Moser's lemma for *C*-symplectic structures

Misha Verbitsky

Workshop on Geometric Structures and Moduli Spaces, Córdoba, UNC, FAMAF, August 31, 2022

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and $\text{Symp} \subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a vector space, and Symp an infinite-dimensional (Fréchet) manifold.

DEFINITION: Let $Diff_0$ be the group of isotopies of M, that is, **the connected component of the diffeomorphism group. Teichmüller space of symplectic structures on** M is defined as the quotient space $Teich_s :=$ $Symp / Diff_0$.

REMARK: Let $\Gamma := \text{Diff} / \text{Diff}_0$ be the mapping class group of M. The quotient $\text{Teich}_s / \Gamma = \text{Symp} / \text{Diff}$ is identified with the set of symplectic structures up to diffeomorphism.

Moser's theorem

DEFINITION: Let M be compact. Define the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser's lemma: Let ω_t , $t \in [0, 1]$ be a smooth family of symplectic structures on a compact manifold M. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are diffeomorphic.

Proof of Moser's theorem: The period map $P : U \longrightarrow H^2(M, \mathbb{R})$ is a smooth submersion of infinite-dimensional smooth manifolds. By Moser's lemma, the fibers of P are 0-dimensional. **Therefore,** P **is locally a diffeomorphism.**

The proof of Moser's lemma

Moser's lemma: Let ω_t , $t \in [0, 1]$ be a smooth family of symplectic structures on a compact manifold M. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then there exists a smooth family $\Psi_t \in \text{Diff}_0(M)$ of diffeomorphisms such that $\Psi_t^* \omega_0 = \omega_t$.

Proof: We construct Ψ_t as a solution of the equation $\frac{d\Psi_t}{dt} = X_t$, where $X_t \in TM$ is a vector field depending on $t \in [0, 1]$.

Step 1: Since all ω_t are cohomologous, the form $\frac{d\omega_t}{dt}$ is exact. This gives $\frac{d\omega_t}{dt} = d\eta_t$, where $\eta_t \in \Lambda^1(M)$ smoothly depends on $t \in [0, 1]$. Let X_t be the vector field which satisfies $\omega_t \,\lrcorner\, X_t = \eta_t$. Cartan's formula gives $\text{Lie}_{X_t} \,\omega_t = d(\omega_t \,\lrcorner\, X_t) = d\eta_t = \frac{d\omega_t}{dt}$.

Step 2: Let Ψ_t be the flow of diffeomorphisms obtained by integrating X_t . By construction, $\operatorname{Lie}_{X_t} \omega_t = \frac{d\omega_t}{dt}$. Integrating it in t, we obtain

$$\Psi_1^*\omega_0 = \int_0^1 \Psi_t \operatorname{Lie}_{X_t} \omega_t dt = \int_0^1 \frac{d\omega_t}{dt} dt = \omega_1.$$

Complex manifolds

DEFINITION: Let M be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$. The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the standard one.

CLAIM: (the Hodge decomposition determines the complex structure) Let M be a smooth 2n-dimensional manifold. Then there is a bijective correspondence between the set of almost complex structures, and the set of sub-bundles $T^{0,1}M \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $\dim_{\mathbb{C}} T^{0,1}M = n$ and $T^{0,1}M \cap TM = 0$ (the last condition means that there are no real vectors in $T^{1,0}M$, that is, that $T^{0,1}M \cap T^{1,0}M = 0$).

Proof: Set
$$I|_{T^{1,0}M} = \sqrt{-1}$$
 and $I|_{T^{0,1}M} = -\sqrt{-1}$.

Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and $\Omega \in \Lambda^2(M, \mathbb{C})$ a differential form. We say that Ω is **non-degenerate** if ker $\Omega \cap T_{\mathbb{R}}M = 0$. We say that it is **holomorphically symplectic** if it is non-degenerate, $d\Omega = 0$, and $\Omega(IX, Y) = \sqrt{-1} \Omega(X, Y)$.

