Kähler geometry

lecture 7

Misha Verbitsky

University of Science and Technology China, Hefei

July 19, 2012

REMINDER: Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphisms space $End(V^*) = \bigoplus_{i \in \mathbb{Z}} End^i(V^*)$ is also graded, with $End^i(V^*) = \bigoplus_{j \in \mathbb{Z}} Hom(V^j, V^{i+j})$

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^i \cdot A^j \subset A^{i+j}$ is called **graded**, or **compatible with grading**.

DEFINITION: An operator on a graded vector space is called **even** (odd) if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

REMINDER: Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot, \cdot\}$: $\mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a, b\} = -(-1)^{\tilde{a}\tilde{b}}\{b, a\}$ and satisfies **the super Jacobi identity** $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*)$, $\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\} = 0$, and L an even or odd element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}} \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

REMINDER: Hodge * operator

Let V be a vector space. A metric g on V induces a natural metric on each of its tensor spaces: $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x'_1 \otimes x'_2 \otimes ... \otimes x'_k) =$ $g(x_1, x'_1)g(x_2, x'_2)...g(x_k, x'_k).$

This gives a natural positive definite scalar product on differential forms over a Riemannian manifold (M,g): $g(\alpha,\beta) := \int_M g(\alpha,\beta) \operatorname{Vol}_M$

Another non-degenerate form is provided by the **Poincare pairing**: $\alpha, \beta \longrightarrow \int_M \alpha \wedge \beta$.

DEFINITION: Let M be a Riemannian *n*-manifold. Define the Hodge *operator $*: \Lambda^k M \longrightarrow \Lambda^{n-k} M$ by the following relation: $g(\alpha, \beta) = \int_M \alpha \wedge *\beta$.

REMARK: The Hodge * operator always exists. It is defined explicitly in an orthonormal basis $\xi_1, ..., \xi_n \in \Lambda^1 M$:

$$*(\xi_{i_1} \wedge \xi_{i_2} \wedge \ldots \wedge \xi_{i_k}) = (-1)^s \xi_{j_1} \wedge \xi_{j_2} \wedge \ldots \wedge \xi_{j_{n-k}},$$

where $\xi_{j_1}, \xi_{j_2}, ..., \xi_{j_{n-k}}$ is a complementary set of vectors to $\xi_{i_1}, \xi_{i_2}, ..., \xi_{i_k}$, and s the signature of a permutation $(i_1, ..., i_k, j_1, ..., j_{n-k})$.

REMARK: $*^2|_{\Lambda^k(M)} = (-1)^{k(n-k)} \operatorname{Id}_{\Lambda^k(M)}$

REMINDER: Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On $\Lambda^*(M)$, the following operators are defined.

0. $d, d^* := *d*, \Delta := \{d, d^*\}$, because it is Riemannian.

1. $L(\alpha) := \omega \wedge \alpha$

- 2. $\Lambda(\alpha) := *L * \alpha$. It is easily seen that $\Lambda = L^*$.
- 3. The Weil operator $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (5|4), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and the Lefschetz' $\mathfrak{sl}(2)$ -action.

REMINDER: Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

REMINDER: Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: A hyperkähler manifold M is called simple if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

THEOREM: A simple hyperkähler manifold is always simply connected.

EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^* \mathbb{C}P^n$ (Calabi).

REMARK: $T^* \mathbb{C}P^1$ is a resolution of a singularity $\mathbb{C}^2/\pm 1$.

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A complex surface is called **K3** surface if it a deformation of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Fujiki, Beauville) **A Hilbert scheme of a hyperkähler surface is hyperkähler.**

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the three series:** tori, Hilbert schemes of K3, and generalized Kummer.

Supersymmetry in hyperkähler geometry

Let (M, I, J, K, g) be a hyperkaehler manifold, ω_I , ω_J , ω_K its Kaehler forms. On $\Lambda^*(M)$, the following operators are defined.

0. d, d^* , Δ , because it is Riemannian.

1. $L_I(\alpha) := \omega_I \wedge \alpha$

2. $\Lambda_I(\alpha) := *L_I * \alpha$. It is easily seen that $\Lambda_I = L_J^*$.

3. Three Weil operators $W_I|_{\Lambda^{p,q}(M,I)} = \sqrt{-1}(p-q), W_J|_{\Lambda^{p,q}(M,J)} = \sqrt{-1}(p-q), W_K|_{\Lambda^{p,q}(M,K)} = \sqrt{-1}(p-q)$

THEOREM: These operators generate a Lie superalgebra \mathfrak{a} of dimension (11|8), acting on $\Lambda^*(M)$. Moreover, the Laplacian Δ is central in \mathfrak{a} , hence \mathfrak{a} also acts on the cohomology of M.

REMARK: The Weil operators form the Lie algebra $\mathfrak{su}(2)$ of unitary quaternions. This means that **the quaternionic action belongs to** \mathfrak{a} . In particular, L_J, L_K, Λ_J and Λ_K .

REMARK: The twisted de Rham differentials d_I, d_J, d_K , associated to I, J, K also belong to \mathfrak{a} : $d_I = [W_I, d]$, $d_J = [W_J, d]$, $d_K = [W_K, d]$

Supersymmetry and the Hodge decomposition

REMARK: 1. $[L_I, \Lambda_J] = W_K$, $[L_J, \Lambda_K] = W_I$, $[L_I, \Lambda_K] = -W_J$.

