left.*^{2}\right|_{\wedge^{k}(M)}=(-1)^{k(n-k)} \operatorname{Id}_{\wedge^{k}(M)}$

Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has $\left.d^{*}\right|_{\wedge^{k} M}=(-1)^{n k} * d *$, where d^{*} denotes the adjoint operator, which is defined by the equation $(d \alpha, \gamma)=\left(\alpha, d^{*} \gamma\right)$.

Proof: Since

$$
0=\int_{M} d(\alpha \wedge \beta)=\int_{M} d(\alpha) \wedge \beta+(-1)^{\tilde{\alpha}} \alpha \wedge d(\beta)
$$

one has $(d \alpha, * \beta)=(-1)^{\tilde{\alpha}}(\alpha, * d \beta)$. Setting $\gamma:=* \beta$, we obtain $(d \alpha, \gamma)=(-1)^{\tilde{\alpha}}\left(\alpha, * d(*)^{-1} \gamma\right)=(-1)^{\tilde{\alpha}}(-1)^{\tilde{\alpha}(\tilde{n}-\tilde{\alpha})}(\alpha, * d * \gamma)=(-1)^{\tilde{\alpha} \tilde{n}}(\alpha, * d * \gamma)$.

DEFINITION: The anticommutator $\Delta:=\left\{d, d^{*}\right\}=d d^{*}+d^{*} d$ is called the Laplacian of M. It is self-adjoint and positive definite: $(\Delta x, x)=(d x, d x)+$ ($d^{*} x, d^{*} x$). Also, Δ commutes with d and d^{*} (Lemma 1).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space $L^{2}\left(\Lambda^{*}(M)\right)$ consisting of eigenvectors of Δ.

THEOREM: ("Elliptic regularity for $\Delta^{\prime \prime}$) Let $\alpha \in L^{2}\left(\wedge^{k}(M)\right)$ be an eigenvector of Δ. Then α is a smooth k-form.

De Rham cohomology
DEFINITION: The space $H^{i}(M):=\frac{\left.\operatorname{ker} d\right|_{\Lambda^{i} M}}{d\left(\Lambda^{i-1} M\right)}$ is called the de Rham cohomology of M.

DEFINITION: A form α is called harmonic if $\Delta(\alpha)=0$.
REMARK: Let α be a harmonic form. Then $(\Delta x, x)=(d x, d x)+\left(d^{*} x, d^{*} x\right)$, hence $\alpha \in \operatorname{ker} d \cap \operatorname{ker} d^{*}$

REMARK: The projection $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ from harmonic forms to cohomology is injective. Indeed, a form α lies in the kernel of such projection if $\alpha=d \beta$, but then $(\alpha, \alpha)=(\alpha, d \beta)=\left(d^{*} \alpha, \beta\right)=0$.

THEOREM: The natural map $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ is an isomorphism (see the next page).

REMARK: Poincare duality immediately follows from this theorem.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^{i}(M) \longrightarrow H^{i}(M)$ is an isomorphism.
Proof. Step 1: Since $d^{2}=0$ and $\left(d^{*}\right)^{2}=0$, one has $\{d, \Delta\}=0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\wedge^{*}(M) \cong \oplus_{\alpha} \mathcal{H}_{\alpha}^{*}(M)$, where α runs through all eigenvalues of Δ, and $\mathcal{H}_{\alpha}^{*}(M)$ is the corresponding eigenspace. For each α, de Rham differential defines a complex

$$
\mathcal{H}_{\alpha}^{0}(M) \xrightarrow{d} \mathcal{H}_{\alpha}^{1}(M) \xrightarrow{d} \mathcal{H}_{\alpha}^{2}(M) \xrightarrow{d} \ldots
$$

Step 3: On $\mathcal{H}_{\alpha}^{*}(M)$, one has $d d^{*}+d^{*} d=\alpha$. When $\alpha \neq 0$, and η closed, this implies $d d^{*}(\eta)+d^{*} d(\eta)=d d^{*} \eta=\alpha \eta$, hence $\eta=d \xi$, with $\xi:=\alpha^{-1} d^{*} \eta$. This implies that the complexes $\left(\mathcal{H}_{\alpha}^{*}(M), d\right)$ don't contribute to cohomology.

Step 4: We have proven that

$$
H^{*}\left(\wedge^{*} M, d\right)=\bigoplus_{\alpha} H^{*}\left(\mathcal{H}_{\alpha}^{*}(M), d\right)=H^{*}\left(\mathcal{H}_{0}^{*}(M), d\right)=\mathcal{H}^{*}(M) .
$$

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\wedge^{*}(M)$, the following operators are defined.
$0 . d, d^{*}, \Delta$, because it is Riemannian.

