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Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with
a flat, torsion-free connection.

EXAMPLE: Let Γ be a group acting on an open subset U ⊂ Rn freely, prop-
erly discontinuously, by affine transforms. Then U/Γ is affine.
REMARK: A simply connected, flat affine manifold M admits a map
M −→ Rn which is compatible with the flat affine structure.

DEFINITION: A flat affine manifold (M,∇) is called special affine if it
admits a ∇-invariant volume form, or, equivalently, it its holonomy belongs
to SL(n,R). A flat affine manifold is complete if it is a quotient of Rn by a
discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)
a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)
For any complete affine manifold Rn/Γ, the group Γ is solvable.

CONJECTURE: Chern conjecture (1955)
The Euler class of a compact affine manifold vanishes (proven by Bruno
Klingler in 2017 for special affine manifolds).
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Hessian manifolds

DEFINITION: Let (M,∇) be a flat affine manifold. Since ∇ is torsion-free,

the tensor ∇2(f) is symmetric for any f ∈ C∞M . A Riemannian metric g

on M is called Hessian if locally g = ∇2(f), for some f which is called the

potential of the metric.

EXERCISE: Prove that a metric g on (M,∇) is Hessian if and only if

∇(g) is a symmetric 3-form.

EXERCISE: Prove that the complex

C∞(M)
∇2
−→ Sym2 T ∗M ∇−→

Λ1(M)⊗ Sym2 T ∗M

Sym3 T ∗M

is elliptic.

REMARK: Cohomology of this complex are called Hessian cohomology,

and the cohomology classes represented by Hessian metrics are called Hessian

classes.

REMARK: This geometry is in many ways similar to Kähler geometry.
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Calabi-Yau theorem

DEFINITION: A cohomology class of a Kähler form in H2(M) is called

the Kähler class of a Kähler manifold.

THEOREM: (Calabi-Yau theorem) Let (M, I) be a compact complex man-

ifold. A Kähler form ω is uniquely, up to a constant multiplier, deter-

mined by its Kähler class and its volume form.

This theorem has a Hessian counterpart.

THEOREM: (S.-Y. Cheng, S.-T. Yau, 1982)

Let (M,∇) be a compact special affine manifold. A Hessian metric on M

is uniquely, up to a constant multiplier determined by its Hessian class

and its volume form.

COROLLARY: A compact special affine Hessian manifold is a finite quo-

tient of a torus.
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Special affine manifolds with integral monodromy

DEFINITION: Let (M,∇) be an affine manifold, and π1(M)−→GL(TxM)
its monodromy representation. We say that M has integral monodromy if
there exists a lattice Λ ⊂ TxM preserved by the action of π1(M).

PROPOSITION: If (M,∇) is an oriented flat affine manifold with integral
monodromy, it is special affine.
Proof: Let GL+(n,R) denote the connected component. Then GL+(n,R) ∩
GL(n,Z) ⊂ SL(n,Z) because the determinant of any A ∈ GL(n,Z) is inte-
gral and invertible, hence detA = ±1.

THEOREM: Let M be a compact, special, Hessian flat affine manifold with
integral monodromy. Then a Hessian metric on M is uniquely, up to
a constant multiplier, determined by its Hessian class and its volume
form.

THEOREM: Let M be a compact, special, Hessian flat affine manifold with
integral monodromy. Then M is a finite quotient of a torus.

REMARK: In this generality, the result can be deduced from the Calabi-
Yau theorem. Without the integral monodromy assumption, it is also true,
but one needs to reproduce the steps of the proof of Calabi-Yau the-
orem.
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Ehresmann connections

REMARK: Let (B,∇) be a vector bundle with connection on a manifold M .

Then the total space Tot(B) admits a direct sum decomposition T Tot(B) =

Tver Tot(B)⊕Thor Tot(B), where Tver Tot(B) is the fiberwise tangent space

of all vectors tangent to the fibers of the projection TB −→M , and Thor Tot(B),

called the horizontal tangent space is generated by the tangent vectors to

the solutions of ∇γ′(t)b(t) = 0, where γ : [0,1]−→M is a path, and b(t) a

section of B|γ .

CLAIM: A connection ∇ is uniquely determined by the decomposition

T Tot(B) = Tver Tot(B)⊕ Thor Tot(B).

REMARK: A decomposition T Tot(B) = Tver Tot(B)⊕ Thor Tot(B) is called

an Ehresmann connection.
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Ehresmann connections and an almost complex structure

CLAIM: Let T Tot(TM) = Tver Tot(TM) ⊕ Thor Tot(TM) be am Ehresmann

connection on TM . Then, for each v ∈ Tot(M), one has Tver Tot(M)|v =

Tπ(v)M and Thor Tot(M)|v = Tπ(v)M.

