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REMINDER: Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* = @,z V*.

REMARK: If V* is graded, the endomorphisms space End(V*) = @,c7 End*(V*)
is also graded, with End!(V*) = @®;cz Hom(VJ, ViTJ)

DEFINITION: A graded algebra(or ‘‘graded associative algebra”) is an as-
sociative algebra A* = @,z A’, with the product compatible with the grading:
At AT C AV

REMARK: A bilinear map of graded paces which satisfies A*- A7 ¢ A7 is
called graded, or compatible with grading.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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REMINDER: Supercommutator

DEFINITION: A supercommutator of pure o~perators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)%{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c, a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{:,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + (—=1)2{d, {L,d}} = 2{{L,d},d}. m
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REMINDER: Hodge *x operator

Let V be a vector space. A metric ¢ on V induces a natural metric
on each of its tensor spaces: g(z]1 ® T2 ® ... ® T, 2] ® 5 Q ... ® x)) =
g(z1,77)g(x2, 25)...9(x), 2.).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(a,B) == [y 9(a, B) Vol

Another non-degenerate form is provided by the Poincare pairing:.
o, B— [jyaNp.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge x
operator x : A*M — A" "kM by the following relation: g(a, 8) = [y a A *8.

REMARK: The Hodge x operator always exists. It is defined explicitly in
an orthonormal basis &1, ..., &n € AL M:

#(Eig NEia N NE ) = (1), NEL Ao NE
where §;,,&5,---,&5,_, 1S @ complementary set of vectors to &;,,&,, .-, §;,, and
s the signature of a permutation (i1, ..., %5, 51y s Jr—k) -

REMARK: 2|\, 1y = (=1DFO=R1d 1y
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REMINDER: Supersymmetry in Kahler geometry

Let (M,I,g) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d" ;= xdx, A = {d,d*}, because it is Riemannian.
1. L(a) (= wA«
2. N(a) := xL x «. It is easily seen that A = L*.

3. The Weil operator W‘/\p,q(M) =+v-1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence
a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz’' sl(2)-action.
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REMINDER: Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)' W L= g(‘]a)’ WK -— g(Ka)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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REMINDER: Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
Q:=wj+ v—1wg is a holomorphic symplectic form on (M, ).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: A hyperkahler manifold M is called simple if Hl(M) = 0,
H29(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

THEOREM: A simple hyperkahler manifold is always simply connected.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.
EXAMPLE: An even-dimensional complex torus.
EXAMPLE: A non-compact example: T*CP"™ (Calabi).
REMARK: T*CP! is a resolution of a singularity C2/+1.

EXAMPLE: Take a 2-dimensional complex torus 7', then the singular locus
of T/+1 is of form (C2/4+1) x T. Its resolution T/+1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym? T, with a natural action of T, and
let TI2] be a blow-up of a singular divisor. Then T2l is naturally isomorphic
to the Kummer surface 7' /+1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.
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Hilbert schemes

DEFINITION: A Hilbert scheme MM of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3 is hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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Supersymmetry in hyperkahler geometry

Let (M,I,J,K,g) be a hyperkaehler manifold, w;, wj, wg its Kaehler forms.
On A*(M), the following operators are defined.

0. d, d*, A, because it is Riemannian.
1. LI(OA) = wr N\«
2. Ni(a) ;= *Ly*xa. It is easily seen that A = L7.

3. Three Weil operators WI‘Ap,q(M,I) =+—-1(p—q), WJ|/\p,q(M’J) =V—-1(p—q),
WK‘AP,Q(M,K) =v-1( -9

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on A*(M). Moreover, the Laplacian A is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ,LK,/\J and /\K'

REMARK: The twisted de Rham differentials dy,d s, dy, associated to I, J, K
also belong to a: dj = [W],d], dJ = [Wj,d], di = [WK,d]
10
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Supersymmetry and the Hodge decomposition
REMARK: 1. [L;,N\j] =Wk, [Lj,Ng] =Wy, [Li,Ag] = -W}.
2. The even part of a is isomorphic to sp(1,1,H) ®R - A.

3. The odd part (d,d;,dy,dg,d,*d},d%,dy) generates the 9-dimensional
odd Heisenberg algebra, with the only non-trivial supercommutators being

{d,d*} = {d;, dj} = {dy, d}} = {dg, dj} = A

4. The action of aecpven On a,yq IS the fundamental representation of
sp(1,1,H) in H?, with the quaternionic Hermitian metric on a,y; provided
by the anticommutator.

