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Hölder continuity for potentials in hyperkähler
dynamics

Misha Verbitsky

Geometric structures on manifolds,

IMPA, 23.01.2025

Joint work in progress with Dimitri Korshunov

1



Hölder continuity for potentials M. Verbitsky

Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

∥f∥Ck := sup
x∈M

(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function is a functional on top forms with

compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies.

REMARK: Currents are forms with coefficients in generalized functions.

REMARK: The pairing between forms and currents is denoted as α, τ 7→∫
M α∧τ . Using this notation, we interpret k forms on n-manifold as k-currents,

that is, as functionals on n− k-forms.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a

sequence of currents converges if it converges on all forms with compact sup-

port). The space of currents with this topology is a Montel space (barrelled,

locally convex, all bounded subsets are precompact). Montel spaces are re-

flexive (the map to its double dual with strong topology is an isomorphism).

CLAIM: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions REMARK: In the literature, this is

sometimes called (n− p, n− q)-currents.

CLAIM: The Poincare and Poincare Dolbeault-Grothendieck lemma hold on

(p, q)-currents, and the d- and ∂-cohomology are the same as for forms.
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Positive forms

DEFINITION: A positive (1,1)-form on a complex manifold is a form

η ∈ Λ1,1
R (M) which satisfies η(x, Ix) ⩾ 0 for any x ∈ TM .

REMARK: “French positivity”. For French, “positive” is the same as

“non-negative” for the rest of the world. We will call functions “non-negative”

if they are ⩾ 0, but if these functions are considered as 0-forms, we have to

say they are “positive”. Please don’t be confused!

CLAIM: Let α be a positive function, and u a (1,0)-form. Then −
√
−1αu∧u

is a positive (1,1)-form. Moreover, any positive form is obtained as a

linear combination of such (1,1)-forms.

Proof: Using the normal form of a positive (1,1)-form on a complex vector

space (sometimes known as “polar decomposition”), we find that any posi-

tive (1,1)-form on an almost complex manifold can be locally represented as∑
i−

√
−1 αiui ∧ ui, where α ⩾ 0 are non-negative functions, and ui ∈ Λ1,0(M)

an orthonormal frame.
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Positive currents

REMARK: Positive generalized functions are all C0-continuous as functionals

on C∞M . A positive generalized function multiplied by a positive volume form

gives a measure on a manifold, and all measures are obtained this way.

DEFINITION: The cone of positive (1,1)-currents is generated by −
√
−1αu∧

u, where α is a positive generalized function (that is, a measure), and u a

(1,0)-form.

REMARK: This is equivalent to the following definition (the equivalence

is a foundational result of theory of currents, found in both textbooks of

Demailly).

DEFINITION: A (1,1)-current α is called positive if
∫
M α ∧ τ ⩾ 0 for any

positive (n− 1, n− 1)-form τ with compact support.
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Positive currents: compactness theorem

DEFINITION: A mass of a positive (1,1)-current η on a Hermitian n-

manifold (M,ω) is a measure η ∧ ωn−1. It is non-negative, and positive

if η ̸= 0.

Theorem: The space of positive (1,1)-currents with bounded mass is

(weakly) compact.

Proof: Follows from precompactness of the space of bounded measures in

weak-*-topology.
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Rigid currents

DEFINITION: A nef class is a limit of Kähler (1,1)-classes in H1,1(M).

DEFINITION: A nef current is current obtained as a limit of positive,

closed (1,1)-forms.

REMARK: All nef classes can be represented by nef currents (by com-

pactnes).

DEFINITION: A nef class is called rigid if it has a unique positive, closed

representative in the space of currents.

THEOREM: (Sibony, Soldatenkov, V.)

Let η be a nef class on a hyperkähler manifold M , dimCM = 2n. Assume

that
∫
M η2n = 0, η is not proportional to a rational class, and the Pocard rank

of M is not maximal. Then the nef current representing η is rigid.

CONJECTURE: Such currents have Hölder continuous potentials, that

is, locally obtained as ddcf , where f is a Hölder continuous function.
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Motivation

Why do we care?

1. Rigid currents are unique representatives with very special properties.

Unique things are always interesting.

2. Let T be a hyperbolic automorphism of a K3, η+ its rigid current, η− the

rigid current of T−1. Then η+ ∧ η− is well defined (because both currents

are nef and have bounded local potentials) and gives a “maximal entropy

measure” (Sinai-Ruelle-Bowen measure) which is very important in dy-

namics and algebraic geometry (cf. Lyubich theorem). This result partially

generalizes to other hyperkähler manifolds.

