Kähler geometry

lecture 6

Misha Verbitsky

University of Science and Technology China, Hefei

July 17, 2012

REMINDER: Holomorphic vector bundles

DEFINITION: A $\overline{\partial}$ -operator on a smooth bundle is a map $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on *B* can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I) is a vector bundle equipped with a $\overline{\partial}$ -operator which satisfies $\overline{\partial}^2 = 0$. In this case, $\overline{\partial}$ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential $\overline{\partial}$: $\Lambda^{p,0}(M) \longrightarrow \Lambda^{p,1}(M) = \Lambda^{p,0}(M) \otimes \Lambda^{0,1}(M)$. **Prove that it is a holomorphic structure operator on** $\Lambda^{p,0}(M)$.

DEFINITION: The corresponding holomorphic vector bundle $(\Lambda^{p,0}(M), \overline{\partial})$ is called **the bundle of holomorphic** *p*-forms, denoted by $\Omega^p(M)$.

REMINDER: Chern connection

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure operator $\overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

REMINDER: Calabi-Yau manifolds

DEFINITION: Let *M* be a complex manifold, dim_{$\mathbb{C}} M = n$. The holomorphic line bundle ($\Lambda^{n,0}(M), \overline{\partial}$) is called **canonical bundle** of *M*.</sub>

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with topologically trivial canonical bundle.

DEFINITION: Let (M, I, ω) be a Kaehler *n*-manifold, and $K(M) := \Lambda^{n,0}(M)$ its **canonical bundle.** We consider K(M) as a holomorphic line bundle, $K(M) = \Omega^n M$. The natural Hermitian metric on K(M) is written as $(\alpha, \alpha') \longrightarrow \frac{\alpha \wedge \overline{\alpha'}}{\omega^n}$. Denote by Θ_K the curvature of the Chern connection on K(M). The **Ricci curvature** Ric of M is symmetric 2-form $\operatorname{Ric}(x, y) = \Theta_K(x, Iy)$.

DEFINITION: A Kähler manifold is called **Ricci-flat** if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

Bochner's vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-Yau manifold, any holomorphic *p*-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta) = 0$.

REMARK: Its proof uses spinors.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top exterior power of a holomorphic symplectic form **is a non-degenerate section of canonical bundle.**

REMARK: Due to Bochner's vanishing, holonomy of Ricci-flat Calabi-Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically symplectic manifold lies in Sp(n).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is called hyperkähler.

REMARK: Since $Sp(n) = SU(\mathbb{H}, n)$, a hyperkähler manifold admits quaternionic action in its tangent bundle.

Bogomolov's decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Riemannian manifold with $\pi_1(M)$ infinite. Then a universal covering of M is a product of \mathbb{R} and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian manifold is "virtually polycyclic": it is projected to a free abelian subgroup with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's 18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov's decomposition) Let M be a compact, Ricciflat Kaehler manifold. Then there exists a finite covering \tilde{M} of M which is a product of Kaehler manifolds of the following form:

$$\tilde{M} = T \times M_1 \times \dots \times M_i \times K_1 \times \dots \times K_j,$$

with all M_i , K_i simply connected, T a torus, and $Hol(M_l) = Sp(n_l)$, $Hol(K_l) = SU(m_l)$

REMINDER: The Hodge decomposition on cohomology

THEOREM: On a compact Kaehler manifold M, the Hodge decomposition is compatible with the Laplace operator. This gives a decomposition of cohomology, $H^i(M) = \bigoplus_{p+q=i} H^{p,q}(M)$, with $\overline{H^{p,q}(M)} = H^{q,p}(M)$.

COROLLARY: $H^p(M)$ is even-dimensional for odd p.

The Hodge diamond:

REMARK: $H^{p,0}(M)$ is the space of holomorphic *p*-forms. Indeed, $dd^* + d^*d = 2(\overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial})$ hence a holomorphic form on a compact Kähler manifold is closed.

