Kähler geometry

lecture 5

Misha Verbitsky

University of Science and Technology China, Hefei

July 16, 2012

REMINDER: de Rham algebra

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassmann algebra of the cotangent space T_x^*M). The sections of Λ^iM are called **differential** *i*-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

REMARK: $\Lambda^0 M = C^{\infty} M$.

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

1. On functions, d is equal to the differential.

2.
$$d^2 = 0$$

3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta in \operatorname{im} d$. The group $\frac{\ker d}{\operatorname{im} d}$ is called **de Rham cohomology** of M.

REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p,q)-decomposition is defined on differential forms on complex manifold, in a similar way.

DEFINITION: Let (M, I) be a complex manifold A differential form $\eta \in \Lambda^1(M)$ is of type (1,0) if $I(\eta) = \sqrt{-1}\eta$, and of type (0,1) if $I(\eta) = -\sqrt{-1}\eta$. The corresponding vector bundles are denoted by $\Lambda^{1,0}(M)$ and $\Lambda^{0,1}(M)$.

REMARK: Cauchy-Riemann equations can be written as $df \in \Lambda^{1,0}(M)$. That is, a function $f \in C^{\infty}_{\mathbb{C}}(M)$ is holomorphic if and only if $df \in \Lambda^{1,0}(M)$.

REMARK: Let (M, I) be a complex manifold, and $z_1, ..., z_n$ holomorphic coordinate system in $U \subset M$, with z_i being holomorphic functions on U. Then $dz_1, ..., dz_n$ generate the bundle $\Lambda^{1,0}(M)$, and $d\overline{z}_1, ..., d\overline{z}_n$ generate $\Lambda^{0,1}(M)$.

EXERCISE: Prove this.

REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, $\{U_i\}$ its covering, and and $z_1, ..., z_n$ holomorphic coordinate system on each covering patch. The bundle $\wedge^{p,q}(M, I)$ of (p,q)-forms on (M, I) is generated locally on each coordinate patch by monomials $dz_{i_1} \wedge dz_{i_2} \wedge ... \wedge dz_{i_p} \wedge d\overline{z}_{i_{p+1}} \wedge ... \wedge dz_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

$$\Lambda^d_{\mathbb{C}}(M) = \bigoplus_{p+q=d} \Lambda^{p,q}(M).$$

REMARK: One has
$$\Lambda^{p,q}(M) = \Lambda^{p,0}(M) \otimes \Lambda^{0,q}(M)$$
. This gives $\operatorname{rk} \Lambda^{p,q}(M) = \binom{n}{p} \cdot \binom{n}{q}$, where $n = \dim_{\mathbb{C}} M$.

EXERCISE: Prove that the **de Rham differential on a complex manifold has only two Hodge components**:

$$d(\Lambda^{p,q}(M)) \subset \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M).$$

DEFINITION: Let $d = d^{0,1} + d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q+1}(M)$ and $d^{1,0} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p+1,q}(M)$. The operators $d^{0,1}$, $d^{1,0}$ are denoted $\overline{\partial}$ and ∂ and called **the Dolbeault differentials**.

REMINDER: Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the Kähler form.

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphisms space $End(V^*) = \bigoplus_{i \in \mathbb{Z}} End^i(V^*)$ is also graded, with $End^i(V^*) = \bigoplus_{j \in \mathbb{Z}} Hom(V^j, V^{i+j})$

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^i \cdot A^j \subset A^{i+j}$ is called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a **category of vector spaces with** U(1)-**action**, with the weight decomposition providing the grading. Then **a graded algebra is an associative algebra in the category of spaces with** U(1)-**action**.

DEFINITION: An operator on a graded vector space is called **even** (odd) if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot, \cdot\}$: $\mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a, b\} = -(-1)^{\tilde{a}\tilde{b}}\{b, a\}$ and satisfies the super Jacobi identity $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*)$, $\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\} = 0$, and L an even or odd element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}} \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

Hodge * operator

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x'_1 \otimes x'_2 \otimes ... \otimes x'_k) =$ $g(x_1, x'_1)g(x_2, x'_2)...g(x_k, x'_k).$

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold (M,g): $g(\alpha,\beta) := \int_M g(\alpha,\beta) \operatorname{Vol}_M$

Another non-degenerate form is provided by the **Poincare pairing**: $\alpha, \beta \longrightarrow \int_M \alpha \wedge \beta$.

