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Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with
a flat, torsion-free connection.

EXAMPLE: Let [T be a group acting on an open subset U C R" freely, prop-
erly discontinuously, by affine transforms. Then U/l is affine.

REMARK: A simply connected, flat affine manifold M admits a map
M — R™ which is compatible with the flat affine structure.

DEFINITION: A flat affine manifold (M,V) is called special affine if it
admits a V-invariant volume form, or, equivalently, it its holonomy belongs
to SL(n,R). A flat affine manifold is complete if it is a quotient of R"™ by a
discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)
a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)
For any complete affine manifold R™/I", the group I is solvable.

CONJECTURE: Chern conjecture (1955)
The Euler class of a compact affine manifold vanishes (proven by Bruno
Klingler in 2017 for special affine manifolds).
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Hessian manifolds

DEFINITION: Let (M,V) be a flat affine manifold. Since V is torsion-free,
the tensor V2(f) is symmetric for any f € C®M. A Riemannian metric g
on M is called Hessian if locally ¢ = V2(f), for some f which is called the
potential of the metric.

EXERCISE: Prove that a metric ¢ on (M,V) is Hessian if and only if
V(g) is a symmetric 3-form.

EXERCISE: Prove that the complex
v. AN(M) @ Sym2T*M
' Sym3 T*M

00 V2 2 %
C*(M) — Sym<T*"M
is elliptic.
REMARK: Cohomology of this complex are called Hessian cohomology,

and the cohomology classes represented by Hessian metrics are called Hessian
classes.

REMARK: This geometry is in many ways similar to Kahler geometry.
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Calabi-Yau theorem

DEFINITION: A cohomology class of a Kahler form in H2(M) is called
the Kahler class of a Kahler manifold.

THEOREM: (Calabi-Yau theorem) Let (M, ) be a compact complex man-
ifold. A Kahler form w is uniquely, up to a constant multiplier, deter-
mined by its Kahler class and its volume form.

This theorem has a Hessian counterpart.

THEOREM: (S.-Y. Cheng, S.-T. Yau, 1982)

Let (M,V) be a compact special affine manifold. A Hessian metric on M
IS uniquely, up to a constant multiplier determined by its Hessian class
and its volume form.

COROLLARY: A compact special affine Hessian manifold is a finite quo-
tient of a torus.
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Special affine manifolds with integral monodromy

DEFINITION: Let (M,V) be an affine manifold, and w1 (M) — GL(T,M)
its monodromy representation. We say that M has integral monodromy if
there exists a lattice A C T, M preserved by the action of w1 (M).

PROPOSITION: If (M,V) is an oriented flat affine manifold with integral
monodromy, It is special affine.

Proof: Let GLT(n,R) denote the connected component. Then GL1(n,R) N
GL(n,Z) C SL(n,Z) because the determinant of any A € GL(n,Z) is inte-
gral and invertible, hence det A =4+1. m

THEOREM: Let M be a compact, special, Hessian flat affine manifold with
integral monodromy. Then a Hessian metric on M is uniquely, up to
a constant multiplier, determined by its Hessian class and its volume
form.

THEOREM: Let M be a compact, special, Hessian flat affine manifold with
integral monodromy. Then M is a finite quotient of a torus.

REMARK: In this generality, the result can be deduced from the Calabi-
Yau theorem. Without the integral monodromy assumption, it is also true,
but one needs to reproduce the steps of the proof of Calabi-Yau the-
orem.
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Ehresmann connections

REMARK: Let (B,V) be a vector bundle with connection on a manifold M.
Then the total space Tot(B) admits a direct sum decomposition T Tot(B) =
Tver TOt(B) ®Thor TOt(B), where Tyer Tot(B) is the fiberwise tangent space
of all vectors tangent to the fibers of the projection TB — M, and Ty, TOt(B),
called the horizontal tangent space is generated by the tangent vectors to
the solutions of Vvl(t)b(t) = 0, where v : [0,1] — M is a path, and b(¢) a
section of Bj,.

CLAIM: A connection V iIs uniquely determined by the decomposition
T Tot(B) = Tver Tot(B) @ Thor TOt(B).

REMARK: A decomposition T Tot(B) = Tyer TOt(B) @ Thor TOt(B) is called
an Ehresmann connection.
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Ehresmann connections and an almost complex structure

CLAIM: Let TTot(TM) = Tyer TOt(TM) & Thor TOt(T'M) be am Ehresmann
connection on TM. Then, for each v € Tot(M), one has Tyer Tot(M )|y =
TW(U)M and ThOI’ TOt(M)h; = TW(U)M.