REMARK: The weight decomposition of the sp(1,1,H) = so(1,4)-action on
H*(M) coincides with the Hodge decomposition.
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Twistor space

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S2 = {L ;= al +bJ +cK, a?24+b24+c%2 =1}
They are usually non-algebraic. Indeed, if M is compact, for generic a,b, c,
(M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure I, : TrmM — Ty M on
M induced by J & S2 c H. Let I ; denote the complex structure on S2 = cp?l.

The operator Ity = Im @ Iy : T TW(M) — T Tw(M) satisfies I, —Id. It
defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H", Tw(M) & cp2n+1\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
12
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SU(2)-action on the cohomology and its applications

OBSERVATION: From the supersymmetry result, we obtain SU(2)-action
on cohomology, containing the U(1)-action from the induced complex struc-
tures.

DEFINITION: Trianalytic subvarieties are closed subsets which are com-
plex analytic with respect to I, J, K.

REMARK: Let [Z] be a fundamental class of a complex subvariety Z on a
Kahler manifold. Then Z is (1,1)-invariant.

COROLLARY: A fundamental class of a trianalytic subvariety is SU(2)-
invariant.

THEOREM: Let M be a hyperkahler manifold. Then there exists a count-
able subset S ¢ CP!, such that for any induced complex structure L € CP1\S,
all compact complex subvarieties of (M, L) are trianalytic.

Its proof is based on Wirtinger’s inequality.
13
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Wirtinger’s inequality

PROPOSITION: (Wirtinger’s inequality)

Let V C W be a real 2d-dimensional subspace in a complex Hermitian vector
space (W, I,g), and w its Hermitian form. Then Vol,V > _2-w’;,, and the
equality is reached only if V is a complex subspace.

1
2d !

COROLLARY: Let (M,I,w,g) be a Kahler manifold, and Z C M its real
subvariety of dimension 2d. Then [, Vol, > Q%d!fzwd, and the equality is
reached only if Z is a complex subvariety.

REMARK: Notice that wad is a (co)homology invariant of Z, and stays

constant if we deform Z. Therefore, complex subvarieties minimize the
Riemannian volume in its deformation class.
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Wwirtinger’s inequality for hyperkahler manifolds

DEFINITION: Let (M,I,J,K,g) be a hyperkahler manifold, and Z C M a
real 2d-dimensional subvariety. Given an induced complex structure L = al +
bJ + cK, define the degree deg;(Z) := Qdid!fzwﬁ, where wy (z,y) = g(z, Ly),
which gives w;, = awy + bwj + cwi.

Proposition 1: Let Z C (M, L) be a complex analytic subvariety of (M, L).
(a) Then deg;(Z) has maximum at L. (b) Moreover, this maximum is
absolute and strict, unless deg; (Z) is constant as a function of L. (¢) In
the latter case, Z is trianalytic.

Proof. Step 1: By Wirtinger's inequality, Voly Z > deg;(Z), and the equality
is reached if and only if Z is complex analytic in (M, L). This proves (a).

Step 2: If the maximum is not strict, there are two quaternions L and L'
such that Z is complex analytic with respect to L and L’. This means that
TZ is preserved by the algebra of quaternions generated by L and [/,
hence Z is trianalytic, and deg;(Z) constant. This proves (b) and (c). m
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Trianalytic subvarieties in generic induced complex structures

THEOREM: Let M be a hyperkahler manifold. Then there exists a count-
able subset S ¢ CP!, such that for any induced complex structure L € CP1\S,
all compact complex subvarieties of (M, L) are trianalytic.

Proof. Step 1: Let R C H?(M,Z) be the set of all integer cohomology
classes [Z], for which the function deg;([Z]) = Jiz] w% is not constant, and S
the set of all strict maxima of the function deg; ([Z]) for all [Z] € R. Then
S is countable. Indeed, deg;([Z]) is a polynomial function.

Step 2: Now, let L € CPl\S. For all complex subvarieties Z C (M, L),
deg; ([Z]) cannot have strict maximum in L. By Proposition 1 (c¢), this
implies that Z is trianalytic. =

COROLLARY: For M compact and hyperkahler, and L & cpl generic, the
manifold (M, L) has no complex divisors. In particular, it is non-algebraic
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