DEFINITION: Let M be a Riemannian *n*-manifold. Define the Hodge *operator $*: \Lambda^k M \longrightarrow \Lambda^{n-k} M$ by the following relation: $g(\alpha, \beta) = \int_M \alpha \wedge *\beta$.

REMARK: The Hodge * operator always exists. It is defined explicitly in an orthonormal basis $\xi_1, ..., \xi_n \in \Lambda^1 M$:

$$*(\xi_{i_1} \wedge \xi_{i_2} \wedge \ldots \wedge \xi_{i_k}) = (-1)^s \xi_{j_1} \wedge \xi_{j_2} \wedge \ldots \wedge \xi_{j_{n-k}},$$

where $\xi_{j_1}, \xi_{j_2}, ..., \xi_{j_{n-k}}$ is a complementary set of vectors to $\xi_{i_1}, \xi_{i_2}, ..., \xi_{i_k}$, and s the signature of a permutation $(i_1, ..., i_k, j_1, ..., j_{n-k})$.

REMARK: $*^2|_{\Lambda^k(M)} = (-1)^{k(n-k)} \operatorname{Id}_{\Lambda^k(M)}$

Hodge theory

CLAIM: On a compact Riemannian *n*-manifold, one has $d^*|_{\Lambda^k M} = (-1)^{nk} * d^*$, where d^* denotes **the adjoint operator**, which is defined by the equation $(d\alpha, \gamma) = (\alpha, d^*\gamma)$.

Proof: Since

$$0 = \int_M d(\alpha \wedge \beta) = \int_M d(\alpha) \wedge \beta + (-1)^{\tilde{\alpha}} \alpha \wedge d(\beta),$$

one has $(d\alpha, *\beta) = (-1)^{\tilde{\alpha}}(\alpha, *d\beta)$. Setting $\gamma := *\beta$, we obtain $(d\alpha, \gamma) = (-1)^{\tilde{\alpha}}(\alpha, *d(*)^{-1}\gamma) = (-1)^{\tilde{\alpha}}(-1)^{\tilde{\alpha}(\tilde{n}-\tilde{\alpha})}(\alpha, *d*\gamma) = (-1)^{\tilde{\alpha}\tilde{n}}(\alpha, *d*\gamma).$

DEFINITION: The anticommutator $\Delta := \{d, d^*\} = dd^* + d^*d$ is called **the** Laplacian of M. It is self-adjoint and positive definite: $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$. Also, Δ commutes with d and d^* (Lemma 1).

THEOREM: (The main theorem of Hodge theory) There is a basis in the Hilbert space $L^2(\Lambda^*(M))$ consisting of eigenvectors of Δ .

THEOREM: ("Elliptic regularity for Δ ") Let $\alpha \in L^2(\Lambda^k(M))$ be an eigenvector of Δ . Then α is a smooth *k*-form.

De Rham cohomology

DEFINITION: The space $H^i(M) := \frac{\ker d|_{\Lambda^i M}}{d(\Lambda^{i-1}M)}$ is called **the de Rham coho**mology of M.

DEFINITION: A form α is called **harmonic** if $\Delta(\alpha) = 0$.

REMARK: Let α be a harmonic form. Then $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$, hence $\alpha \in \ker d \cap \ker d^*$

REMARK: The projection $\mathcal{H}^i(M) \longrightarrow H^i(M)$ from harmonic forms to cohomology is injective. Indeed, a form α lies in the kernel of such projection if $\alpha = d\beta$, but then $(\alpha, \alpha) = (\alpha, d\beta) = (d^*\alpha, \beta) = 0$.

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism (see the next page).

REMARK: Poincare duality immediately follows from this theorem.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism.