1. $L(\alpha):=\omega \wedge \alpha$
2. $\wedge(\alpha):=* L * \alpha$. It is easily seen that $\wedge=L^{*}$.
3. The Weil operator $\left.W\right|_{\wedge^{p, q}(M)}=\sqrt{-1}(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\wedge^{*}(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a}, hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{s l}(2)$-action.

Reference:

JM Figueroa-O'Farrill, C Koehl, B Spence, Supersymmetry and the cohomology of (hyper)Kaehler manifolds, arXiv:hep-th/9705161, Nucl.Phys. B503 (1997) 614-626
M. Verbitsky, Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory, arXiv:math/0112215, Asian J. Math. Vol. 6, No. 4, pp. 679-712 (2002)

Elena Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory, arXiv:hep-th/0209168, J.Nonlin.Math.Phys. 10 (2003) 141147

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_{1}, \ldots, v_{2 n}$ an orthonormal basis. Denote by $e_{v_{i}}: \wedge^{k} V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_{i}}(\eta)=e_{i} \wedge \eta$. Let $i_{v_{i}}: \wedge^{k} V \longrightarrow \wedge^{k-1} V$ be an adjoint operator, $i_{v_{i}}=* e_{v_{i}} *$.

CLAIM: The operators $e_{v_{i}}, i_{v_{i}}$, Id are a basis of an odd Heisenberg Lie superalgebra \mathfrak{H}, with the only non-trivial supercommutator given by the formula $\left\{e_{v_{i}}, i_{v_{j}}\right\}=\delta_{i, j}$ Id.

Now, consider the tensor $\omega=\sum_{i=1}^{n} v_{2 i-1} \wedge v_{2 i}$, and let $L(\alpha)=\omega \wedge \alpha$, and $\Lambda:=L^{*}$ be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in \mathfrak{H}, one obtains immediately that

$$
H:=[L, \wedge]=\left[\sum e_{v_{2 i-1}} e_{v_{2 i}}, \sum i_{v_{2 i-1}} i_{v_{2 i}}\right]=\sum_{i=1}^{2 n} e_{v_{i}} i_{v_{i}}-\sum_{i=1}^{2 n} i_{v_{i}} e_{v_{i}},
$$

is a scalar operator acting as $k-n$ on k-forms.
COROLLARY: The triple L, Λ, H satisfies the relations for the $\mathfrak{s l}(2)$ Lie algebra: $[L, \wedge]=H,[H, L]=2 L,[H, \wedge]=2 \wedge$.

The twisted differential d^{c}

DEFINITION: The twisted differential is defined as $d^{c}:=I d I^{-1}$.
CLAIM: Let (M, I) be a complex manifold. Then $\partial:=\frac{d+\sqrt{-1} d^{c}}{2}, \bar{\partial}:=$ $\frac{d-\sqrt{-1} d^{c}}{2}$ are the Hodge components of $d, \partial=d^{1,0}, \bar{\partial}=d^{0,1}$.

Proof: The Hodge components of d are expressed as $d^{1,0}=\frac{d+\sqrt{-1}}{2} d^{c}, d^{0,1}=$ $\frac{d-\sqrt{-1} d^{c}}{2}$. Indeed, $I\left(\frac{d+\sqrt{-1} d^{c}}{2}\right) I^{-1}=\sqrt{-1} \frac{d+\sqrt{-1} d^{c}}{2}$, hence $\frac{d+\sqrt{-1} d^{c}}{2}$ has Hodge type (1,0); the same argument works for $\bar{\partial}$.

CLAIM: On a complex manifold, one has $d^{c}=[\mathcal{W}, d]$.
Proof: Clearly, $\left[\mathcal{W}, d^{1,0}\right]=\sqrt{-1} d^{1,0}$ and $\left[\mathcal{W}, d^{0,1}\right]=-\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^{c}=[\mathcal{W}, d]$.

COROLLARY: $\left\{d, d^{c}\right\}=\{d,\{d, \mathcal{W}\}\}=0$ (Lemma 1).

De Rham differential on Kaehler manifolds

THEOREM: Let M, I be a complex manifold. Then 1. $\partial^{2}=0.2 . \bar{\partial}^{2}=0$. 3. $d d^{c}=-d^{c} d$ 4. $d d^{c}=2 \sqrt{-1} \partial \bar{\partial}$.

