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Teichmüller space for symplectic structures

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a vector space, and Symp an infinite-dimensional (Fréchet)

manifold.

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0.

REMARK: Let Γ := Diff /Diff0 be the mapping class group of M . The

quotient Teichs /Γ = Symp /Diff, is identified with the set of symplectic

structures up to diffeomorphism.

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diff0, and diffeomorphic is they lie in the same orbit of

Diff.
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Moser’s theorem

DEFINITION: Let M be compact. Define the period map

Per : Teichs −→H2(M,R) mapping a symplectic structure to its cohomology

class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser’s lemma: Let ωt, t ∈ [0,1] be a smooth family of symplectic structures

on a compact manifold M . Assume that the cohomology class [ωt] ∈ H2(M)

is constant in t. Then all ωt are diffeomorphic.

Proof of Moser’s theorem: The period map P : U −→H2(M,R) is a smooth

submersion of infinite-dimensional smooth manifolds. By Moser’s lemma, the

fibers of P are 0-dimensional. Therefore, P is locally a diffeomorphism.
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The proof of Moser’s lemma

Moser’s lemma: Let ωt, t ∈ [0,1] be a smooth family of symplectic structures

on a compact manifold M . Assume that the cohomology class [ωt] ∈ H2(M)

is constant in t. Then there exists a smooth family Ψt ∈ Diff0(M) of

diffeomorphisms such that Ψ∗tω0 = ωt.

Proof: We construct Ψt as a solution of the equation dΨt
dt = Xt, where

Xt ∈ TM is a vector field depending on t ∈ [0,1].

Step 1: Since all ωt are cohomologous, the form dωt
dt is exact. This gives

dωt
dt = dηt, where ηt ∈ Λ1(M) smoothly depends on t ∈ [0,1]. Let Xt be the

vector field which satisfies ωtyXt = ηt. Cartan’s formula gives LieXt ωt =

d(ωtyXt) = dηt = dωt
dt .

Step 2: Define Ψt using dΨt
dt = Xt. Integrating in t the equation LieXt ωt = dωt

dt ,

we obtain

Ψ∗1ω0 =
∫ 1

0
LieXt ωtdt =

∫ 1

0

dωt

dt
dt = ω1.
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

REMARK: The “usual definition”: complex structure is an atlas on a man-
ifold with differentials of all transition functions in GL(n,C).

THEOREM: (Newlander-Nirenberg)
These two definitions are equivalent.

REMARK: An almost complex structure I is uniquely determined by a
subbundle B ⊂ TM ⊗R C such that TM ⊗R C = B ⊕ B. Then we write
I =
√
−1 on B and I = −

√
−1 on B.
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Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.
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Holomorphically symplectic forms and complex structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a
bijective correspondence between the set of almost complex structures,
and the set of sub-bundles T0,1M ⊂ TM ⊗R C satisfying dimC T

0,1M = n

and T0,1M ∩TM = 0 (the last condition means that there are no real vectors
in T1,0M , that is, that T0,1M ∩ T1,0M = 0).

Proof: Set I
∣∣∣T1,0M =

√
−1 and I

∣∣∣T0,1M = −
√
−1 .

THEOREM: Let Ω ∈ Λ2(M,C) be a smooth, complex-valued, non-degenerate
2-form on a 4n-dimensional real manifold. Assume that Ωn+1 = 0. Consider
the bundle

T
0,1
Ω (M) := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M) satisfies assumptions of the claim above, hence defines an

almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is
integrable.

Proof: Rank of Ω is 2n because Ωn+1 = 0 and it is non-degenerate. Then
ker Ω⊕ker Ω = TCM . The relation [T0,1

Ω (M), T0,1
Ω (M)] ⊂ T0,1

Ω (M) follows from
Cartan’s formula.
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

SympS the space of all holomorphically symplectic forms. The quotient

TeichS := SympS
Diff0

is called the holomorphically symplectic Teichmüller

space, and the map TeichS −→H2(M,C) taking (M, I,Ω) to the cohomology

class [Ω] ∈ H2(M,C) the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is

immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of holomorphic sym-

plectic forms on a compact manifold. Assume that the cohomology class

[Ωt] ∈ H2(M,C) is constant, and H0,1(M, It) = 0, where H0,1(M, It) =

H1(M,O(M,It)) is cohomology of the sheaf of holomorphic functions. Then

there exists a smooth family of diffeomorphisms Vt ∈ Diff0(M), such

that V ∗t Ω0 = Ωt.
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Holomorphically symplectic Moser’s lemma

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
[Ωt] ∈ H2(M,C) is constant, and H0,1(M, It) = 0, where H0,1(M, It) =
H1(M,O(M,It)) is cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms Vt ∈ Diff0(M), such
that V ∗t Ω0 = Ωt.