Proof. Step 1: Since $d^2 = 0$ and $(d^*)^2 = 0$, one has $\{d, \Delta\} = 0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\Lambda^*(M) \cong \bigoplus_{\alpha} \mathcal{H}^*_{\alpha}(M)$, where α runs through all eigenvalues of Δ , and $\mathcal{H}^*_{\alpha}(M)$ is the corresponding eigenspace. **For each** α , **de Rham differential defines a complex**

$$\mathcal{H}^{0}_{\alpha}(M) \xrightarrow{d} \mathcal{H}^{1}_{\alpha}(M) \xrightarrow{d} \mathcal{H}^{2}_{\alpha}(M) \xrightarrow{d} \dots$$

Step 3: On $\mathcal{H}^*_{\alpha}(M)$, one has $dd^* + d^*d = \alpha$. When $\alpha \neq 0$, and η closed, this implies $dd^*(\eta) + d^*d(\eta) = dd^*\eta = \alpha\eta$, hence $\eta = d\xi$, with $\xi := \alpha^{-1}d^*\eta$. This implies that **the complexes** $(\mathcal{H}^*_{\alpha}(M), d)$ **don't contribute to cohomology.**

Step 4: We have proven that

$$H^*(\Lambda^*M,d) = \bigoplus_{\alpha} H^*(\mathcal{H}^*_{\alpha}(M),d) = H^*(\mathcal{H}^*_{0}(M),d) = \mathcal{H}^*(M).$$

Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L(\alpha) := \omega \wedge \alpha$

- 2. $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{sl}(2)$ -action.

Reference:

JM Figueroa-O'Farrill, C Koehl, B Spence, **Supersymmetry and the cohomology of (hyper)Kaehler manifolds,** arXiv:hep-th/9705161, Nucl.Phys. B503 (1997) 614-626

M. Verbitsky, **Hyperkaehler manifolds with torsion, supersymmetry and Hodge theory,** arXiv:math/0112215, Asian J. Math. Vol. 6, No. 4, pp. 679-712 (2002)

Elena Poletaeva, **Superconformal algebras and Lie superalgebras of the Hodge theory**, arXiv:hep-th/0209168, J.Nonlin.Math.Phys. 10 (2003) 141-147

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_1, ..., v_{2n}$ an orthonormal basis. Denote by $e_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_i}(\eta) = e_i \wedge \eta$. Let $i_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k-1} V$ be an adjoint operator, $i_{v_i} = *e_{v_i}*$.

CLAIM: The operators e_{v_i} , i_{v_i} , Id are a basis of an **odd Heisenberg Lie** superalgebra \mathfrak{H} , with the only non-trivial supercommutator given by the formula $\{e_{v_i}, i_{v_j}\} = \delta_{i,j}$ Id.

Now, consider the tensor $\omega = \sum_{i=1}^{n} v_{2i-1} \wedge v_{2i}$, and let $L(\alpha) = \omega \wedge \alpha$, and $\Lambda := L^*$ be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in \mathfrak{H} , one obtains immediately that

$$H := [L, \Lambda] = \left[\sum e_{v_{2i-1}} e_{v_{2i}}, \sum i_{v_{2i-1}} i_{v_{2i}}\right] = \sum_{i=1}^{2n} e_{v_i} i_{v_i} - \sum_{i=1}^{2n} i_{v_i} e_{v_i},$$

is a scalar operator acting as k - n on k-forms.

COROLLARY: The triple L, Λ, H satisfies the relations for the $\mathfrak{sl}(2)$ Lie algebra: $[L, \Lambda] = H$, [H, L] = 2L, $[H, \Lambda] = 2\Lambda$.

The twisted differential d^c

DEFINITION: The **twisted differential** is defined as $d^c := I dI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d + \sqrt{-1} d^c}{2}$, $\overline{\partial} := \frac{d - \sqrt{-1} d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

Proof: The Hodge components of *d* are expressed as $d^{1,0} = \frac{d+\sqrt{-1}d^c}{2}$, $d^{0,1} = \frac{d-\sqrt{-1}d^c}{2}$. Indeed, $I(\frac{d+\sqrt{-1}d^c}{2})I^{-1} = \sqrt{-1}\frac{d+\sqrt{-1}d^c}{2}$, hence $\frac{d+\sqrt{-1}d^c}{2}$ has Hodge type (1,0); the same argument works for $\overline{\partial}$.

CLAIM: On a complex manifold, one has $d^c = [\mathcal{W}, d]$.

Proof: Clearly, $[\mathcal{W}, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[\mathcal{W}, d^{0,1}] = -\sqrt{-1} d^{0,1}$. Adding these equations, obtain $d^c = [\mathcal{W}, d]$.

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$ (Lemma 1).