2. The even part of a is isomorphic to $\mathfrak{sp}(1,1,\mathbb{H}) \oplus \mathbb{R} \cdot \Delta$.

3. The odd part $\langle d, d_I, d_J, d_K, d, * d_I^*, d_J^*, d_K^* \rangle$ generates the 9-dimensional odd Heisenberg algebra, with the only non-trivial supercommutators being $\{d, d^*\} = \{d_I, d_I^*\} = \{d_J, d_J^*\} = \{d_K, d_K^*\} = \Delta$

4. The action of \mathfrak{a}_{even} on \mathfrak{a}_{odd} is the fundamental representation of $\mathfrak{sp}(1,1,\mathbb{H})$ in \mathbb{H}^2 , with the quaternionic Hermitian metric on \mathfrak{a}_{odd} provided by the anticommutator.

REMARK: The weight decomposition of the $\mathfrak{sp}(1, 1, \mathbb{H}) = \mathfrak{so}(1, 4)$ -action on $H^*(M)$ coincides with the Hodge decomposition.

Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{Tw}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I_{\mathsf{Tw}}^{=} - \mathsf{Id}$. It defines an almost complex structure on $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, Tw(M) never admits a Kähler structure.

SU(2)-action on the cohomology and its applications

OBSERVATION: From the supersymmetry result, we obtain SU(2)-action on cohomology, containing the U(1)-action from the induced complex structures.

DEFINITION: Trianalytic subvarieties are closed subsets which are complex analytic with respect to I, J, K.

REMARK: Let [Z] be a fundamental class of a complex subvariety Z on a Kähler manifold. Then Z is (1,1)-invariant.

COROLLARY: A fundamental class of a trianalytic subvariety is SU(2)-invariant.

THEOREM: Let M be a hyperkähler manifold. Then there exists a countable subset $S \subset \mathbb{C}P^1$, such that for any induced complex structure $L \in \mathbb{C}P^1 \setminus S$, **all compact complex subvarieties of** (M, L) **are trianalytic.**

Its proof is based on Wirtinger's inequality.

Wirtinger's inequality

PROPOSITION: (Wirtinger's inequality)

Let $V \subset W$ be a real 2*d*-dimensional subspace in a complex Hermitian vector space (W, I, g), and ω its Hermitian form. Then $\operatorname{Vol}_g V \ge \frac{1}{2^d d!} \omega^d |_V$, and the equality is reached only if V is a complex subspace.

COROLLARY: Let (M, I, ω, g) be a Kähler manifold, and $Z \subset M$ its real subvariety of dimension 2*d*. Then $\int_Z \operatorname{Vol}_Z \ge \frac{1}{2^d d!} \int_Z \omega^d$, and the equality is reached only if Z is a complex subvariety.

REMARK: Notice that $\int_Z \omega^d$ is a (co)homology invariant of Z, and stays constant if we deform Z. Therefore, **complex subvariaties minimize the Riemannian volume in its deformation class**.

Wirtinger's inequality for hyperkähler manifolds

DEFINITION: Let (M, I, J, K, g) be a hyperkähler manifold, and $Z \subset M$ a real 2*d*-dimensional subvariety. Given an induced complex structure L = aI + bJ + cK, define **the degree** $\deg_L(Z) := \frac{1}{2^d d!} \int_Z \omega_L^d$, where $\omega_L(x, y) = g(x, Ly)$, which gives $\omega_L = a\omega_I + b\omega_J + c\omega_K$.

Proposition 1: Let $Z \subset (M, L)$ be a complex analytic subvariety of (M, L). (a) Then deg_L(Z) has maximum at L. (b) Moreover, this maximum is absolute and strict, unless deg_L(Z) is constant as a function of L. (c) In the latter case, Z is trianalytic.

Proof. Step 1: By Wirtinger's inequality, $\operatorname{Vol}_g Z \ge \deg_L(Z)$, and the equality is reached if and only if Z is complex analytic in (M, L). This proves (a).

Step 2: If the maximum is not strict, there are two quaternions L and L' such that Z is complex analytic with respect to L and L'. This means that TZ is preserved by the algebra of quaternions generated by L and L', hence Z is trianalytic, and $\deg_L(Z)$ constant. This proves (b) and (c).

Trianalytic subvarieties in generic induced complex structures

THEOREM: Let M be a hyperkähler manifold. Then there exists a countable subset $S \subset \mathbb{C}P^1$, such that for any induced complex structure $L \in \mathbb{C}P^1 \setminus S$, **all compact complex subvarieties of** (M, L) **are trianalytic.**

Proof. Step 1: Let $R \subset H^2(M,\mathbb{Z})$ be the set of all integer cohomology classes [Z], for which the function $\deg_L([Z]) = \int_{[Z]} \omega_L^d$ is not constant, and S the set of all strict maxima of the function $\deg_L([Z])$ for all $[Z] \in R$. Then S is countable. Indeed, $\deg_L([Z])$ is a polynomial function.

Step 2: Now, let $L \in \mathbb{C}P^1 \setminus S$. For all complex subvarieties $Z \subset (M, L)$, $\deg_L([Z])$ cannot have strict maximum in L. By Proposition 1 (c), this implies that Z is trianalytic.

COROLLARY: For *M* compact and hyperkähler, and $L \in \mathbb{C}P^1$ generic, the manifold (M, L) has no complex divisors. In particular, it is non-algebraic