PROPOSITION: Let T Tot(TM) = Tver Tot(TM) ⊕ Thor Tot(TM) be am

Ehresmann connection on TM . Define an almost complex structure I ∈
End(Tot(TM)) by setting I(a, b) = (b,−a), where (a, b) ∈ Tver Tot(M)|v =

Tπ(v)M ⊕ Tπ(v). Then I is integrable if the corresponding connection on

TM is flat and torsion-free.

Proof: If M is flat and torsion-free, it can be identified with Rn in such a way

that the coordinate vector fields are parallel, and then I maps the parallel

coordinate vector fields to parallel coordinate vector fields, hence TotTM

admits a coordinate system such that I is constant.
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Complex double manifold

CLAIM: Let (M,∇) be a flat affine manifold with integral monodromy, and

Λx ∈ TxM be the integral lattice preserved by the monodromy. Denote by

ΛM ⊂ Tot(TM) the manifold obtained by taking all v ∈ Λx and transporting

them to all TyM using the parallel transport along ∇. Then ΛM ⊂ Tot(TM)

is a smooth submanifold in TM , and Λy = ΛM ∩TyM is a sublattice in TyM .

DEFINITION: The quotient DM := Tot(TM)/ΛM is called the complex

double of M . The fibers TyM/Λy of the natural projection π : TM/ΛM −→M

are compact tori.

REMARK: Since the action of ΛM on TotTM commutes with the complex

structure on TotTM , the complex double of M is a complex manifold,

compact when M is compact.
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The Kähler potential and the Hessian

DEFINITION: A (1,1)-form ω on an almost complex manifold M is called

a Hermitian form if ω(Ix, x) > 0 for each non-zero tangent vector x ∈ TmM .

The corresponding Riemannian form d(x, x) := ω(Ix, x) is called a Hermitian

metric.

DEFINITION: Let (M, I) be a complex manifold, and dc := I−1dI : Λi(M)−→ Λi+1(M)

be the twisted differential. The map f −→ ddcf taking a function f to

ddcf ∈ Λ1,1(M) is called the pluri-Laplacian. A Hermitian form which can

be locally represented as ddcf is called Kähler and f its Kähler potential.

In this situation f is called strictly plurisubharmonic.

REMARK: Let ∇ be a flat, torsion-free connection on M , and let Alt :

T ∗M⊗T ∗M −→ Λ2(M) be the antisymmetrizator. Then ddcf = Alt(∇I(df)) =

Alt(I ⊗ Id(Hess(f)), where Hess(f) = ∇(df) ∈ T ∗M ⊗ T ∗M .

COROLLARY: Consider a flat affine manifold equipped with a flat connec-

tion preserving a complex structure I. Then ddcf(Ix, x) = 1
2(Hess(f)(x, x) +

Hess(f)(Ix, Ix). In particular, any convex function gives a Kähler poten-

tial.
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The Kähler metrics on Tot(TM)

CLAIM 1: Let ∇ be a flat, torsion-free connection on M , and Tot(TM)
π−→

M the tangent space of M equipped with the standard complex structure.

Then f is strictly convex if and only if π∗f is strictly plurisubharmonic.

Proof: ddcf(Ix, x) = 1
2(Hess(f)(x, x) + Hess(f)(Ix, Ix). If x is horizontal,

I(x) is vertical and vice versa, hence it suffices to check the positivity only

when x is horizontal. In this case Hess(f)(Ix, Ix) is identically zero, hence

ddcf(Ix, x) > 0 if and only if Hess(f)(x, x) > 0.
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The Kähler metrics on Tot(TM) (2)

PROPOSITION: Consider a Hessian metric g on M , and let π∗g be its
pullback to Tot(TM). Then π∗g + I(π∗g) is a Kähler metric on Tot(TM).
Conversely, if h is a Kähler metric on Tot(TM) which is invariant under
the parallel translation along the fibers of π can be obtained this way.

Proof. Step 1: The first statement immediately follows from Claim 1. To
prove the converse, we use the complex double. Since the statement is local
in M , we can always assume that the monodromy of M is trivial, hence the
complex double exists. Consider x, y ∈ TmM , and let g(x, y) := h(xhor, yhor),
where xhor, yhor are horizontal lifts of x, y. Then h(a, b) = g(a, b) + g(Ia, Ib)
because h is I-invariant. It remains to show that g is Hessian.

Step 2: To show that g is Hessian, consider a Kähler potential for h. Lo-
cally, it is well defined. Let U ⊂ M be a sufficiently small open set. The
obstruction to the existence of the Kähler potential for h is H1(DU,ker ddc) =
H1(DU,ReO): the sheaf ker ddc coincides with the shea of real parts of holo-
morphic functions. This group vanishes, because π−1(U) is Stein when U ⊂ Rn
is convex, hence H1(π∗π,ker ddc) = 0, and h admits a global Kähler potential
ϕ on DU . Averaging ϕ with the torus action, we obtain another Kähler poten-
tial ϕ0, which is constant on the fibers of π. This implies that π∗ϕ0 is strictly
plurisubharmonic, hence ϕ0 is convex by Claim 1, and h = π∗g + I(π∗g), also
by Claim 1.
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Complex Monge-Ampère Equation

DEFINITION: Let ϕ be a function on Cn, and ddcϕ its complex Hessian,
ddcϕ := Hess(ϕ) + I(Hess(ϕ)). It is a Hermitian form.

