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REMINDER: Graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕
i∈Z Endi(V ∗)

is also graded, with Endi(V ∗) =
⊕
j∈Z Hom(V j, V i+j)

DEFINITION: A graded algebra(or “graded associative algebra”) is an as-

sociative algebra A∗ =
⊕
i∈ZA

i, with the product compatible with the grading:

Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is

called graded, or compatible with grading.

DEFINITION: An operator on a graded vector space is called even (odd)

if it shifts the grading by even (odd) number. The parity ã of an operator a

is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even

or odd.
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REMINDER: Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector

space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative

(or “supercommutative”) if its supercommutator vanishes.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector

space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which

is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super

Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector

space, with supercommutator as above. Then End(A∗), {·, ·} is a graded

Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =

0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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REMINDER: Hodge ∗ operator

Let V be a vector space. A metric g on V induces a natural metric
on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗ x′2 ⊗ ... ⊗ x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β) VolM

Another non-degenerate form is provided by the Poincare pairing:
α, β −→

∫
M α ∧ β.

DEFINITION: Let M be a Riemannian n-manifold. Define the Hodge ∗
operator ∗ : ΛkM −→ Λn−kM by the following relation: g(α, β) =

∫
M α ∧ ∗β.

REMARK: The Hodge ∗ operator always exists. It is defined explicitly in
an orthonormal basis ξ1, ..., ξn ∈ Λ1M :

∗(ξi1 ∧ ξi2 ∧ ... ∧ ξik) = (−1)sξj1 ∧ ξj2 ∧ ... ∧ ξjn−k,
where ξj1, ξj2, ..., ξjn−k is a complementary set of vectors to ξi1, ξi2, ..., ξik, and
s the signature of a permutation (i1, ..., ik, j1, ..., jn−k).

REMARK: ∗2
∣∣∣Λk(M) = (−1)k(n−k) IdΛk(M)
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REMINDER: Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗ := ∗d∗, ∆ := {d, d∗}, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-

sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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REMINDER: Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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REMINDER: Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: A hyperkähler manifold M is called simple if H1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

THEOREM: A simple hyperkähler manifold is always simply connected.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and
let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic
to the Kummer surface ˜T/±1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkähler. Then M is either
a torus or a K3 surface.
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Hilbert schemes

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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Supersymmetry in hyperkähler geometry

Let (M, I, J,K, g) be a hyperkaehler manifold, ωI, ωJ, ωK its Kaehler forms.
On Λ∗(M), the following operators are defined.

0. d, d∗, ∆, because it is Riemannian.

1. LI(α) := ωI ∧ α

2. ΛI(α) := ∗LI ∗ α. It is easily seen that ΛI = L∗J.

3. Three Weil operators WI

∣∣∣Λp,q(M,I) =
√
−1(p−q), WJ

∣∣∣Λp,q(M,J) =
√
−1(p−q),

WK

∣∣∣Λp,q(M,K) =
√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (11|8), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a,
hence a also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra su(2) of unitary quater-
nions. This means that the quaternionic action belongs to a. In particular,
LJ , LK,ΛJ and ΛK.

REMARK: The twisted de Rham differentials dI , dJ , dK, associated to I, J,K
also belong to a: dI = [WI , d], dJ = [WJ , d], dK = [WK, d]
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Supersymmetry and the Hodge decomposition

REMARK: 1. [LI ,ΛJ] = WK, [LJ ,ΛK] = WI, [LI ,ΛK] = −WJ.

2. The even part of a is isomorphic to sp(1,1,H)⊕ R ·∆.

3. The odd part 〈d, dI , dJ , dK, d,∗ d∗I , d
∗
J , d
∗
K〉 generates the 9-dimensional

odd Heisenberg algebra, with the only non-trivial supercommutators being

{d, d∗} = {dI , d∗I} = {dJ , d∗J} = {dK, d∗K} = ∆

4. The action of aeven on aodd is the fundamental representation of

sp(1,1,H) in H2, with the quaternionic Hermitian metric on aodd provided

by the anticommutator.