Proof. Step 1: If we find a vector field Xt such that LieXt Ωt = d
dtΩt, we

have

V ∗t1Ω0 =
∫ t1

0
LieXt Ωtdt =

∫ t1
0

dΩt

dt
dt = Ωt1

where Vt is a diffeomorphism flow such that dVt
dt = Xt. It remains to find

Xt ∈ TRM.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective (an
exercise).

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),
we could obtain it as ΩtyXt (Step 2), which gives d

dtΩt = dαt = d(ΩtyXt) =
LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d

dtΩt = dαt.
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Holomorphically symplectic Moser’s lemma (2)

It remains to find Xt ∈ TRM such that LieXt Ωt = d
dtΩt.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective.

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),

we could obtain it as ΩtyXt (Step 2), which gives d
dtΩt = dαt = d(ΩtyXt) =

LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d
dtΩt = dαt.

Step 4: Let Ω′t := d
dtΩt and dimCM = 2n. Differentiating Ωn+1

t = 0 in

t, we obtain Ω′t ∧ Ωn
t = 0. Since Φ := Ωn

t is a holomorphic volume form,

the multiplication map Λ0,2(M)
∧Φ−→ Λ2n,2(M) is an isomorphism of vector

bundles. Then Ω′t ∧Ωn
t = 0 implies that Ω′t ∈ Λ1,1(M) + Λ2,0(M).

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser’s lemma

is implied by the following statement.

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).
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Holomorphically symplectic Moser’s lemma (3)

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).

Proof. Step 1: Let η = dβ, where β = β1,0 + β0,1. Since η ∈ Λ1,1(M) +

Λ2,0(M), we have ∂(β0,1) = 0. The first cohomology of the complex (Λ0,∗(M), ∂)

vanish, because H0,1(M) = 0, hence β0,1 = ∂ψ, for some ψ ∈ C∞M.

Step 2: This gives η = d(β− dψ), hence α := β− dψ = β1,0 + β0,1− ∂ψ− β0,1

is a (1,0)-form which satisfies η = dα.
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Family of Lagrangian subvarieties

Lemma 1: Let (M, It,Ωt), t ∈ [0,1] be a smooth family of holomorphi-
cally symplectic manifolds (not necessarily compact), with all Ωt exact, and
C ⊂ (M, It) holomorphic Lagrangian subvarieties. Assume that H0,1(M, It) =
0. Then C has a family Ut of open neighbourhoods in M such that
(Ut, It,Ωt, C) is trivialized by a flow of diffeomorphisms.

Proof. Step 1: Find the vector field Xt as in the proof of Moser’s lemma, in
such a way that d(ΩtyXt) = d

dtΩt. This is possible to do because H0,1(M, It) =
0. We want to modify Xt in such a way that it is tangent to C.
Let αt = ΩtyXt; this form satisfies dαt = d

dtΩt. Since C is Lagrangian,
Xt is tangent to C if and only if αt|C = 0. However, d

dtΩt|C = 0, hence
αt|C is closed. Shrinking M if necessary, we can assume that the restriction
H1(M)−→H1(C) is surjective. Then we replace αt by αt − γt, where γt is
closed on M and satisfies (αt− γt)|C = 0. Now we replace Xt by Yt such that
ΩtyYt = αt−γt. This is another solution of Moser’s equation d(ΩtyYt) = d

dtΩt,
but now Yt is tangent to C.

Step 2: Since C is compact, Yt can be integrated to a flow of diffeo-
morphisms in a neighbourhood of C mapping (I0,Ω0) to (It,Ωt), t ∈ [0,1].
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Weinstein tubular neighbourhood theorem

for holomorphically symplectic manifolds

COROLLARY: Let (M, I,Ω) be a holomorphically symplectic manifold (not

necessarily compact) with Ω exact, and C ⊂ (M, I) a compact holomorphic

Lagrangian subvariety. Assume that H0,1(M, It) = 0 and the restriction map

H1(M)−→H1(C) is surjective. Then C has a neighbourhood which is

isomorphic to a neighbourhood of C in T ∗C as a holomorphically sym-

plectic manifold.

Proof: Choose a tubular neighbourhood U of C (in smooth category), iden-

tifying U and a small neighbourhood of C in T ∗C. Let Ht be a homothety of

T ∗C mapping v ∈ T ∗C to tv. We may assume that Ht(U) ⊂ U . The fam-

ily of holomorphic symplectic forms t−1H∗t Ω converges to the standard

holomorphic symplectic form on T ∗C. Now, Lemma 1 is used to trivialise

this family in a neighbourhood of C.

REMARK: Weinstein tubular neighbourhood theorem fails when C is a

fiber of a holomorphic Lagrangian fibration on a hyperkähler manifold (say,

on an elliptic K3 surface).
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