M. Verbitsky

Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic $\chi(M)$ of a Kähler manifold is a sum $\sum (-1)^p \dim H^{p,0}(M)$.

THEOREM: (Riemann-Roch-Hirzebruch) For an *n*-fold, $\chi(M)$ can be expressed as a polynomial expressions of the Chern classes, $\chi(M) = td_n$ where td_n is an *n*-th component of the Todd polynomial,

$$td(M) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \frac{1}{720}(-c_1^4 + 4c_1^2c_2 + c_1c_3 + 3c_2^22 - c_4) + \dots$$

REMARK: The Chern classes are obtained as polynomial expression of the curvature (Gauss-Bonnet). Therefore $\chi(\tilde{M}) = p\chi(M)$ for any unramified *p*-fold covering $\tilde{M} \longrightarrow M$.

REMARK: Bochner's vanishing and the classical invariants theory imply:

1. When $\mathcal{H}ol(M) = SU(n)$, we have dim $H^{p,0}(M) = 1$ for p = 1, n, and 0 otherwise. In this case, $\chi(M) = 2$ for even n and 0 for odd.

2. When $\mathcal{H}ol(M) = Sp(n)$, we have dim $H^{p,0}(M) = 1$ for even $p \ 0 \le p \le 2n$, and 0 otherwise. In this case, $\chi(M) = n + 1$.

COROLLARY: $\pi_1(M) = 0$ if Hol(M) = Sp(n), or Hol(M) = SU(2n). If Hol(M) = SU(2n+1), $\pi_1(M)$ is finite.

REMINDER: Curvature of a holomorphic line bundle

REMARK: If *B* is a line bundle, End *B* is trivial, and the curvature Θ_B of *B* is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The cohomology class $c_1(B) := \frac{\sqrt{-1}}{2\pi} [\Theta_B] \in H^2(M)$ is called **the real first Chern class** of a line bundle *B*.

An exercise: Check that $c_1(B)$ is independent from a choice of ∇ .

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let *B* be a holomorphic Hermitian line bundle, and *b* its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b = \eta \otimes b$. Then $d|b|^2 = \operatorname{Re} g(\nabla^{1,0}b, b) = \operatorname{Re} \eta |b|^2$. This gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$.

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial\overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g - two$ metrics on a holomorphic line bundle, Θ, Θ' their curvatures, one has $\Theta' - \Theta = -2\partial\overline{\partial}f$

$\partial \overline{\partial}$ -lemma

THEOREM: (" $\partial \overline{\partial}$ -lemma")

Let *M* be a compact Kaehler manifold, and $\eta \Lambda^{p,q}(M)$ an exact form. Then $\eta = \partial \overline{\partial} \alpha$, for some $\alpha \in \Lambda^{p-1,q-1}(M)$.

Proof. Step 1: Write $\eta = \sum_{\alpha} \eta_{\alpha}$, where $d\eta_{\alpha} = 0$ and $\Delta \eta_{\alpha} = \alpha \eta_{\alpha}$. This is possible because of Hodge theory.

Step 2: Since $[d, \Delta] = 0$, d preserves the eigenspaces of Δ . This implies $d\eta_{\alpha} = 0$. Then $\eta_{\alpha} = \frac{1}{\alpha} \Delta \eta_{\alpha} = \frac{1}{\alpha} dd^* \eta_{\alpha}$. It would suffice to prove that each η_{α} belongs to the image of $\partial \overline{\partial} = -\frac{\sqrt{-1}}{2} dd^c$, where $d^c = I dI^{-1}$.

Step 3: We have $d^* = -[\Lambda, d^c$ (Kähler identities). Also, $d^c \eta_{\alpha} = (\sqrt{-1})^{q-p} I d\eta_{\alpha} = 0$, hence $d^*(\eta_{\alpha}) = d^c \Lambda \eta_{\alpha}$. Using Step 2, this implies

$$\eta_{\alpha} = \frac{1}{\alpha} dd^* \eta_{\alpha} = \frac{1}{\alpha} dd^c \wedge \eta_{\alpha}.$$

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler *n*-fold, and Ω a non-degenerate section of K(M), Then $|\Omega|^2 = \frac{\Omega \wedge \overline{\Omega}}{\omega^n}$. If ω_1 is a new Kaehler metric on (M, I), h, h_1 the associated metrics on K(M), then $\frac{h}{h_1} = \frac{\omega_1^n}{\omega^n}$.