REMARK: The equation $\Omega(IX, Y) = \sqrt{-1}\Omega(X, Y)$ means that Ω is complex linear with respect to the complex structure on $T_{\mathbb{R}}M$ induced by *I*.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$ (decomposition according to eigenvalues of *I*). Since $\Omega(IX,Y) = \sqrt{-1} \Omega(X,Y)$ and $I(Z) = -\sqrt{-1} Z$ for any $Z \in T^{0,1}(M)$, we have $\ker(\Omega) \supset T^{0,1}(M)$. Since $\ker \Omega \cap T_{\mathbb{R}}M = 0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}} \ker \Omega = \dim M$. **Therefore,** $\ker(\Omega) = T^{0,1}M$.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

M. Verbitsky

C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called C-symplectic if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to ker Ω , where

 $\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and Re Ω is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Cartan's formula

$$d\Omega(X_1, X_2, X_3) = \frac{1}{6} \sum_{\sigma \in \Sigma_3} (-1)^{\tilde{\sigma}} \operatorname{Lie}_{X_{\sigma_1}} \Omega(X_{\sigma_2}, X_{\sigma_3}) + (-1)^{\tilde{\sigma}} \Omega([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3})$$

which gives, for all $X, Y \in T^{0,1}M$, and any $Z \in TM$,

$$d\Omega(X,Y,Z) = \Omega([X,Y],Z),$$

implying that $[X, Y] \in T^{0,1}M$.

Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

We want to prove that **the period map is locally an embedding.** This is immediately implied by the following version of Moser's lemma.

THEOREM: (Soldatenkov, V.)

Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Holomorphically symplectic Moser's lemma

THEOREM: (Soldatenkov, V.)

Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^* \Omega_0 = \Omega_t$.

Proof. Step 1: If we find a vector field X_t such that $\operatorname{Lie}_{X_t} \Omega_t = \frac{d}{dt} \Omega_t$, we have (like in the proof of Moser's lemma)

$$V_{t_1}^* \Omega_0 = \int_0^{t_1} \operatorname{Lie}_{X_t} \Omega_t dt = \int_0^{t_1} \frac{d\Omega_t}{dt} dt = \Omega_{t_1}$$

where V_t is a diffeomorphism flow such that $\frac{dV_t}{dt} = X_t$. It remains to find the family $X_t \in T_{\mathbb{R}}M$.

Step 2: The contraction map $\Lambda^{2,0}M \otimes_{\mathbb{R}} T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ is surjective (an exercise).

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \lrcorner X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \lrcorner X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

Holomorphically symplectic Moser's lemma (2)

It remains to find $X_t \in T_{\mathbb{R}}M$ such that $\operatorname{Lie}_{X_t}\Omega_t = \frac{d}{dt}\Omega_t$.

Step 2: The contraction map $\Lambda^{2,0}M \otimes_{\mathbb{R}} T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ is surjective.

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \lrcorner X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \lrcorner X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

Step 4: Let $\Omega'_t := \frac{d}{dt}\Omega_t$ and $\dim_{\mathbb{C}} M = 2n$. Differentiating $\Omega_t^{n+1} = 0$ in t, we obtain $\Omega'_t \wedge \Omega_t^n = 0$. Since $\Phi := \Omega_t^n$ is a holomorphic volume form, the multiplication map $\Lambda^{0,2}(M) \xrightarrow{\Lambda \Phi} \Lambda^{2n,2}(M)$ is an isomorphism of vector bundles. Then $\Omega'_t \wedge \Omega_t^n = 0$ implies that $\Omega'_t \in \Lambda^{1,1}(M, I_{\Omega_t}) + \Lambda^{2,0}(M, I_{\Omega_t})$.

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser's lemma **is implied by the following statement.**

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Holomorphically symplectic Moser's lemma (3)

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Proof. Step 1: Let $\eta = d\beta$, where $\beta = \beta^{1,0} + \beta^{0,1}$. Since $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$, we have $\overline{\partial}(\beta^{0,1}) = 0$. The first cohomology of the complex $(\Lambda^{0,*}(M),\overline{\partial})$ vanish, because $H^{0,1}(M) = 0$, hence $\beta^{0,1} = \overline{\partial}\psi$, for some $\psi \in C^{\infty}M$.