3. Let [η] be a rational class on a boundary of the Kähler cone, q(η, η) = 0.

It is no longer rigid; however, if its “Lelong numbers” (numbers measuring

how singular this current is) vanish, which brings us very close to the “SYZ

conjecture”, which is one of the central conjectures of hyperkähler geometry.

Currents with bounded potential are “really, really, really non-singular”

and have vanishing Lelong numbers; understanding the Lelong numbers

of rigid currents bring us closer to SYZ.
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Hyperbolic automorphisms

DEFINITION: An automorphism of a Calabi-Yau manifold is called hyper-

bolic if it acts on H1,1(M) with the largest real eigenvalue α ∈ R, α > 1, and

the corresponding eigenspace is 1-dimensional.

REMARK: IfM is hyperkähler, the corresponding eigenspace is 1-dimensional.

Indeed, the BBF form has signature (1, n) on H1,1(M), and an isometry pre-

serving a form of signature (1, n) has at most 2 eigenvalues α1, α2 which

satisfy |αi| ̸= 0.

THEOREM: (Amerik, V.) Every hyperkähler manifold with b2 > 4 has a

deformation which admits a hyperbolic automorphism.

DEFINITION: A class v ∈ H1,1(M) on a hyperkähler manifold is called

dynamic if M admits a hyperbolic automorphism T , and [v] is its eigenvector

with eigenvalue α > 1.
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Rigidity of dynamic currents

THEOREM: (Cantat, Dinh-Sibony)
Let [v] ∈ H1,1(M) be a dynamic class on a Calabi-Yau manifold. Then [v] is
nef and rigid.
Proof. Step 1: Let v := lim Tnω

αn be a current representing v. The current v
is nef. Indeed, lim Tnω

αn = v for any ω /∈ V , where V ⊂ H1,1(M,R) is a subspace
of positive codimension. Taking ω Kähler (the Kähler cone is open, hence we
can assume that ω /∈ V ), we obtain that v is nef.
Step 2: It remains to prove uniqueness of the positive closed representa-
tive of [v]. For any two positive representatives η1, η2, one has η1−η2 = ddcψ

by ddc-lemma; the set K of such ψ is compact, because the set of repre-
sentatives of [v] is compact. Adjusting the constant, may also assume that∫
M ψVol = 0 for all such representatives ψ ∈ K, where Vol is an automor-
phism invariant volume form on M , obtained by taking a section of KM and
multiplying with its complex conjugate. By construction, T ∗K = αK.

Step 3: Each ψ ∈ K is locally integrable (being a difference of two plurisub-
harmonic functions which are integrable). Consider the number
sup

ψ1,ψ2∈K

∫
M |ψ1 − ψ2|. It is finite, because K is compact. Since T ∗K = αK,

we obtain αn sup
ψ1,ψ2∈K

∫
M |ψ1 − ψ2|Vol = sup

ψ1,ψ2∈K

∫
M |Tnψ1 − Tnψ2|Vol. This is

impossible, because
∫
M |Tnψ1 − Tnψ2|Vol =

∫
M |ψ1 − ψ2|Vol.
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Hölder continuous functions

DEFINITION: Let f be a function on a Riemannian manifold M , and d the

metric on M , and α ∈]0,1] a real number We say that f is Hölder continuous

or Hölder A,α-continuous if supx,y∈M
|f(x)−f(y)|
d(x,y)α < A is finite.

REMARK: When α = 1, Hölder condition is equivalent to Lipschitz. It

is also one of the “uniform continuity” conditions, which ensures that a fam-

ily of bounded Holder continuous functions is precompact in uniform

topology (Arzelá-Ascoli).

REMARK: The Hölder condition interpolates between continuity (C0) and

smoothness (which is more or less the same as Lipschitz), denoted C1. This

is why the space of Holder continuous functions with exponent α is

denoted Cα. We will use the notation Cα,A, when we need to fix both

constants.

REMARK: Let p := α−1. Then the Hölder A,α-condition means that

supx,y∈M
|f(x)−f(y)|p

d(x,y) < Ap is bounded.
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Hölder continuity and diffeomorphisms

We are interested in Hölder condition because of the following observation.
Claim 1: Let M be a Riemannian manifold, and Ψ ∈ Diff(M) a diffeomor-
phism such that the norm ∥DΨ∥ of its differential is bounded by B, and
let λ ∈]0,1[ be a real number. Consider the number µ := − logλ

logB Then

λΨ(f) ∈ Cα,A for any f ∈ Cα,A and any α < µ.