EXERCISE: Prove it.

DEFINITION: The operator $d d^{c}$ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities ("Kähler idenitities", "Kodaira idenities").

$$
[\wedge, \partial]=\sqrt{-1} \bar{\partial}^{*}, \quad[L, \bar{\partial}]=-\sqrt{-1} \partial^{*}, \quad\left[\Lambda, \bar{\partial}^{*}\right]=-\sqrt{-1} \partial, \quad\left[L, \partial^{*}\right]=\sqrt{-1} \bar{\partial}
$$

Equivalently,

$$
[\wedge, d]=\left(d^{c}\right)^{*}, \quad\left[L, d^{*}\right]=-d^{c}, \quad\left[\wedge, d^{c}\right]=-d^{*}, \quad\left[L,\left(d^{c}\right)^{*}\right]=d
$$

Proof: There are two proofs: one uses supersymmetry, for another we prove that a Kähler manifold admits coordinates which are flat up to second order. Neither will be given today.

Laplacians and supercommutators

THEOREM: Let

$$
\Delta_{d}:=\left\{d, d^{*}\right\}, \quad \Delta_{d^{c}}:=\left\{d^{c}, d^{c *}\right\}, \quad \Delta_{\partial}:=\left\{\partial, \partial^{*}\right\}, \Delta_{\bar{\partial}}:=\left\{\bar{\partial}, \bar{\partial}^{*}\right\} .
$$

Then $\Delta_{d}=\Delta_{d^{c}}=2 \Delta_{\partial}=2 \Delta_{\bar{\partial}}$. In particular, Δ_{d} preserves the Hodge decomposition.

Proof: By Kodaira relations, $\left\{d, d^{c}\right\}=0$. Graded Jacobi identity gives

$$
\left\{d, d^{*}\right\}=-\left\{d,\left\{\Lambda, d^{c}\right\}\right\}=\left\{\{\Lambda, d\}, d^{c}\right\}=\left\{d^{c}, d^{c *}\right\} .
$$

Same calculation with $\partial, \bar{\partial}$ gives $\Delta_{\partial}=\Delta_{\bar{\partial}}$. Also, $\left\{\partial, \bar{\partial}^{*}\right\}=\sqrt{-1}\{\partial,\{\Lambda, \partial\}\}=$ 0 , (Lemma 1), and the same argument implies that all anticommutators $\partial, \bar{\partial}^{*}$, etc. all vanish except $\left\{\partial, \partial^{*}\right\}$ and $\left\{\bar{\partial}, \bar{\partial}^{*}\right\}$. This gives $\Delta_{d}=\Delta_{\partial}+\Delta_{\bar{\partial}}$.

DEFINITION: The operator $\Delta:=\Delta_{d}$ is called the Laplacian.
REMARK: We have proved that operators $L, \wedge, d, \mathcal{W}$ generate a Lie superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional center $\mathbb{R} \Delta$.

The Lefschetz $s l(2)$-action
COROLLARY: The operators L, \wedge, H form a basis of a Lie algebra isomorphic to $s l(2)$, with relations

$$
[L, \wedge]=H, \quad[H, L]=2 L, \quad[H, \wedge]=-2 \wedge .
$$

DEFINITION: L, \wedge, H is called the Lefschetz $\mathfrak{s l}(2)$-triple.
REMARK: Finite-dimensional representations of $\mathfrak{s l}(2)$ are semisimple.
REMARK: A simple finite-dimensional representation V of $\mathfrak{s l}(2)$ is generated by $v \in V$ which satisfies $\Lambda(v)=0, H(v)=p v$ ("lowest weight vector"), where $p \in \mathbb{Z} \geqslant 0$. Then $v, L(v), L^{2}(v), \ldots, L^{p}(v)$ form a basis of $V_{p}:=V$. This representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: $H\left(L^{i}(v)\right)=(2 i-p) L^{i}(v)$.
REMARK: One has $V_{p}=\operatorname{Sym}^{p} V_{1}$, where V_{1} is a 2-dimensional tautological representation. It is called a weight p representation of $\mathfrak{s l}(2)$.

COROLLARY: For a finite-dimensional representation V of $\mathfrak{s l}(2)$, denote by $V^{(i)}$ the eigenspaces of H, with $\left.H\right|_{V^{(i)}}=i$. Then L^{i} induces an isomorphism $V^{(-i)} \xrightarrow{L^{i}} V^{(i)}$ for any $i>0$.

