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REMINDER: de Rham algebra

DEFINITION: Let A*M denote the vector bundle with the fiber A*T ;M
at x € M (A*T*M is the Grassmann algebra of the cotangent space T;M).
The sections of A*M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

REMARK: NOM = C>®°M.

THEOREM: There exists a unique operator C°M -%s Alar —%s A2p7 -4
A3M -4, .. satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinAnE) =dm) ANE+ (=1 Ad(€), where 7 = 0 where n € A% M is an even
form, and n € A2T1)\f is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form 7 is called closed if dn = 0, exact if minimd. The

group &< is called de Rham cohomology of M.
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REMINDER: Cauchy-Riemann equation and Hodge decomposition

The (p, q)-decomposition is defined on differential forms on complex manifold,
in a similar way.

DEFINITION: Let (M,I) be a complex manifold A differential form n €

AL(M) is of type (1,0) if I(n) =+/—1n, and of type (0,1) if I(n) = —v/—1n.
The corresponding vector bundles are denoted by ALO(Ar) and A%L(M).

REMARK: Cauchy-Riemann equations can be written as df € ALO(M). That
is, a function f € C2°(M) is holomorphic if and only if df € A}O(M).

REMARK: Let (M,I) be a complex manifold, and zq,..., zn holomorphic co-
ordinate system in U C M, with z; being holomorphic functions on U. Then
dz1, ...,dzp, generate the bundle ALO(M), and dz1, ..., dz, generate AO-1(\1).

EXERCISE: Prove this.
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REMINDER: The Hodge decomposition on a complex manifold

DEFINITION: Let (M, I) be a complex manifold, {U;} its covering, and and
z1, ..., 2zn, holomorphic coordinate system on each covering patch. The bundie
ANPA(M,T) of (p,q)-forms on (M,I) is generated locally on each coordinate
patch by monomials dz;; A dzj, A ... A dz;, A dzz-pH ZANRIVAN dzierq. The Hodge
decomposition is a decomposition of vector bundles:

NA(M) = @ API(M).
p+q=d

REMARK: One has AP4(M) = APO(M) @ AO4(M). This gives
rk AP9(M) = (Z) : (Z’), where n = dim¢g M.

EXERCISE: Prove that the de Rham differential on a complex manifold
has only two Hodge components:

d (AP4(M)) € APTLa(M) @ APITL (M.

DEFINITION: Let d = d%! 4+ ¢'0 be the Hodge decomposition of the de
Rham differential on a complex manifold, d%1 : AP49(M) — AP9T1(M) and
d10 : AP9(M) — APTLa(M). The operators d91, d1:0 are denoted & and @
and called the Dolbeault differentials.
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REMINDER: Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I?%y) =
—g(y, Iz), hence w(x,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).
DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if

dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form.
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Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* = @,z V.

REMARK: If V* is graded, the endomorphisms space End(V*) = @;cz End*(V*)
is also graded, with End*(V*) = @,cz Hom(V7, Viti)

DEFINITION: A graded algebra(or “graded associative algebra™) is an as-
sociative algebra A* = @,z A", with the product compatible with the grading:
Al AT C AV,

REMARK: A bilinear map of graded paces which satisfies A*- A7 ¢ A7 is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g¢* x g"* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + (—=1)2{d, {L,d}} = 2{{L,d},d}. m
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Hodge x operator

Let V be a vector space. A metric ¢ on V induces a natural metric
on each of its tensor spaces: g(z]1 ® T2 ® ... ® T, 2] ® 5 Q ... ® x)) =
g(z1,77)g(x2, 25)...9(x), 2.).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(a,B) == [y 9(a, B) Vol

Another non-degenerate form is provided by the Poincare pairing:.
o, B— [jyaNp.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge x
operator x : A*M — A" "kM by the following relation: g(a, 8) = [y a A *8.

REMARK: The Hodge x operator always exists. It is defined explicitly in
an orthonormal basis &1, ..., &n € AL M:

#(Eig NEia N NE ) = (1), NEL Ao NE
where §;,,&5,---,&5,_, 1S @ complementary set of vectors to &;,,&,, .-, §;,, and
s the signature of a permutation (i1, ..., %5, 51y s Jr—k) -

REMARK: 2|\, 1y = (=1DFO=R1d 1y
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Hodge theory

CLAIM: On a compact Riemannian n-manifold, one has d*‘/\kM = (—1)”’“*d*,
where d* denotes the adjoint operator, which is defined by the equation

(do,v) = (o, d*).
Proof: Since
0= [ danp) = [ da)ArBs+(-1)Tand(s),
one has (da, *8) = (—=1)%*(a, *dB). Setting ~ := %3, we obtain
(da,y) = (—1)%(a, xd(x) " 1y) = (1) (1) =D (q, xdx7) = (—1)%(a, *xd*7).

DEFINITION: The anticommutator A = {d,d*} = dd* + d*d is called the
Laplacian of M. It is self-adjoint and positive definite: (Ax,z) = (dz,dx) +
(d*x,d*x). Also, A commutes with d and d* (Lemma 1).