Proof: Set p = α−1. We need to show that this quantity is bounded:

supx,y∈M
|f(Ψ−1x)−f(Ψ−1y)|p

d(x,y) < Ap. However,

sup
x,y∈M

|λf(Ψ−1x)− λf(Ψ−1y)|p

d(x, y)
= sup

x,y∈M

|λf(x)− λf(y)|p

d(Ψx,Ψy)
⩽ sup
x,y∈M

Bλp
|f(x)− f(y)|p

d(x, y)
.

This implies that λΨ(f) ∈ Cα,A whenever f ∈ Cα,A and Bλp ⩽ 1. The last
is translated to logB + p logλ < 0, or, equivalently, p ⩾ −logB

logλ , which gives

α ⩽ − logλ
logB.

REMARK: In other words, the map f 7→ λΨ(f) preserves the Hölder continu-
ity. For instance, if f is bounded, the series

∑∞
i=0 aiλ

iΨi(f) would converge

to a Hölder continuous function when the series
∑
ai is absolutely con-

vergent. The pointwise convergence follows from the convergence of
∑
ai

and boundedness of f , and the Hölder condition for the limit follows from
Arzelá-Ascoli.
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Hölder continuity and hyperbolic automorphisms

THEOREM: (Cantat, Dinh-Sibony) Let M be a compact Calabi-Yau man-

ifold, γ ∈ Diff(M) a hyperbolic automorphism, and η the rigid current asso-

ciated with γ, defined by γ∗η = λη, where λ > 1 is an eigenvalue of γ on

H1,1(M). In this situation, η can be written locally as η = ddcψ, where the

local potential ψ is Hölder continuous.

Proof. Step 1: Fix a Calabi-Yau metric ω onM , and let P : H1,1(M)−→ Λ1,1(M)

denote the harmonic representative. Then for each x ∈ H1,1(M), the classes

γ∗P (X) and P (γ(x)) are homologous. Then ddc-lemma gives a unique func-

tion u(x) ∈ C∞M,
∫
M f Vol = 0, such that ddc(u(x)) = γ∗P (x)−P (γ∗x). For

any bounded set K ⊂ H1,1(M), the supremum supx∈K sup |u(x)| is finite.

13
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Hölder continuity and hyperbolic automorphisms (2)

Proof. Step 1: Fix a Calabi-Yau metric ω onM , and let P : H1,1(M)−→ Λ1,1(M)
denote the harmonic representative. Then for each x ∈ H1,1(M), the classes
γ∗P (X) and P (γ(x)) are homologous. Then ddc-lemma gives a unique func-
tion u(x) ∈ C∞M,

∫
M f Vol = 0, such that ddc(u(x)) = γ∗P (x)−P (γ∗x). For

any bounded set K ⊂ H1,1(M), the supremum supx∈K sup |u(x)| is finite.
Step 2: We use notation γn for (γ∗)n. Clearly,

λ−nγnω − P (γnω) =
n−1∑
k=1

λ−kγk
[
λ−n+kγ∗P (γn−k−1ω)− λ−n+kP (γn−kω)

]

=
n−1∑
k=1

λ−kddc
(
u(P (γn−k−1ω))

λn−k

)
.

Step 3: Let now fk := u

(
P

(
γn−k−1ω
λn−k

))
. The set of classes γn−k−1ω

λn−k
belongs to

a compact subset of H1,1(M), because the corresponding sequence converges.
Therefore, the functions fk belong to the same compact family, and are Hölder
(A,α)-continuous with fixed constants A,α. Claim 1 implies that for appro-
priate α, the functions λ−kγkfk are also Hölder (A,α)-continuous, which im-
plies that λ−nγnω−P (γnω) =

∑
ddc(λ−kγkfk) has (A,α)-continuous potential.

Passing to a limit as n → ∞, we obtain that η − P ([η]) has a (A,α)-
continuous potential; here η = limn λ−nγnω, and P ([η]) = limn P (λ−nγnω).
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Hölder continuity for potentials M. Verbitsky

MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R) =

H2(M,R) satisfying q(η, η) < 0. It is effective if it is represented by a curve.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that z is of type (1,1) with respect to I

and I ′ and Pic(M) = ⟨z⟩, where Pic(M) = H1,1(M,Z) = H2(M,Z)∩H1,1(M).

Then ±z is effective in (M, I) ⇔ iff it is effective in (M, I ′).

REMARK: From now on, we identify H2(M) and H2(M) using the BBF

form. Under this identification, integer classes in H2(M) correspond to

rational classes in H2(M) (the form q is not unimodular).