Step 2: This gives $\eta = d(\beta - d\psi)$, hence $\alpha := \beta - d\psi = \beta^{1,0} + \beta^{0,1} - \partial\psi - \beta^{0,1}$ is a (1,0)-form which satisfies $\eta = d\alpha$.

COROLLARY: Let CSymp be the space of all C-symplectic structures with C^{∞} -topology. Denote by Teich_C the corresponding Teichmüller space, Teich_C := $\frac{\text{CSymp}}{\text{Diff}_0(M)}$. Define **the period map** Per : Teich_C $\longrightarrow H^2(M, \mathbb{C})$ mapping Ω to its cohomology class. Then Per is locally a homeomorphism to its image.

Proof: All fibers of Per are 0-dimensional. ■

Local Torelli theorem for a K3 surface

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} =$ $-\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ -cohomologous to $[\eta]$. Moreover, the cohomology class of ρ is uniquely determined by $[\eta]$.

Proof: Next slide

REMARK: This theorem locally identifies $H^{1,1}(M)$ with the neighbourhood Ω in the C-symplectic Teichmüller space, proving that it is smooth and b_2-2 -dimensional. This proves the local Torelli theorem for K3.

REMARK: The proof of this theorem is done using the same argument as used to prove the Maurer-Cartan equation, central to Kuranishi theory. Indeed, the equation (*) we are going to solve below is a version of Maurer-Cartan, adopted and simplified for the C-symplectic structures.

Local Torelli theorem for K3 (2)

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} =$ $-\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ -cohomologous to $[\eta]$. Moreover, the cohomology class of ρ is uniquely determined by $[\eta]$.

Proof. Step 1: Since $(\Omega + \rho)^2 = \rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$, this form is (almost) C-symplectic. **To prove that it is C-symplectic, we need to find** ρ **such that that** $d\rho = 0$.

Step 2: From Hodge to de Rham isomorphism, we obtain that the cohomology class [u] of $\Omega + \rho$ is equal to $[\Omega + \eta + u^{0,2}]$. Since M is K3, we have $H^{0,2}(M) = \mathbb{C}[\overline{\Omega}]$, which gives $[u^{0,2}] = \lambda[\overline{\Omega}]$, for some $\lambda \in \mathbb{C}$. since $(\Omega + \rho)^2 = 0$, this gives $[\Omega \wedge u^{0,2}] = [\eta]$, Then $\lambda = -\frac{[\eta^2]}{[\Omega \wedge \overline{\Omega}]}$. We proved that the cohomology class of $\Omega + \rho$ is uniquely determined by $[\eta^2]$.

Local Torelli theorem for K3 (3)

Below, we need the following version of $\partial \overline{\partial}$ -lemma: for any (1,2)-form α , which is ∂ -exact and $\overline{\partial}$ -closed, $\alpha = \overline{\partial}\beta$, where β is ∂ -exact.

Step 3: Let Λ_{Ω} be contraction with the (2,0)-bivector associated with Ω . This operation clearly commutes with $\overline{\partial}$. Then $\rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$ is equivalent to $\Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\rho^{0,2}$. To solve the equation $d\rho = 0$, we solve the equivalent equation, which is a version of Maurer-Cartan

$$\partial \Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\overline{\partial}\rho^{1,1}, \qquad \partial \rho^{1,1} = 0. \qquad (*)$$

Let γ_0 be the harmonic (1,1)-form representing $[\eta]$. We solve the equation (*) inductively by taking

$$\overline{\partial}\gamma_n = \partial \Lambda_\Omega \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right). \quad (**)$$

Such γ_n is found using $\partial \overline{\partial}$ -lemma, because the RHS of (**) is ∂ -exact and $\overline{\partial}$ -closed, which is clear because $\overline{\partial}$ commutes with Λ_{Ω} . Since $\overline{\partial} \sum_i \gamma_i = \partial \Lambda_{\Omega} \left(\sum_{i,j} \gamma_i \wedge \gamma_j \right)$, the sum $\rho^{1,1} := \sum \gamma_i$ is a solution of (*).

Step 4: Since γ_i , i > 0 are ∂ -exact, the ∂ -cohomology class of γ is $[\gamma_0] = [\eta]$.