THEOREM: (The main theorem of Hodge theory)
There is a basis in the Hilbert space L2(A*(M)) consisting of eigenvec-
tors of A.

THEOREM: (“Elliptic regularity for A”) Let a € L2(A¥(M)) be an eigen-
vector of A. Then « is a smooth k-form.
)
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De Rham cohomology

is called the de Rham coho-

DEFINITION: The space H:(M) :=
mology of M.

DEFINITION: A form « is called harmonic if A(a) = 0.

REMARK: Let o be a harmonic form. Then (Axz,z) = (dz,dz) + (d*x,d*z),
hence o € kerd N ker d*

REMARK: The projection #'(M) — H*(M) from harmonic forms to
cohomology is injective. Indeed, a form « lies in the kernel of such projection
if « = dgB, but then (a,a) = (a,dB) = (d*a, 3) = 0.

THEOREM: The natural map H'(M) — H*(M) is an isomorphism
(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology
THEOREM: The natural map H!(M) — H*(M) is an isomorphism.

Proof. Step 1: Since d2 =0 and (d*)2 = 0, one has {d, A} = 0. This means
that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, H: (M), where o
runs through all eigenvalues of A, and H},(M) is the corresponding eigenspace.
For each o, de Rham differential defines a complex

HO(M) % HI(M) - HR(M) L

Step 3: On H}, (M), one has dd* + d*d = a. When a # 0, and n closed, this
implies dd*(n) 4+ d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (#},(M),d) don’t contribute to cohomology.

Step 4: We have proven that
H*(N'M,d) =P H*(Hy(M),d) = H* (H§(M),d) = H*(M).
(8%
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Supersymmetry in Kahler geometry

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d*, A, because it is Riemannian.

1. L(a) (= wA«

2. N(a) := xL x «. It is easily seen that A = L*.

3. The Weil operator W‘,\p,q(M) =+v—-1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz’' sl(2)-action.
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and w1, ...,v2, an orthonormal basis. Denote by ey, : AFV — ATV an
operator of multiplication, ey (n) = e; An. Let iy, : AFV — A¥=1V be an
adjoint operator, iy, = *xeqy, *.

CLAIM: The operators ey, ty;, Id are a basis of an odd Heisenberg Lie
superalgebra $, with the only non-trivial supercommutator given by the

formula {evi,ivj} — 5@,] Id.

Now, consider the tensor w = Y% ;vp;_1 A vy, and let L(a) = w A «a, and
N\ = L* be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in §, one ob-
tains immediately that

2n 2n
H:=|[L,N\] = [Z evzi—lewwzivzfi—livm] — Z Cv;lv; — Z v, €v;,
i=1 i=1
IS a scalar operator acting as £ — n on k-forms.

COROLLARY: The triple L,A\, H satisfies the relations for the sl(2) Lie
algebra: [L,AN] = H, [H,L] = 2L, [H,\] = 2A.
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The twisted differential d¢

DEFINITION: The twisted differential is defined as d¢ := Idl 1.

CLAIM: Let (M,I) be a complex manifold. Then 0 = CH'VQ_ldC, 0 =
d=vV=1d" are the Hodge components of d, § = d'0, 9 = d01.

Proof: The Hodge components of d are expressed as d1:0 = d+V2_1 d” 40,1 —
d=V_1d" Indeed, 1(SEV LAY -1 = \/m74EV 1A phence 4HV 14 has Hodge

type (1,0); the same argument works for 9. m
CLAIM: On a complex manifold, one has d° = [W,d].

Proof: Clearly, [W,d?9] =/=1d10 and [W,d%1] = —v/=1d%1. Adding these
equations, obtain d¢ = [W,d].

COROLLARY: {d,d‘} = {d,{d,W}} =0 (Lemma 1).
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De Rham differential on Kaehler manifolds

THEOREM: Let M, I be a complex manifold. Then 1. 82 =0. 2. 8 = 0.
3. dd® = —d°d 4. dd°= 2/—1 9.

EXERCISE: Prove it.
DEFINITION: The operator dd°€ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities
(“Kahler idenitities”, ‘“Kodaira idenities”).

IN,O] =+/—10", [L,0]=—-/—-10%* [NO]=—-/—-10, |[L,0]=+—-10.
Equivalently,
N, d] = (d9)7, [L,d*] = —df, N, d°] = —d, [L, (d9)*] = d.

Proof: There are two proofs: one uses supersymmetry, for another we prove
that a Kahler manifold admits coordinates which are flat up to second order.
Neither will be given today. m
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Laplacians and supercommutators

THEOREM: Let
Agi=A{d,d*}, Age:={dd"}, Dy:={0,0"},05:={0,0"}.

Then Ay = Ay = 2A5 = 2A5. In particular, Ay preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d,d‘} = 0. Graded Jacobi identity gives
{d7 d*} — _{da {/\7 dc}} — {{/\7d}7 dc} — {dc7 dc*}°

Same calculation with 9,8 gives Ay = A5.. Also, {9,0"} = v=1{8,{A,0}} =
0, (Lemma 1), and the same argument implies that all anticommutators
9,0, etc. all vanish except {0,0*} and {9,0"}. This gives Ay = Ay+ Ay,
|

DEFINITION: The operator A := A, is called the Laplacian.