DEFINITION: A negative class z ∈ H2(M,Z) on a hyperkähler manifold is

called an MBM class if there exist a deformation of M with Pic(M) = ⟨z⟩
such that λz is represented by a curve, for some λ ̸= 0.
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MBM classes and the shape of the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to the faces of

the Kähler cone.

COROLLARY: A Kähler cone of (M, I) is round if and only if the set of

MBM classes in H1,1(M, I) is empty.

THEOREM: (Amerik-V.) For any hyperkähler manifold M , there exist a

deformation (M, I) with round Kähler cone. Moreover, if b2(M) > 5, the

Picard lattice of (M, I) can have signature (1,2) (I. Frolov).
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MBM classes and automorphisms

THEOREM: Let (M, I) be a hyperkähler manifold, and Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems. Then Mon(M) is a finite index subgroup in O(H2(M,Z), q),
where q is BBF form.

THEOREM: Let (M, I) be a hyperkähler manifold, Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems, and MonI(M) the Hodge monodromy group, that is,

a subgroup of Mon(M) preserving the Hodge decomposition. Denote by

Auth(M, I) the image of the automorphism group in GL(H2(M,R)). Then

Auth(M, I) is a subgroup of MonI(M) preserving the Kähler cone Kah(M, I).

REMARK: The kernel of the natural map Aut(M)−→GL(H2(M,R)) is a

finite group which is independent from the choice of M in its defor-

mation class. It consists of “absolutely trianalytic” automorphisms of M :

automorphisms which are hyperkähler in all hyperkähler structures.
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Automorphisms and lattices

COROLLARY: Let (M, I) be a hyperkähler manifold with round Kähler

cone. Then Aut(M) surjects to MonI(M) with finite kernel. Moreover,

its image has finite index in the subgroup of all elements in O(H2(M,Z), q)
preserving the Hodge decomposition.

DEFINITION: The Neron-Severi lattice of a Kähler manifoldM is H1,1(M,Z) =

H2(M,Z) ∩H1,1(M). The ample cone KahQ of M is H1,1(M,Z)⊗Z R inter-

sected with its Kähler cone.

REMARK: Rational points are dense in the ample cone.

COROLLARY: Let (M, I) be a hyperkähler manifold with round Kähler

cone, and PKahQ the projectivization of its ample cone, identified with the

positive cone in H1,1(M,Z) ⊗Z R. Then PKah is a hyperbolic space, and

Aut(M) acts on PKah as a lattice. If, in addition, H1,1(M,Z) contains

no point x which satisfy q(x, x) = 0, the quotient
PKahQ
Aut(M) is a compact

hyperbolic orbifold.
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Quasi-isometry

DEFINITION: A map f : X −→ Y is called bi-Lipschitz with constant C,

or just bi-Lipschitz, if it is bijective, and both f and f−1 are C-Lipschitz

(that is, satisfy d(f(x), f(y)) ⩽ Cd(x, y)). Two spaces X, Y are bi-Lipschitz

equivalent if there exists a bi-Lipschitz map f : X −→ Y .

DEFINITION: The spaces X and Y are quasi-isometric, if X and Y are

equipped with a ε-networks Xε ⊂ X, Yε ⊂ Y which are bi-Lipschitz equivalent.

EXAMPLE: Let Γ be a group, S1 and S2 its finite sets of generators, and

Γ1,Γ2 the corresponding Cayley graphs. Then Γ1 is quasi-isometric to Γ2.

REMARK: When we are interested in metric spaces up to quasi-isometry,

we can speak of a group as of a metric space.

THEOREM: (Milnor-Schwarz)

Let M be a compact Riemannian manifold, and M̃ its universal cover. Then

M̃ is quasi-isometric to π1(M).
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Gromov hyperbolic spaces

DEFINITION: A Gromov hyperbolic space is a geodesic metric space such

that there exists δ ⩽ 0 such that for any geodesic triangle, any side belongs

to a δ-neighbourhood of the union of the other two.

THEOREM: (“Morse lemma”) LetM,M ′ be quasi-isometric geodesic met-

ric spaces. Then M is Gromov hyperbolic iff M ′ is.

DEFINITION: A group is Gromov hyperbolic or word hyperbolic if its

Cayley graph is Gromov hyperbolic.

PROPOSITION: Let M be a complete Riemannian manifold with section

curvature bounded from above by C < 0. Then M is Gromov hyperbolic.