Lefschetz action on cohomology.

From the supersymmetry theorem, the following result follows.

COROLLARY: The $\mathfrak{s l}(2)$-action $\langle L, \Lambda, H\rangle$ and the action of Weil operator commute with Laplacian, hence preserve the harmonic forms on a Kähler manifold.

COROLLARY: Any cohomology class can be represented as a sum of closed (p, q)-forms, giving a decomposition $H^{i}(M)=\bigoplus_{p+q=i} H^{p, q}(M)$, with $\overline{H^{p, q}(M)}=H^{q, p}(M)$.

COROLLARY: odd cohomology of a compact Kähler manifold are even-dimensional.

COROLLARY: Let M be a compact, Kähler manifold of complex dimension n, and $i+p+q=n$. Then L^{i} defines the Lefschetz isomorphism $H^{p, q} \xrightarrow{L^{i}}$ $H^{p+2 i, q+2 i}(M)$

The Hodge diamond:

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)
Let (M, g) be a Riemannian manifold equipped with three complex structure operators $I, J, K: T M \longrightarrow T M$, satisfying the quaternionic relation

$$
I^{2}=J^{2}=K^{2}=I J K=-\mathrm{Id} .
$$

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms $\omega_{I}, \omega_{J}, \omega_{K}$. The form $\Omega:=\omega_{J}+\sqrt{-1} \omega_{K}$ is a holomorphic symplectic 2-form on (M, I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_{I}.

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry

Supersymmetry in hyperkähler geometry

Let (M, I, J, K, g) be a hyperkaehler manifold, $\omega_{I}, \omega_{J}, \omega_{K}$ its Kaehler forms. On $\Lambda^{*}(M)$, the following operators are defined.
$0 . d, d^{*}, \Delta$, because it is Riemannian.

1. $L_{I}(\alpha):=\omega_{I} \wedge \alpha$
2. $\wedge_{I}(\alpha):=* L_{I} * \alpha$. It is easily seen that $\wedge_{I}=L_{J}^{*}$.
3. Three Weil operators $\left.W_{I}\right|_{\wedge p, q(M, I)}=\sqrt{-1}(p-q),\left.W_{J}\right|_{\wedge p, q(M, J)}=\sqrt{-1}(p-q)$, $\left.W_{K}\right|_{\wedge p, q}(M, K)=\sqrt{-1}(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (11|8), acting on $\Lambda^{*}(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a}, hence \mathfrak{a} also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra $\mathfrak{s u}(2)$ of unitary quaternions. This means that the quaternionic action belongs to \mathfrak{a}. In particular, L_{J}, L_{K}, \wedge_{J} and \wedge_{K}.

REMARK: The twisted de Rham differentials d_{I}, d_{J}, d_{K}, associated to I, J, K also belong to \mathfrak{a} : $d_{I}=\left[W_{I}, d\right], d_{J}=\left[W_{J}, d\right], d_{K}=\left[W_{K}, d\right]$

Supersymmetry and the Hodge decomposition

REMARK: 1. $\left[L_{I}, \wedge_{J}\right]=W_{K},\left[L_{J}, \wedge_{K}\right]=W_{I},\left[L_{I}, \wedge_{K}\right]=-W_{J}$.
2. The even part of \mathfrak{a} is isomorphic to $\mathfrak{s p}(1,1, \mathbb{H}) \oplus \mathbb{R} \cdot \Delta$.
3. The odd part $\left\langle d, d_{I}, d_{J}, d_{K}, d,{ }^{*} d_{I}^{*}, d_{J}^{*}, d_{K}^{*}\right\rangle$ generates the 9 -dimensional odd Heisenberg algebra, with the only non-trivial supercommutators being $\left\{d, d^{*}\right\}=\left\{d_{I}, d_{I}^{*}\right\}=\left\{d_{J}, d_{J}^{*}\right\}=\left\{d_{K}, d_{K}^{*}\right\}=\Delta$
4. The action of $\mathfrak{a}_{\text {even }}$ on $\mathfrak{a}_{\text {odd }}$ is the fundamental representation of $\mathfrak{s p}(1,1, \mathbb{H})$ in \mathbb{H}^{2}, with the quaternionic Hermitian metric on $\mathfrak{a}_{\text {odd }}$ provided by the anticommutator.

REMARK: The weight decomposition of the $\mathfrak{s p}(1,1, \mathbb{H})=\mathfrak{s o}(1,4)$-action on $H^{*}(M)$ coincides with the Hodge decomposition.