REMARK: For two metrics ω_1, ω in the same Kähler class, one has $\omega_1 - \omega = dd^c \varphi$, for some function φ (dd^c -lemma).

COROLLARY: A metric $\omega_1 = \omega + \partial \overline{\partial} \varphi$ is Ricci-flat if and only if $(\omega + dd^c \varphi)^n = \omega^n e^f$, where $-2\partial \overline{\partial} f = \Theta_{K,\omega}$ (such f exists by $\partial \overline{\partial}$ -lemma).

Proof. Step 1: For such f, φ , one has $\log \frac{h}{h_1} = -\log e^f = -f$. As shown above, the corresponding curvatures are related as $\Theta_{K,\omega_1} - \Theta_{K,\omega} = -2\partial \overline{\partial} \log(h/h_1)$. This gives

$$\Theta_{K,\omega_1} = \Theta_{K,\omega} + -2\partial\overline{\partial}\log(h/h_1) = \Theta_{K,\omega} - 2\partial\overline{\partial}f.$$

Proof. Step 2: Therefore, ω_1 is Ricci-flat if and only if $\Theta_{K,\omega} - 2\partial \overline{\partial} f$.

To find a Ricci-flat metric it remains to solve an equation $(\omega + dd^c \varphi)^n = \omega^n e^f$ for a given f.

The complex Monge-Ampère equation

To find a Ricci-flat metric it remains to solve an equation $(\omega + dd^c \varphi)^n = \omega^n e^f$ for a given f.

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler *n*-manifold, and *f* any smooth function. Then there exists a unique up to a constant function φ such that $(\omega + \sqrt{-1}\partial\overline{\partial}\varphi)^n = Ae^f\omega^n$, where *A* is a positive constant obtained from the formula $\int_M Ae^f\omega^n = \int_M \omega^n$.

DEFINITION:

$$(\omega + \sqrt{-1}\,\partial\overline{\partial}\varphi)^n = Ae^f \omega^n,$$

is called the Monge-Ampere equation.

M. Verbitsky

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) **A complex Monge-Ampere equation has at most one solution,** up to a constant.

Proof. Step 1: Let ω_1, ω_2 be solutions of Monge-Ampere equation. Then $\omega_1^n = \omega_2^n$. By construction, one has $\omega_2 = \omega_1 + \sqrt{-1} \partial \overline{\partial} \psi$. We need to show $\psi = const$.

Step 2: $\omega_2 = \omega_1 + \sqrt{-1} \, \partial \overline{\partial} \psi$ gives

$$0 = (\omega_1 + \sqrt{-1} \,\partial \overline{\partial} \psi)^n - \omega_1^n = \sqrt{-1} \,\partial \overline{\partial} \psi \wedge \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}.$$

Step 3: Let $P := \sum_{i=0}^{n-1} \omega_1^i \wedge \omega_2^{n-1-i}$. This is a positive (n-1, n-1)-form. There exists a Hermitian form ω_3 on M such that $\omega_3^{n-1} = P$.

Step 4: Since $\sqrt{-1} \partial \overline{\partial} \psi \wedge P = 0$, this gives $\psi \partial \overline{\partial} \psi \wedge P = 0$. Stokes' formula implies

$$0 = \int_{M} \psi \wedge \partial \overline{\partial} \psi \wedge P = -\int_{M} \partial \psi \wedge \overline{\partial} \psi \wedge P = -\int_{M} |\partial \psi|_{3}^{2} \omega_{3}^{n}.$$

where $|\cdot|_3$ is the metric associated to ω_3 . Therefore $\overline{\partial}\psi = 0$.