REMARK: We have proved that operators L, A,d, VYV generate a Lie su-
peralgebra of dimension (5/4) (5 even, 4 odd), with a 1-dimensional

center RA.
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The Lefschetz si(2)-action
COROLLARY: The operators L,\, H form a basis of a Lie algebra isomor-

phic to si(2), with relations
[L,A] = H, [H,L]=2L, [H,A]=—2A.

DEFINITION: L, A, H is called the Lefschetz s((2)-triple.
REMARK: Finite-dimensional representations of si(2) are semisimple.

REMARK: A simple finite-dimensional representation V of si(2) is generated
by v € V which satisfies A(v) = 0, H(v) = pv (“lowest weight vector”),
where p € Z29. Then v, L(v), L?(v), ..., LP(v) form a basis of V, := V. This
representation is determined uniquely by »p.

REMARK: In this basis, H acts diagonally: H(L'(v)) = (2i — p)L*(v).

REMARK: One has V), = SymP Vy, where V7 is a 2-dimensional tautological
representation. It is called a weight p representation of si(2).

COROLLARY: For a finite-dimensional representation V' of s/(2), denote by
V(i) the eigenspaces of H, with H (@ = ¢ Then L*induces an isomorphism

v LY (@ for any i > 0.

18



Kahler manifolds, lecture 5 M. Verbitsky

Lefschetz action on cohomology.
From the supersymmetry theorem, the following result follows.

COROLLARY: The sl(2)-action (L,A\,H) and the action of Weil operator
commute with Laplacian, hence preserve the harmonic forms on a Kahler
manifold.

COROLLARY: Any cohomology class can be represented as a sum of
closed (p,q)-forms, giving a decomposition H*(M) = Dp+q=i HP1(M), with
HP:9(M) = H?P(M).

COROLLARY: odd cohomology of a compact Kahler manifold are
even-dimensional.

COROLLARY: Let M be a compact, Kahler manifold of complex dimension

n, and 1+p—+qg=mn. Then L' defines the Lefschetz isomorphism HP:4 £>
Hp+2i,q+2i(M)
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The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
Hn,n—Q Hn—l,n—l Hn—2,n
Hn,n—3(M) Hn—l,n—Q(M) Hn—2,n—1 (M) Hn—3,n(M)
H3,O(M) H2,1(M) Hl,Q(M) HO’3(M)
H2,0 Hl,l HO,2
Hl,O HO,l
H0,0
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Hyperkahler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I,J, K . T'M — T M, satisfying the quaternionic relation
[°=J°=K?’=J1JK=-1d.

Suppose that I, J, K are Kahler. Then (M,I,J, K, g) is called hyperkahler.

REMARK: A hyperkahler manifold M is equipped with 3 symplectic forms
wyr, wj, wrg. The form Q = w;+ +v/—1wg IS a holomorphic symplectic
2-formon (M,[). =

THEOREM: (Calabi-Yau) Let M be a compact, holomorphically symplectic
Kahler manifold. Then M admits a hyperkahler metric, which is uniquely
determined by the cohomology class of its Kahler form wy.

Hyperkahler geometry is essentially the same as holomorphic symplectic ge-
ometry
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Supersymmetry in hyperkahler geometry

Let (M,I,J,K,g) be a hyperkaehler manifold, w;, wj, wg its Kaehler forms.
On A*(M), the following operators are defined.

0. d, d*, A, because it is Riemannian.
1. LI(OA) = wr N\«
2. Ni(a) ;= *Ly*xa. It is easily seen that A = L7.

3. Three Weil operators WI‘Ap,q(M,I) =+—-1(p—q), WJ|/\p,q(M’J) =V—-1(p—q),
WK‘AP,Q(M,K) =v-1( -9

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on A*(M). Moreover, the Laplacian A is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ,LK,/\J and /\K'

REMARK: The twisted de Rham differentials dy,d s, dy, associated to I, J, K
also belong to a: dj = [W],d], dJ = [Wj,d], di = [WK,d]
22
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Supersymmetry and the Hodge decomposition
REMARK: 1. [L;,N\j] =Wk, [Lj,Ng] =Wy, [Li,Ag] = -W}.
2. The even part of a is isomorphic to sp(1,1,H) ®R - A.

3. The odd part (d,d;,dy,dg,d,*d},d%,dy) generates the 9-dimensional
odd Heisenberg algebra, with the only non-trivial supercommutators being

{d,d*} = {d;, dj} = {dy, d}} = {dg, dj} = A

4. The action of aecpven On a,yq IS the fundamental representation of
sp(1,1,H) in H?, with the quaternionic Hermitian metric on a,y; provided
by the anticommutator.

REMARK: The weight decomposition of the sp(1,1,H) = so(1,4)-action on
H*(M) coincides with the Hodge decomposition.
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