De Rham differential on Kaehler manifolds

THEOREM: Let M, I be a complex manifold. Then 1. $\partial^2 = 0$. 2. $\overline{\partial}^2 = 0$. 3. $dd^c = -d^c d$ 4. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

EXERCISE: Prove it.

DEFINITION: The operator dd^c is called **the pluri-Laplacian**.

THEOREM: Let *M* be a Kaehler manifold. One has the following identities ("Kähler idenitities", "Kodaira idenities").

 $[\Lambda,\partial] = \sqrt{-1}\,\overline{\partial}^*, \quad [L,\overline{\partial}] = -\sqrt{-1}\,\partial^*, \quad [\Lambda,\overline{\partial}^*] = -\sqrt{-1}\,\partial, \quad [L,\partial^*] = \sqrt{-1}\,\overline{\partial}.$ Equivalently,

$$[\Lambda, d] = (d^c)^*, \qquad [L, d^*] = -d^c, \qquad [\Lambda, d^c] = -d^*, \qquad [L, (d^c)^*] = d.$$

Proof: There are two proofs: one uses supersymmetry, for another we prove that a Kähler manifold admits coordinates which are flat up to second order. Neither will be given today. ■

Laplacians and supercommutators

THEOREM: Let

$$\Delta_d := \{d, d^*\}, \quad \Delta_{d^c} := \{d^c, d^{c^*}\}, \quad \Delta_{\partial} := \{\partial, \partial^*\}, \Delta_{\overline{\partial}} := \{\overline{\partial}, \overline{\partial}^*\}.$$

Then $\Delta_d = \Delta_{d^c} = 2\Delta_{\partial} = 2\Delta_{\overline{\partial}}$. In particular, Δ_d preserves the Hodge decomposition.

Proof: By Kodaira relations, $\{d, d^c\} = 0$. Graded Jacobi identity gives

$$\{d, d^*\} = -\{d, \{\Lambda, d^c\}\} = \{\{\Lambda, d\}, d^c\} = \{d^c, d^{c^*}\}.$$

Same calculation with $\partial, \overline{\partial}$ gives $\Delta_{\partial} = \Delta_{\overline{\partial}}$. Also, $\{\partial, \overline{\partial}^*\} = \sqrt{-1} \{\partial, \{\Lambda, \partial\}\} = 0$, (Lemma 1), and the same argument implies that **all anticommutators** $\partial, \overline{\partial}^*$, etc. all vanish except $\{\partial, \partial^*\}$ and $\{\overline{\partial}, \overline{\partial}^*\}$. This gives $\Delta_d = \Delta_{\partial} + \Delta_{\overline{\partial}}$.

DEFINITION: The operator $\Delta := \Delta_d$ is called **the Laplacian**.

REMARK: We have proved that operators L, Λ, d, W generate a Lie superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional center $\mathbb{R}\Delta$.

The Lefschetz $\mathfrak{sl}(2)$ -action

COROLLARY: The operators L, Λ, H form a basis of a Lie algebra isomorphic to $\mathfrak{sl}(2)$, with relations

$$[L, \Lambda] = H, \quad [H, L] = 2L, \quad [H, \Lambda] = -2\Lambda.$$

DEFINITION: L, Λ, H is called **the Lefschetz** $\mathfrak{sl}(2)$ -triple.

REMARK: Finite-dimensional representations of $\mathfrak{sl}(2)$ are semisimple.

REMARK: A simple finite-dimensional representation V of $\mathfrak{sl}(2)$ is generated by $v \in V$ which satisfies $\Lambda(v) = 0$, H(v) = pv ("lowest weight vector"), where $p \in \mathbb{Z}^{\geq 0}$. Then $v, L(v), L^2(v), ..., L^p(v)$ form a basis of $V_p := V$. This representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: $H(L^{i}(v)) = (2i - p)L^{i}(v)$.

REMARK: One has $V_p = \operatorname{Sym}^p V_1$, where V_1 is a 2-dimensional tautological representation. It is called a weight *p* representation of $\mathfrak{sl}(2)$.

COROLLARY: For a finite-dimensional representation V of $\mathfrak{sl}(2)$, denote by $V^{(i)}$ the eigenspaces of H, with $H|_{V^{(i)}} = i$. Then L^i induces an isomorphism $V^{(-i)} \xrightarrow{L^i} V^{(i)}$ for any i > 0.