PROPOSITION: Let TTot(TM) = Tver TOt(TM) & Thor TOt(T'M) be am
Ehresmann connection on T'M. Define an almost complex structure I €
End(Tot(TM)) by setting I(a,b) = (b, —a), where (a,b) € Tyer TOt(M)|, =
Tr(yM & Tr(,y- Then I is integrable if the corresponding connection on
TM is flat and torsion-free.

Proof: If M is flat and torsion-free, it can be identified with R"™ in such a way
that the coordinate vector fields are parallel, and then I maps the parallel
coordinate vector fields to parallel coordinate vector fields, hence TotT M
admits a coordinate system such that 7 is constant. m
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Complex double manifold

CLAIM: Let (M,V) be a flat affine manifold with integral monodromy, and
Ny € T:M be the integral lattice preserved by the monodromy. Denote by
Ay C Tot(T M) the manifold obtained by taking all v € Az and transporting
them to all Ty M using the parallel transport along V. Then Ay; C Tot(T M)
is @ smooth submanifold in T'M, and Ay = ApyNTyM is a sublattice in TyM. =

DEFINITION: The quotient DM := Tot(TM)/N\,; is called the complex
double of M. The fibers Ty,M /Ay of the natural projection = : TM/Nyf — M
are compact tori.

REMARK: Since the action of Ay; on TotT' M commutes with the complex
structure on TotT M, the complex double of M is a complex manifold,
compact when M is compact.
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The Kahler potential and the Hessian

DEFINITION: A (1,1)-form w on an almost complex manifold M is called
a Hermitian form if w(lx,xz) > 0 for each non-zero tangent vector x € T,, M.
The corresponding Riemannian form d(x,z) := w({z,z) is called a Hermitian
metric.

DEFINITION: Let (M, ) be a complex manifold, and d¢ := I~YdI : AY(M) — ANTL1(M)
be the twisted differential. The map f— dd°f taking a function f to

dd¢f € ALL(M) is called the pluri-Laplacian. A Hermitian form which can

be locally represented as dd¢f is called Kahler and f its Kahler potential.

In this situation f is called strictly plurisubharmonic.

REMARK: Let V be a flat, torsion-free connection on M, and let Alt :
T*MQT*M — N2(M) be the antisymmetrizator. Then dd¢f = AIt(VI(df)) =
Alt(I @ Id(Hess(f)), where Hess(f) =V (df) € T*M ® T*M.

COROLLARY: Consider a flat affine manifold equipped with a flat connec-
tion preserving a complex structure I. Then dd°f(Iz,z) = 3(Hess(f)(z,z) +
Hess(f)(Ix,Ix). In particular, any convex function gives a Kahler poten-

tial.
O
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The Kahler metrics on Tot(T'M)

CLAIM 1: Let V be a flat, torsion-free connection on M, and Tot(TM) =
M the tangent space of M equipped with the standard complex structure.
Then f is strictly convex if and only if «*f is strictly plurisubharmonic.

Proof: dd°f(Ix,z) = 3(Hess(f)(x,z) + Hess(f)(Iz,Iz). If x is horizontal,
I(x) is vertical and vice versa, hence it suffices to check the positivity only
when z is horizontal. In this case Hess(f)(Ixz,Ix) is identically zero, hence
dd¢f(Ix,x) > 0 if and only if Hess(f)(z,z) > 0. =
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The Kahler metrics on Tot(TM) (2)

PROPOSITION: Consider a Hessian metric ¢ on M, and let n*g be its
pullback to Tot(T'M). Then n*g+ I(n*g) is a Kahler metric on Tot(TM).
Conversely, If h is a Kahler metric on Tot(T'M) which is invariant under
the parallel translation along the fibers of m can be obtained this way.

Proof. Step 1: The first statement immediately follows from Claim 1. To
prove the converse, we use the complex double. Since the statement is local
in M, we can always assume that the monodromy of M is trivial, hence the
complex double exists. Consider z,y € T,, M, and let g(x,y) := h(Zhors Yhor)
where xnhor, Ynor are horizontal lifts of x,y. Then h(a,b) = g(a,b) + g({a, Ib)
because h is I-invariant. It remains to show that g is Hessian.

Step 2: To show that ¢ is Hessian, consider a Kahler potential for h. Lo-
cally, it is well defined. Let U C M be a sufficiently small open set. The
obstruction to the existence of the Kihler potential for h is H1 (DU, ker dd°) =
H1(DU,Re ®): the sheaf ker dd® coincides with the shea of real parts of holo-
morphic functions. This group vanishes, because w—l(U) is Stein when U C R"
is convex, hence Hl(#*r, kerdd®) = 0, and h admits a global Kihler potential
@ on DU. Averaging ¢ with the torus action, we obtain another Kahler poten-
tial g, which is constant on the fibers of w. This implies that n*pq is strictly
plurisubharmonic, hence g is convex by Claim 1, and h = n*g + I(x*g), also
by Claim 1. =
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Complex Monge-Ampere Equation

DEFINITION: Let ¢ be a function on C", and ddp its complex Hessian,
dd®p = Hess(p) + I(Hess(yp)). It is a Hermitian form.

