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REMINDER: Holomorphic vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)

is a vector bundle equipped with a ∂-operator which satisfies ∂
2

= 0. In this

case, ∂ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential ∂ : Λp,0(M)−→ Λp,1(M) =

Λp,0(M)⊗Λ0,1(M). Prove that it is a holomorphic structure operator on

Λp,0(M).

DEFINITION: The corresponding holomorphic vector bundle (Λp,0(M), ∂) is

called the bundle of holomorphic p-forms, denoted by Ωp(M).
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REMINDER: Chern connection

DEFINITION: Let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure operator ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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REMINDER: Calabi-Yau manifolds

DEFINITION: Let M be a complex manifold, dimCM = n. The holomorphic

line bundle (Λn,0(M), ∂) is called canonical bundle of M .

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with

topologically trivial canonical bundle.

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. We consider K(M) as a holomorphic line bundle,

K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→ α∧α′
ωn . Denote by ΘK the curvature of the Chern connection on

K(M). The Ricci curvature Ric of M is symmetric 2-form Ric(x, y) =

ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature

vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.

4



Kähler manifolds, lecture 6 M. Verbitsky

Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form η is parallel with respect to the
Levi-Civita connection: ∇(η) = 0.

REMARK: Its proof uses spinors.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-
terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is
called hyperkähler.

REMARK: Since Sp(n) = SU(H, n), a hyperkähler manifold admits quater-
nionic action in its tangent bundle.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with π1(M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach’s solution of Hilbert’s
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M̃ of M which
is a product of Kaehler manifolds of the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,
with all Mi, Ki simply connected, T a torus, and Hol(Ml) = Sp(nl), Hol(Kl) =
SU(ml)
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REMINDER: The Hodge decomposition on cohomology

THEOREM: On a compact Kaehler manifold M , the Hodge decomposi-

tion is compatible with the Laplace operator. This gives a decomposition

of cohomology, Hi(M) =
⊕
p+q=iH

p,q(M), with Hp,q(M) = Hq,p(M).

COROLLARY: Hp(M) is even-dimensional for odd p.

The Hodge diamond:

Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

... ... ... ... ...

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0

REMARK: Hp,0(M) is the space of holomorphic p-forms. Indeed, dd∗+

d∗d = 2(∂∂
∗

+∂
∗
∂) hence a holomorphic form on a compact Kähler man-

ifold is closed.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic χ(M) of a Kähler man-
ifold is a sum

∑
(−1)p dimHp,0(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, χ(M) can be ex-
pressed as a polynomial expressions of the Chern classes, χ(M) = tdn
where tdn is an n-th component of the Todd polynomial,

td(M) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 +

1

720
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

22− c4) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore χ(M̃) = pχ(M) for any unramified
p-fold covering M̃ −→M.

REMARK: Bochner’s vanishing and the classical invariants theory imply:

1. When Hol(M) = SU(n), we have dimHp,0(M) = 1 for p = 1, n, and 0
otherwise. In this case, χ(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dimHp,0(M) = 1 for even p 0 6 p 6 2n,
and 0 otherwise. In this case, χ(M) = n+ 1.

COROLLARY: π1(M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), π1(M) is finite.
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The coho-
mology class c1(B) :=

√
−1
2π [ΘB] ∈ H2(M) is called the real first Chern class

of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by η a (1,0)-form which satisfies
∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f
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∂∂-lemma

THEOREM: (“∂∂-lemma”)

Let M be a compact Kaehler manifold, and ηΛp,q(M) an exact form. Then

η = ∂∂α, for some α ∈ Λp−1,q−1(M).

Proof. Step 1: Write η =
∑
α ηα, where dηα = 0 and ∆ηα = αηα. This is

possible because of Hodge theory.

Step 2: Since [d,∆] = 0, d preserves the eigenspaces of ∆. This implies

dηα = 0. Then ηα = 1
α∆ηα = 1

αdd
∗ηα. It would suffice to prove that each ηα

belongs to the image of ∂∂ = −
√
−1
2 ddc, where dc = IdI−1.

Step 3: We have d∗ = −[Λ, dc (Kähler identities). Also, dcηα = (
√
−1)q−pIdηα =

0, hence d∗(ηα) = dcΛηα. Using Step 2, this implies

ηα =
1

α
dd∗ηα =

1

α
ddcΛηα.

10



Kähler manifolds, lecture 6 M. Verbitsky

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section

of K(M), Then |Ω|2 = Ω∧Ω
ωn . If ω1 is a new Kaehler metric on (M, I), h, h1

the associated metrics on K(M), then h
h1

=
ωn1
ωn.

REMARK: For two metrics ω1, ω in the same Kähler class, one has ω1−ω =

ddcϕ, for some function ϕ (ddc-lemma).

COROLLARY: A metric ω1 = ω + ∂∂ϕ is Ricci-flat if and only if (ω +

ddcϕ)n = ωnef , where −2∂∂f = ΘK,ω (such f exists by ∂∂-lemma).

Proof. Step 1: For such f , ϕ, one has log h
h1

= − log ef = −f . As

shown above, the corresponding curvatures are related as ΘK,ω1
− ΘK,ω =

−2∂∂ log(h/h1). This gives

ΘK,ω1
= ΘK,ω +−2∂∂ log(h/h1) = ΘK,ω − 2∂∂f.

Proof. Step 2: Therefore, ω1 is Ricci-flat if and only if ΘK,ω − 2∂∂f.

To find a Ricci-flat metric it remains to solve an equation (ω + ddcϕ)n =

ωnef for a given f.
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The complex Monge-Ampère equation

To find a Ricci-flat metric it remains to solve an equation (ω + ddcϕ)n =

ωnef for a given f.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,

and f any smooth function. Then there exists a unique up to a constant

function ϕ such that (ω+
√
−1∂∂ϕ)n = Aefωn, where A is a positive constant

obtained from the formula
∫
M Aefωn =

∫
M ωn.

DEFINITION:

(ω +
√
−1 ∂∂ϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then
ωn1 = ωn2. By construction, one has ω2 = ω1 +

√
−1 ∂∂ψ. We need to show

ψ = const.

Step 2: ω2 = ω1 +
√
−1 ∂∂ψ gives

0 = (ω1 +
√
−1 ∂∂ψ)n − ωn1 =

√
−1 ∂∂ψ ∧

n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a positive (n − 1, n − 1)-form.

There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since
√
−1 ∂∂ψ ∧ P = 0, this gives ψ∂∂ψ ∧ P = 0. Stokes’ formula

implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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