REMARK: The weight decomposition of the sp(1,1,H) = so(1,4)-action on

H∗(M) coincides with the Hodge decomposition.
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Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I=
Tw − Id. It

defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, Tw(M) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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SU(2)-action on the cohomology and its applications

OBSERVATION: From the supersymmetry result, we obtain SU(2)-action

on cohomology, containing the U(1)-action from the induced complex struc-

tures.

DEFINITION: Trianalytic subvarieties are closed subsets which are com-

plex analytic with respect to I, J, K.

REMARK: Let [Z] be a fundamental class of a complex subvariety Z on a

Kähler manifold. Then Z is (1,1)-invariant.

COROLLARY: A fundamental class of a trianalytic subvariety is SU(2)-

invariant.

THEOREM: Let M be a hyperkähler manifold. Then there exists a count-

able subset S ⊂ CP1, such that for any induced complex structure L ∈ CP1\S,

all compact complex subvarieties of (M,L) are trianalytic.

Its proof is based on Wirtinger’s inequality.
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Wirtinger’s inequality

PROPOSITION: (Wirtinger’s inequality)

Let V ⊂W be a real 2d-dimensional subspace in a complex Hermitian vector

space (W, I, g), and ω its Hermitian form. Then Volg V > 1
2dd!

ωd|V , and the

equality is reached only if V is a complex subspace.

COROLLARY: Let (M, I, ω, g) be a Kähler manifold, and Z ⊂ M its real

subvariety of dimension 2d. Then
∫
Z VolZ > 1

2dd!

∫
Z ω

d, and the equality is

reached only if Z is a complex subvariety.

REMARK: Notice that
∫
Z ω

d is a (co)homology invariant of Z, and stays

constant if we deform Z. Therefore, complex subvarieties minimize the

Riemannian volume in its deformation class.
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Wirtinger’s inequality for hyperkähler manifolds

DEFINITION: Let (M, I, J,K, g) be a hyperkähler manifold, and Z ⊂ M a

real 2d-dimensional subvariety. Given an induced complex structure L = aI +

bJ + cK, define the degree degL(Z) := 1
2dd!

∫
Z ω

d
L, where ωL(x, y) = g(x, Ly),

which gives ωL = aωI + bωJ + cωK.

Proposition 1: Let Z ⊂ (M,L) be a complex analytic subvariety of (M,L).

(a) Then degL(Z) has maximum at L. (b) Moreover, this maximum is

absolute and strict, unless degL(Z) is constant as a function of L. (c) In

the latter case, Z is trianalytic.

Proof. Step 1: By Wirtinger’s inequality, Volg Z > degL(Z), and the equality

is reached if and only if Z is complex analytic in (M,L). This proves (a).

Step 2: If the maximum is not strict, there are two quaternions L and L′

such that Z is complex analytic with respect to L and L′. This means that

TZ is preserved by the algebra of quaternions generated by L and L′,
hence Z is trianalytic, and degL(Z) constant. This proves (b) and (c).
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Trianalytic subvarieties in generic induced complex structures

THEOREM: Let M be a hyperkähler manifold. Then there exists a count-

able subset S ⊂ CP1, such that for any induced complex structure L ∈ CP1\S,

all compact complex subvarieties of (M,L) are trianalytic.

Proof. Step 1: Let R ⊂ H2(M,Z) be the set of all integer cohomology

classes [Z], for which the function degL([Z]) =
∫
[Z] ω

d
L is not constant, and S

the set of all strict maxima of the function degL([Z]) for all [Z] ∈ R. Then

S is countable. Indeed, degL([Z]) is a polynomial function.

Step 2: Now, let L ∈ CP1\S. For all complex subvarieties Z ⊂ (M,L),

degL([Z]) cannot have strict maximum in L. By Proposition 1 (c), this

implies that Z is trianalytic.

COROLLARY: For M compact and hyperkähler, and L ∈ CP1 generic, the

manifold (M,L) has no complex divisors. In particular, it is non-algebraic
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