DEFINITION: Let (M,g) be a Kaehler n-manifold. The complex Monge-
Ampere equation is

(w =+ ddp)" = el W™

THEOREM: (Calabi-Yau) On a compact Kahler manifold, the complex
Monge-Ampere equation has a unique solution, for any smooth function
f subject to constraint [, e/ Volg = [, Voly.

Let wqi,wr = wq+dd“ be two solutions of the same Monge-Ampére equations
on a complex manifold (not necessarily compact) w} = wj3. Then ¢ €

ker D, where D is the differential operator written as D(u) = ddc#, and

. wz
—1—1

P = Z?:_é w’i A ws
CLAIM: The operator D is elliptic.

COROLLARY: By E. Hopf maximum principle, ¢» cannot have a local
maximum, unless it is constant.
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The Kahler potential on a complex double is constant on its fibers

COROLLARY 1: Let M be a compact flat affine manifold, and w a Kahler
form obtained from a Hessian metric on its double DM -+ M. Then
any solution of the Monge-Ampére equation (w + dd¢p)" = e™ / fw™ is
constant on the fibers of the projection = . DM — M.

Proof: Let z,y € 7~ 1(m) be two points such that ¢(z) — ¢(y) is maximal
for all x, y and m, and denote by L the parallel shift of the torus which
maps y to x. The map L is well defined in a small neighbourhood U > m in
M (globally, it is not necessarily defined, unless it is monodromy invariant).
Then ¢ and L*p are two solutions of the same Monge-Ampere, which implies
that ¢ — L*p € ker D is maximal in x. This is impossible by the maximum
principle. =
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Cheng-Yau obtained from the complex Monge-Ampere on the double
Let det(uw) denote the Riemannian volume form of a Riemannian metric .

THEOREM: (a special case of Cheng-Yau theorem)

Let (M,qg,V) be a compact Hessian manifold with integral monodromy and
Vol a parallel volume form. Then for any smooth function f subject to
constraint [,,;e/ Vol = [, Vol, the equation det(g + Hess ) = ¢/ Vol has a
unique solution.

Proof: Consider the Hermitian form w on the double DM associated with g
as in Claim 1. Let V be the parallel volume form of DM. Then 7*(ef)V =
(w4 ddp)™ has a unique solution by Calabi-Yau theorem. By Corollary 1, ¢
is constant on the fibers of DM — M, which gives ¢ = n*pg. By Claim 1,
g + Hess g is a Hessian metric which has volume e Vol. m

COROLLARY: Let (M,qg,V) be a compact Hessian manifold with integral
monodromy and Vol a parallel volume form. Then there exists a Hessian
metric g such that detg = Vol. =
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Complete Hessian metrics with constant volume

THEOREM: Let M be a special Hessian manifold, Vol the constant volume
form, and g a Hessian metric on M such that Vol = det(g). Then the
universal covering of M is R”, and g is a constant Riemannian form.

Proof. Step 1: Let M be the universal covering of M. The parallel 1-forms
on M are closed, hence exact, 0, = dx;. These functions define an affine map
M i> R™ which is affine, called the development map. By a theorem of
Koszul, for any Hessian manifold, ¢ is injective, and its image is convex.

Step 2: Let k be the Hessian of the pullback of g on M C R™. The graph of
is an affine hypersphere, in the terminology of Blaschke, and a closed affine
hypersphere in R"T1 is a graph of a quadratic polynomial (Calabi-Pogorelov).

Step 3: To prove that the graph of s is complete, use completeness of the
pullback of g to M to obtain that [|x’|dt is infinite on any affine line in M. m

REMARK: In this situation, the metric g is constant, V(g) = 0. In particular,
V is the Levi-Civita connection.
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Bieberbach theorem for Hessian manifolds

COROLLARY: Any a compact special Hessian manifold with integral mon-
odromy is a finite quotient of a torus.

Proof. Step 1: Use the solution of the Monge-Ampére equation to find a
Hessian metric g with constant volume.

Step 2: Use Koszul and Calabi-Pogorelov (as above) to show that g is
constant, and the connection on M is the Levi-Civita connection.

Step 3: Bieberbach's solution of Hilbert 18 implies that all compact flat
Riemannian manifolds are finite quotient of a torus. =
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