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REMINDER: Holomorphic vector bundles

DEFINITION: A 9-operator on a smooth bundle is a map V. -2» ASL (M) ®
V, satisfying 0(fb) = o(f) @ b+ fo(b) for all f € C°M,bec V.

REMARK: A 0-operator on B can be extended to
9: AN (M)eV — ATl gV,
using d(n ®b) =0(n) @b+ (=1)"y A J(b), where b e V and n € A9 (M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)
is a vector bundle equipped with a 9-operator which satisfies 52 = 0. In this
case, O is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential 8 : APO(M) — AP L(M) =
APO(M) @ADL (M). Prove that it is a holomorphic structure operator on
AP:O(M).

DEFINITION: The corresponding holomorphic vector bundle (APO(M1),d) is
called the bundle of holomorphic p-forms, denoted by QP(M).
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REMINDER: Chern connection

DEFINITION: Let (B,V) be a smooth bundle with connection and a holo-
morphic structure & B— A% (M) ® B. Consider a Hodge decomposition of
V, V= VO,l + Vl,O,

voOl: v A0t ev, v v ALY eV

We say that V is compatible with the holomorphic structure if V91 = 3.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth
complex vector bundle equipped with a Hermitian metric and a holomorphic
structure operator 0.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.
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REMINDER: Calabi-Yau manifolds

DEFINITION: Let M be a complex manifold, dimg M = n. The holomorphic
line bundle (A™9(M),d) is called canonical bundle of M.

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with
topologically trivial canonical bundle.

DEFINITION: Let (M, I,w) be a Kaehler n-manifold, and K (M) := A™%0(M)
its canonical bundle. We consider K(M) as a holomorphic line bundle,
K(M) =Q"M. The natural Hermitian metric on K(M) is written as

(o, &) >O‘(ﬁ,?/. Denote by ©j the curvature of the Chern connection on
K(M). The Ricci curvature Ric of M is symmetric 2-form Ric(z,y) =

Ok (z,ly).

DEFINITION: A Kahler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form n is parallel with respect to the
Levi-Civita connection: V(n) = 0.

REMARK: Its proof uses spinors.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-
terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.

REMARK: Due to Bochner's vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is
called hyperkahler.

REMARK: Since Sp(n) = SU(H, n), a hyperkahler manifold admits quater-
nionic action in its tangent bundle.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with w1 (M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”’: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’'s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M of M which
IS a product of Kaehler manifolds of the following form:

M=Tx M x..xMxKyx..xKj

with all M;, K; simply connected, T a torus, and Hol(M;) = Sp(n;), Hol(kK;) =
SU(mp)
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REMINDER: The Hodge decomposition on cohomology

THEOREM: On a compact Kaehler manifold M, the Hodge decomposi-
tion is compatible with the Laplace operator. This gives a decomposition
of cohomology, H'(M) = @p4,=; HPI(M), with HP.A(M) = HIP(M).

COROLLARY: HP(M) is even-dimensional for odd p.

The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
n,n—2 n—1n—1 n—2,n
H H H
H2,0 Hl,l HO,Q
H10 0.1
HO’O

REMARK: HPO(M) is the space of holomorphic p-forms. Indeed, dd* +
d*d = 2(80" 4+ 8"9) hence a holomorphic form on a compact Kahler man-

ifold is closed.
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic x (M) of a Kdahler man-
ifold is a sum Y (—1)Pdim HP.O(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, x(M) can be ex-

pressed as a polynomial expressions of the Chern classes, xy(M) = td,
where td,, is an n-th component of the Todd polynomial,

1 1 1 1
td(M) =1+ 501 + E(C% + ) + 2—40102 + ﬁo(—czlL + 40502 + cic3 + 3032 —ca) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore x(M) = pxy(M) for any unramified
p-fold covering M — M.

REMARK: Bochner's vanishing and the classical invariants theory imply:

1. When Hol(M) = SU(n), we have dim HPO(M) =1 for p = 1,n, and O
otherwise. In this case, x(M) = 2 for even n and 0 for odd.

2. When Hol(M) = Sp(n),we have dim HP.O(M) = 1 for even p 0 < p < 2n,
and 0 otherwise. In this case, x(M) =n+ 1.

COROLLARY: m (M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n+ 1), m1(M) is finite.
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REMINDER: Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, End B is trivial, and the curvature ©p of
B is a closed 2-form.

