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Teichmuller space for symplectic structures

DEFINITION: Let I‘(/\QM) be the space of all 2-forms on a manifold M,
and Symp C (A2M) the space of all symplectic 2-forms. We equip M(A2M)
with C°°-topology of uniform convergence on compacts with all derivatives.
Then M(A2M) is a vector space, and Symp an infinite-dimensional (Fréchet)
manifold.

DEFINITION: Teichmuller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp / Diffg.

REMARK: Let I' := Diff /Diffy be the mapping class group of M. The
quotient Teichs /T = Symp / Diff, is identified with the set of symplectic
structures up to diffeomorphism.

DEFINITION: Two symplectic structures are called isotopic if they lie in
the same orbit of Diffg, and diffeomorphic is they lie in the same orbit of
Diff.
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Moser’s theorem

DEFINITION: Let M be compact. Define the period map
Per : Teichs — HQ(M, R) mapping a symplectic structure to its cohomology
class.

THEOREM: (Moser, 1965)
The Teichmuler space Teichg is @ manifold (possibly, non-Hausdorff), and
the period map Per: Teichs — H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser’s lemma: Let wt, t € [0, 1] be a smooth family of symplectic structures
on a compact manifold M. Assume that the cohomology class [w;] € H2(M)
is constant in ¢t. Then all w; are diffeomorphic.

Proof of Moser’s theorem: The period map P: U — H?(M,R) is a smooth
submersion of infinite-dimensional smooth manifolds. By Moser’'s lemma, the
fibers of P are O-dimensional. Therefore, P is locally a diffeomorphism. =
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The proof of Moser’s lemma

Moser’s lemma: Let wy, ¢t € [0, 1] be a smooth family of symplectic structures
on a compact manifold M. Assume that the cohomology class [w:] € H2(M)
is constant in £. Then there exists a smooth family W; € Diffg(M) of
diffeomorphisms such that Wjwg = w;.

Proof: We construct W; as a solution of the equation % = Xy, Where
X; € TM is a vector field depending on t € [0, 1].

Step 1: Since all wy are cohomologous, the form dgf is exact. This gives

dc‘i*zt = dn;, where n; € AL(M) smoothly depends on ¢ € [0,1]. Let X; be the

vector field which satisfies w; 21Xy = n. Cartan’s formula gives Liey, w; =
d(wt s Xy) = dny = dwt

Step 2: Define W; using dwt = Xt. Integrating in t the equation Liex, w; = %,
we obtain
1 1 dwy
* =/ Lie wdtz/ gt = wr.
1%0 0 Xt 0 dt !
|

4



Holomorphic Moser lemma M. Verbitsky

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,,.

T he eigenvalues of this operator are +v/—1. The corresponding eigenvalue
decomposition is denoted TM = 7%V @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TlvOM,
one has [X,Y] € TVOM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

REMARK: The “usual definition”: complex structure is an atlas on a man-
ifold with differentials of all transition functions in GL(n,C).

THEOREM: (Newlander-Nirenberg)
These two definitions are equivalent.

REMARK: An almost complex structure I is uniquely determined by a
subbundle B ¢ TM ®p C such that TM r C = B ® B. Then we write

I=+/—-1 onBand I =—/—1 on B.
5



Holomorphic Moser lemma M. Verbitsky

Holomorphically symplectic manifolds

DEFINITION: Let (M,I) be a complex manifold, and Q € A2(M,C) a dif-
ferential form. We say that €2 is non-degenerate if kerQ2 NITpkM = 0. We
say that it is holomorphically symplectic if it is non-degenerate, dS2 = O,
and Q(IX,Y) =V/-1Q(X,Y).

REMARK: The equation Q(IX,Y) = +v/—1Q(X,Y) means that 2 is complex
linear with respect to the complex structure on Tp M induced by I.

REMARK: Consider the Hodge decomposition TeM = T1.O0M @ 701 M (de-
composition according to eigenvalues of I). Since Q(IX,Y) = /-1 Q(X,Y)
and I(Z) = —/—1 Z for any Z € T%1(M), we have ker(Q) D T%1(M). Since
ker2 NIrM = 0, real dimension of its kernel is at most dimy M, giving
dimg ker Q = dim M. Therefore, ker(Q) = 79111,

COROLLARY: Let 2 be a holomorphically symplectic form on a complex
manifold (M,I). Then I is determined by 2 uniquely.
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Holomorphically symplectic forms and complex structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a
bijective correspondence between the set of almost complex structures,
and the set of sub-bundles T%1M ¢ TM ®p C satisfying dimcT%1M = n
and 791 M NTM = 0 (the last condition means that there are no real vectors
in T1.90M, that is, that 791 NnT1.09M = 0).

THEOREM: Let Q2 € /\Q(M, C) be a smooth, complex-valued, non-degenerate
2-form on a 4n-dimensional real manifold. Assume that Q*t1 = 0. Consider
the bundle

T (M) ={veTM®C | Q.v=0}.

Then Tg’l(M) satisfies assumptions of the claim above, hence defines an
almost complex structure I on M. If, in addition, €2 is closed, Ig is
integrable.