Lefschetz action on cohomology.

From the supersymmetry theorem, the following result follows.

COROLLARY: The $\mathfrak{sl}(2)$ -action $\langle L, \Lambda, H \rangle$ and the action of Weil operator commute with Laplacian, hence **preserve the harmonic forms on a Kähler manifold**.

COROLLARY: Any cohomology class can be represented as a sum of closed (p,q)-forms, giving a decomposition $H^i(M) = \bigoplus_{p+q=i} H^{p,q}(M)$, with $\overline{H^{p,q}(M)} = H^{q,p}(M)$.

COROLLARY: odd cohomology of a compact Kähler manifold are even-dimensional.

COROLLARY: Let *M* be a compact, Kähler manifold of complex dimension *n*, and i + p + q = n. Then L^i defines the Lefschetz isomorphism $H^{p,q} \xrightarrow{L^i} H^{p+2i,q+2i}(M)$

The Hodge diamond:

			$H^{n,n}$			
		$H^{n,n-1}$		$H^{n-1,n}$		
	$H^{n,n-2}$		$H^{n-1,n-1}$		$H^{n-2,n}$	
$H^{n,n-3}(M)$		$H^{n-1,n-2}(M)$		$H^{n-2,n-1}(M)$		$H^{n-3,n}(M)$
÷		÷		÷		÷
$H^{3,0}(M)$		$H^{2,1}(M)$		$H^{1,2}(M)$		$H^{0,3}(M)$
	$H^{2,0}$		$H^{1,1}$		$H^{0,2}$	
		$H^{1,0}$		$H^{0,1}$		
			$H^{0,0}$			

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation

$$I^2 = J^2 = K^2 = IJK = - \mathrm{Id}$$
.

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

REMARK: A hyperkähler manifold M is equipped with 3 symplectic forms ω_I , ω_J , ω_K . The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic **2-form on** (M, I).

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry

Supersymmetry in hyperkähler geometry

Let (M, I, J, K, g) be a hyperkaehler manifold, ω_I , ω_J , ω_K its Kaehler forms. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L_I(\alpha) := \omega_I \wedge \alpha$

2. $\Lambda_I(\alpha) := *L_I * \alpha$. It is easily seen that $\Lambda_I = L_J^*$.

3. Three Weil operators $W_I|_{\Lambda^{p,q}(M,I)} = \sqrt{-1}(p-q), W_J|_{\Lambda^{p,q}(M,J)} = \sqrt{-1}(p-q), W_K|_{\Lambda^{p,q}(M,K)} = \sqrt{-1}(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (11|8), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra $\mathfrak{su}(2)$ of unitary quaternions. This means that **the quaternionic action belongs to** \mathfrak{a} . In particular, L_J, L_K, Λ_J and Λ_K .

REMARK: The twisted de Rham differentials d_I, d_J, d_K , associated to I, J, K also belong to \mathfrak{a} : $d_I = [W_I, d]$, $d_J = [W_J, d]$, $d_K = [W_K, d]$

Supersymmetry and the Hodge decomposition

REMARK: 1. $[L_I, \Lambda_J] = W_K$, $[L_J, \Lambda_K] = W_I$, $[L_I, \Lambda_K] = -W_J$.

2. The even part of a is isomorphic to $\mathfrak{sp}(1,1,\mathbb{H}) \oplus \mathbb{R} \cdot \Delta$.

3. The odd part $\langle d, d_I, d_J, d_K, d, * d_I^*, d_J^*, d_K^* \rangle$ generates the 9-dimensional odd Heisenberg algebra, with the only non-trivial supercommutators being $\{d, d^*\} = \{d_I, d_I^*\} = \{d_J, d_J^*\} = \{d_K, d_K^*\} = \Delta$

4. The action of \mathfrak{a}_{even} on \mathfrak{a}_{odd} is the fundamental representation of $\mathfrak{sp}(1,1,\mathbb{H})$ in \mathbb{H}^2 , with the quaternionic Hermitian metric on \mathfrak{a}_{odd} provided by the anticommutator.

REMARK: The weight decomposition of the $\mathfrak{sp}(1, 1, \mathbb{H}) = \mathfrak{so}(1, 4)$ -action on $H^*(M)$ coincides with the Hodge decomposition.