DEFINITION: Let (M, g) be a Kaehler n-manifold. The complex Monge-
Ampere equation is

(ω + ddcϕ)n = efωn

THEOREM: (Calabi-Yau) On a compact Kähler manifold, the complex
Monge-Ampere equation has a unique solution, for any smooth function
f subject to constraint

∫
M ef Volg =

∫
M Volg.

Let ω1, ω2 = ω1 +ddcϕ be two solutions of the same Monge-Ampère equations
on a complex manifold (not necessarily compact) ωn1 = ωn2. Then ϕ ∈
kerD, where D is the differential operator written as D(u) = ddcu∧P

ωni
, and

P =
∑n−1
i=0 ω

i
1 ∧ ω

n−i−1
2 .

CLAIM: The operator D is elliptic.

COROLLARY: By E. Hopf maximum principle, ϕ cannot have a local
maximum, unless it is constant.
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The Kähler potential on a complex double is constant on its fibers

COROLLARY 1: Let M be a compact flat affine manifold, and ω a Kähler

form obtained from a Hessian metric on its double DM
π−→ M . Then

any solution of the Monge-Ampére equation (ω + ddcϕ)n = eπ
∗ffωn is

constant on the fibers of the projection π : DM −→M.

Proof: Let x, y ∈ π−1(m) be two points such that ϕ(x) − ϕ(y) is maximal

for all x, y and m, and denote by L the parallel shift of the torus which

maps y to x. The map L is well defined in a small neighbourhood U 3 m in

M (globally, it is not necessarily defined, unless it is monodromy invariant).

Then ϕ and L∗ϕ are two solutions of the same Monge-Ampere, which implies

that ϕ− L∗ϕ ∈ kerD is maximal in x. This is impossible by the maximum

principle.
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Cheng-Yau obtained from the complex Monge-Ampère on the double

Let det(u) denote the Riemannian volume form of a Riemannian metric u.

THEOREM: (a special case of Cheng-Yau theorem)

Let (M, g,∇) be a compact Hessian manifold with integral monodromy and

Vol a parallel volume form. Then for any smooth function f subject to

constraint
∫
M ef Vol =

∫
M Vol, the equation det(g + Hessϕ) = ef Vol has a

unique solution.

Proof: Consider the Hermitian form ω on the double DM associated with g

as in Claim 1. Let V be the parallel volume form of DM . Then π∗(ef)V =

(ω + ddcϕ)n has a unique solution by Calabi-Yau theorem. By Corollary 1, ϕ

is constant on the fibers of DM
π−→ M , which gives ϕ = π∗ϕ0. By Claim 1,

g + Hessϕ0 is a Hessian metric which has volume ef Vol.

COROLLARY: Let (M, g,∇) be a compact Hessian manifold with integral

monodromy and Vol a parallel volume form. Then there exists a Hessian

metric g such that det g = Vol.
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Complete Hessian metrics with constant volume

THEOREM: Let M be a special Hessian manifold, Vol the constant volume

form, and g a Hessian metric on M such that Vol = det(g). Then the

universal covering of M is Rn, and g is a constant Riemannian form.

Proof. Step 1: Let M̃ be the universal covering of M . The parallel 1-forms

on M̃ are closed, hence exact, θi = dxi. These functions define an affine map

M̃
δ−→ Rn which is affine, called the development map. By a theorem of

Koszul, for any Hessian manifold, δ is injective, and its image is convex.

Step 2: Let κ be the Hessian of the pullback of g on M̃ ⊂ Rn. The graph of κ

is an affine hypersphere, in the terminology of Blaschke, and a closed affine

hypersphere in Rn+1 is a graph of a quadratic polynomial (Calabi-Pogorelov).

Step 3: To prove that the graph of κ is complete, use completeness of the

pullback of g to M̃ to obtain that
∫
|κ′|dt is infinite on any affine line in M̃ .

REMARK: In this situation, the metric g is constant, ∇(g) = 0. In particular,

∇ is the Levi-Civita connection.
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Bieberbach theorem for Hessian manifolds

COROLLARY: Any a compact special Hessian manifold with integral mon-

odromy is a finite quotient of a torus.

Proof. Step 1: Use the solution of the Monge-Ampère equation to find a

Hessian metric g with constant volume.

Step 2: Use Koszul and Calabi-Pogorelov (as above) to show that g is

constant, and the connection on M is the Levi-Civita connection.

Step 3: Bieberbach’s solution of Hilbert 18 implies that all compact flat

Riemannian manifolds are finite quotient of a torus.
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