Proof: Rank of € is 2n because Q"t1 = 0 and it is non-degenerate. Then
ker Q@ker Q = TeM. The relation [T (M), T (M)] € T (M) follows from
Cartan’s formula. =

Z
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M,I1,2) be a holomorphically symplectic manifold, and
Sympg the space of all holomorphically symplectic forms. The quotient
Teichg = Sg?gfgs is called the holomorphically symplectic Teichmuller
space, and the map Teichg — H2(M,C) taking (M, I,) to the cohomology
class [Q2] € HQ(M, C) the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is
immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, I;,:), t € [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
€] € H?(M,C) is constant, and H91(M,I;) = 0, where HY(M, ;) =
Hl(M, (’)(th)) is cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms V; € Diffg(M), such
that V"¢ = €2;.
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Holomorphically symplectic Moser’s lemma

THEOREM: Let (M, I;,<2), t € [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
4] € H?(M,C) is constant, and H91(M,I,) = 0, where HYY(M, ;) =
HY (M, O(ar.1,)) 1S cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms V; € Diffg(M), such
that ‘/t*QO = (4.

Proof. Step 1: If we find a vector field X; such that Liex, 2y = %Qt, we
have

where V; is a diffeomorphism flow such that % = X;. It remains to find
Xt € IpM.

Step 2: The contraction map A29M ®p ToeM — ALO(M) is surjective (an
exercise).

Step 3: Since %Qt is exact, one has %Qt = doy. If a4 has Hodge type (1,0),
we could obtain it as Q;1X; (Step 2), which gives %Qt = dop = d(Q2:2X3) =
Liey, €. It remains to find o, € ALO(M, I;) such that $Q; = doy.
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Holomorphically symplectic Moser’s lemma (2)
It remains to find X; € TgM such that Liey, Q; = $.
Step 2: The contraction map A29M @ T M — ALO(M) is surjective.

Step 3: Since %Qt IS exact, one has %Qt = doy. If o has Hodge type (1,0),
we could obtain it as Q;1X; (Step 2), which gives %Qt = dop = d(Q2:2X3) =
Liey, Q. It remains to find o, € ALO(M, I;) such that $Q; = day.

Step 4: Let Q) := 4 and dim¢ M = 2n. Differentiating Q7! = 0 in
t, we obtain Q) A Q} = 0. Since & := QP is a holomorphic volume form,
the multiplication map A%2(M) 2% A2n.2(pr) is an isomorphism of vector
bundles. Then ) A QP = 0 implies that Q} € ALY (M) + AZ2O0(M).,

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser’s lemma
IS implied by the following statement.

LEMMA: Let M be a complex manifold which satisfies H%1(M) = 0, and
n e ALY(M) 4+ A209(M) an exact form. Then n = da, for some o € ALO(M).
10
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Holomorphically symplectic Moser’s lemma (3)

LEMMA: Let M be a complex manifold which satisfies H%1(M) = 0, and
n e ALI(M) +A20(M) an exact form. Then n = da, for some o € ALO(M).

Proof. Step 1: Let n = dB3, where 8 = gL.0 + 801 Since n € ALL(M) +
A20(M), we have 8(891) = 0. The first conomology of the complex (AP*(M), 9)

vanish, because H%1(M) = 0, hence %1 = 9y, for some ¢ € C®°M.

Step 2: This gives n = d(B8 —di), hence o : = —dyp = 10+ 01 — 9y — g1
iIs a (1,0)-form which satisfies » = do. =
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Family of Lagrangian subvarieties

Lemma 1: Let (M,[;,2), t € [0,1] be a smooth family of holomorphi-
cally symplectic manifolds (not necessarily compact), with all 2; exact, and
C c (M, I;) holomorphic Lagrangian subvarieties. Assume that HO1 (M, 1,) =
0. Then C has a family U; of open neighbourhoods in M such that
(U, I+, 24, C) is trivialized by a flow of diffeomorphisms.

Proof. Step 1: Find the vector field X; as in the proof of Moser’'s lemma, in
such a way that d(2;1X;) = 4. This is possible to do because HO1(M, I;) =
0. We want to modify X; in such a way that it is tangent to C.
Let oy = 241X, this form satisfies do;y = %Qt. Since C is Lagrangian,
X is tangent to C if and only if a¢/c = 0. However, %Qﬂc — 0, hence
at|c is closed. Shrinking M if necessary, we can assume that the restriction
HY(M) — HI(C) is surjective. Then we replace a; by oy — v, where ~; is
closed on M and satisfies (ar —v¢)|c = 0. Now we replace X; by Y; such that
Q:1Y; = a4 —y¢. This is another solution of Moser’s equation d(€2; 1Y) = %Qt,

but now Y; is tangent to C.

Step 2: Since C' is compact, Y; can be integrated to a flow of diffeo-
morphisms in a neighbourhood of C' mapping (Ip,2g) to (I+,€2¢), t € [0, 1].

|
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Weinstein tubular neighbourhood theorem
for holomorphically symplectic manifolds

COROLLARY: Let (M, 1,92) be a holomorphically symplectic manifold (not
necessarily compact) with Q exact, and C C (M,I) a compact holomorphic
Lagrangian subvariety. Assume that H%1(M, ;) = 0 and the restriction map
HY(M) — HI(C) is surjective. Then C has a neighbourhood which is
isomorphic to a neighbourhood of C in T™C as a holomorphically sym-
plectic manifold.

Proof: Choose a tubular neighbourhood U of C (in smooth category), iden-
tifying U and a small neighbourhood of C in T*C. Let H; be a homothety of
T*C mapping v € T*C to tv. We may assume that H;(U) C U. The fam-
ily of holomorphic symplectic forms t—lH;kQ converges to the standard
holomorphic symplectic form on 7T*C. Now, Lemma 1 is used to trivialise
this family in a neighbourhood of C'. m

REMARK: Weinstein tubular neighbourhood theorem fails when C' is a
fiber of a holomorphic Lagrangian fibration on a hyperkahler manifold (say,
on an elliptic K3 surface).
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