DEFINITION: Let V be a unitary connection in a line bundle. The coho-
mology class ¢1(B) := —V2_7T1[@B] € H2(M) is called the real first Chern class
of a line bunlde B.

An exercise: Check that ¢1(B) is independent from a choice of V.

REMARK: When speaking of a *‘‘curvature of a holomorphic bundle’,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by n a (1,0)-form which satisfies
V90 = n®b. Then d|b|? = Reg(V10,b) = Ren|p|?. This gives V1:0p =

2
%b — 29 10g |bb.

REMARK: Then ©5(b) = 20d10g |blb, that is, © 5 = —209 1049 |b|.

COROLLARY: If ¢ = e2/g — two metrics on a holomorphic line bundle,
©, ©' their curvatures, one has ©' — © = —290f
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do-lemma

THEOREM: (“d0-lemma’)
Let M be a compact Kaehler manifold, and nAP9(M) an exact form. Then
n = 80a, for some o € AP~ L.a=1(pr).,

Proof. Step 1: Write n = ), na, Where dnqa = 0 and Anq = anq. This is
possible because of Hodge theory.

Step 2: Since [d,A] = 0, d preserves the eigenspaces of A. This implies
dne = 0. Then nq = *Ane = 2dd*ne. It would suffice to prove that each 7,

belongs to the image of 90 = ——Vglddc, where d¢ = Idi—1.

Step 3: We have d* = —[A, d° (Kahler identities). Also, d°nqg = (v/—1)?"Pldn, =
0, hence d*(na) = d°Ano. Using Step 2, this implies
1 1

Na — —dd*'r]a — —ddc/\na
o o
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Calabi-Yau theorem and Monge-Ampere equation

REMARK: Let (M,w) be a Kdahler n-fold, and €2 a non-degenerate section
of K(M), Then |22 = S22 1f wy is a new Kaehler metric on (M, I), h,hq

w
the associated metrics on K(M), then hhl = Z%.

REMARK: For two metrics wi,w in the same Kahler class, one has wy —w =
dd¢p, for some function ¢ (dd°-lemma).

COROLLARY: A metric w; = w + 80¢ is Ricci-flat if and only if (w +
dd¢p)™ = w"e/, where —200f = O, (such f exists by 99-lemma).

Proof. Step 1: For such f, ¢, one has Iogh—h1 — —Iogef = —f. AS
shown above, the corresponding curvatures are related as ©g ,,, — Ok =
—2001og(h/h1). This gives

@K,wl = @K,w + —285Iog(h/h1) = @K,w — 285f
Proof. Step 2: Therefore, w; is Ricci-flat if and only if ©y , —200f. m

To find a Ricci-flat metric it remains to solve an equation (w 4+ ddp)™
w"el for a given 7.
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The complex Monge-Ampere equation

To find a Ricci-flat metric it remains to solve an equation (w + ddp)™ =
w"el for a given 7.

THEOREM: (Calabi-Yau) Let (M,w) be a compact Kaehler n-manifold,
and f any smooth function. Then there exists a unique up to a constant
function ¢ such that (w++v/—=180p)" = Aefw”, where A is a positive constant
obtained from the formula [, Ae/w™ = [, w™.

DEFINITION.:
(W~ V=1 00p)" = Aelw™,

is called the Monge-Ampere equation.

12



Kahler manifolds, lecture 6 M. Verbitsky

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let wi,wp be solutions of Monge-Ampere equation. Then
wy = w5. By construction, one has wy = wj ++v—1 00vy. We need to show
Y = const.

Step 2: wo = wy +V/—1 09y gives

n—1 '
0= (w1 +V—-190¢)" —w} =+v—-190¢% A Z wi A wg_l_z.

1=0

Step 3: Let P = Z?f:_é w /\wg_l_i. This is a positive (n — 1,n — 1)-form.
There exists a Hermitian form w3 on M such that w3_1 = P.

Step 4: Since v/—190y A P = 0, this gives ¥00y A P = 0. Stokes’ formula
implies

0=/M¢/\85¢/\P= —/Mazp/\gw/\P= —/M|a¢|§w§.

where |- |3 is the metric associated to w3. Therefore 9y = 0. =
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