COROLLARY: A fundamental group of a compact Riemannian manifold

with section curvature bounded from above by C < 0 is Gromov hyperbolic.
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Gromov hyperbolic boundary

DEFINITION: Let M be a Gromov hyperbolic space, and γ(t) a geodesic

ray which goes to ∞. Two such rays γ(t), γ′(t) are called equivalent if

d(γ(t), γ′(t)) < const. Gromov boundary ∂M of M is the set of equivalence

classes of geodesic rays.

There is no metric on ∂M , but ∂M is equipped with a natural topology and

a conformal metric structure, that is, a math metric up to a conformal

factor.

DEFINITION: Fix a point p in a metric space M . Define the Gromov

product (x, y)p of x, y as (x, y)p := 1/2(d(x, p) + d(y, p)− d(x, y). If γ(t), γ′(t)
are geodesic rays, define the overlap p(γ|γ′) := lim

t→∞
(γ(t), γ′(t))p.

REMARK: When all points on a Gromov hyperbolic boundary ∂M are con-

nected by infinite geodesics (say, we are on a universal cover of a compact

geodesic metric space, such as a Cayley graph or a Riemannian manifold), the

overlap satisfies |p(γ|γ′)− d(p, γ∞)| < 4δ, where γ∞ is an infinite geodesic

which is asymptotic to γ as t−→∞ and to γ′ as t−→ −∞.
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Visual distance

DEFINITION: A visual distance on ∂M with respect to p ∈M is a metric d

on ∂M such that there are constants C,α > 0 such that for any pair γ(t), γ′(t)
of rays leaving p, we have C−1e−αp(γ|γ

′) ⩽ d(γ, γ′) ⩽ Ce−αp(γ|γ
′).

REMARK: A visual distance always exists; it depends on the choice of p, but

this dependence is (generally speaking) conformal. On the hyperbolic space

Hn, the visual distance is the angle between geodesics γ, γ′; this implies

that ∂Hn is a sphere with the round metric. Also, ∂M is conformal to ∂M ′

when M,M ′ are quasi-isometric Gromov hyperbolic spaces.
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Hölder continuity and the geometric group theory

THEOREM: Let (M,ω) be a compact hyperkähler manifold with round

Kähler cone, [η] ∈ ∂KahQ a class on a boundary such that q([η], [η]) = 0,

and η the corresponding rigid (1,1)-current. Then η locally has a Hölder

continuous potential.

Proof. Step 1: Let H be a compact hyperbolic manifold, and Hn its universal

cover. Let {s1, ..., sm} be a set of generators in π1(H). The geodesics in the

Cayley graph of π1(M) are encoded by a sequence of words W0,W1, ...,Wn, ...

such that Wn =Wn−1sin.

Step 2: Clearly, the hyperbolic boundary of Hn is a sphere with the round

metric; since π1(H) is quasi-isometric to H, the same is true for π1(M).

Choosde a set of generators {s1, ..., sm} for Aut(M). Applying Step 1, we ob-

tain that for any x ∈ ∂PKahM there exists a geodesic in Aut(M) encoded

by a sequence W0,W1, ...,Wn, ... such that [η] = limn λnWn([ω]), where ω is

a reference Kähler metric, and λn a sequence of real numbers.
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Hölder continuity and the geometric group theory (2)

Step 3: Applying this to [η] and using rigidity of the current. we obtain that

η = limn λnWn(ω), where the limit is taken in currents. Denote by λ(Wn) the

number λ(Wn) := q(Wnω, ω)−1. Then λ(Wn)Wn(ω) converges to to a rigid

current proportional to η. We understand the geodesic {Wi} as an infinite

sequence (word) in the alphabeth {si}, and let Wk,n be a subsequence which

starts in k and ends in n. Define λ(Wk,n) := λ(Wn)
λ(Wk)

. We have a formula similar

to given above,

λ(Wn)(Wnω − P (Wnω) =
n−1∑
k=1

λ(Wk)Wkλ(Wk,n)
[
sk+1P (Wk+1,nω)− P (Wk,nω)

]

=
n−1∑
k=1

λ(Wk)Wk

[
ddcλ(Wk,n)usk+1(Wk+1,nω)

]
where us(x) is a function with

∫
M us(x)Vol = 0 given by ddcus(x) = s(P (x))−

P (sx). This sequence converges to a Hölder continuous limit by the same

argument as above (we need to use the exponential estimates λ(Wi) ∼ λi,

with some fixed constant λ depending on the geodesic {Wi}; these estimates

follow from standard formulas in hyperbolic geometry).
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