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Weinstein normal form for holomorphic Lagrangian submanifolds

DEFINITION: Let X ⊂ Y be a complex subvariety in a complex manifold

Y . We say that X can be bimeromorphically contracted if there exists a

morphism of complex varieties Y −→ Y1 mapping X to a point and bijective

on Y \X.

The main result today.

THEOREM: (Amerik, V.) Let (M, I,Ω) be a holomorphically symplectic

manifold (not necessarily compact) with Ω exact, and E ⊂ (M, I) a compact

holomorphic Lagrangian submanifold. Assume that E can be bimeromor-

phically contracted. Then E is isomorphic to CPn. Moreover, E has

a neighbourhood which is biholomorphically symplectomorphic to a

neighbourhood of CPn in T ∗CPn.

REMARK: Weinstein tubular neighbourhood theorem fails when E is a

fiber of a holomorphic Lagrangian fibration on a hyperkähler manifold (say,

on an elliptic K3 surface). Indeed, the normal bundle NE is trivial, but the

elliptic curve in the elliptic family varies, hence its neighbourhood cannot

be isomorphic to T ∗E = E × C.
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Moser’s lemma

Moser’s lemma: Let ωt, t ∈ [0,1] be a smooth family of symplectic structures

on a compact manifold M . Assume that the cohomology class [ωt] ∈ H2(M)

is constant in t. Then there exists a smooth family Ψt ∈ Diff0(M) of

diffeomorphisms such that Ψ∗tω0 = ωt.

Proof: We construct Ψt as a solution of the equation dΨt
dt = Xt, where

Xt ∈ TM is a vector field depending on t ∈ [0,1].

Step 1: Since all ωt are cohomologous, the form dωt
dt is exact. This gives

dωt
dt = dηt, where ηt ∈ Λ1(M) smoothly depends on t ∈ [0,1]. Let Xt be the

vector field which satisfies ωtyXt = ηt. Cartan’s formula gives LieXt ωt =

d(ωtyXt) = dηt = dωt
dt .

Step 2: Define Ψt using dΨt
dt = Xt. Integrating in t the equation LieXt ωt = dωt

dt ,

we obtain

Ψ∗1ω0 =
∫ 1

0
LieXt ωtdt =

∫ 1

0

dωt

dt
dt = ω1.
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Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.
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C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional
manifold. A closed complex-valued form Ω on M is called C-symplectic if
Ωn+1 = 0 and Ωn ∧Ωn is a non-degenerate volume form.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to ker Ω, where

ker Ω := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M)⊕T0,1

Ω (M) = TM⊗RC, hence the sub-bundle T
0,1
Ω (M) defines

an almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is
integrable, and Ω is holomorphically symplectic on (M, IΩ).

Proof: Rank of Ω is 2n because Ωn+1 = 0 and Re Ω is non-degenerate. Then
ker Ω⊕ker Ω = TCM . The relation [T0,1

Ω (M), T0,1
Ω (M)] ⊂ T0,1

Ω (M) follows from
Cartan’s formula

dΩ(X1, X2, X3) =
1

6

∑
σ∈Σ3

(−1)σ̃ LieXσ1
Ω(Xσ2, Xσ3) + (−1)σ̃Ω([Xσ1, Xσ2], Xσ3)

which gives, for all X,Y ∈ T0,1M , and any Z ∈ TM ,

dΩ(X,Y, Z) = Ω([X,Y ], Z),

implying that [X,Y ] ∈ T0,1M .
5



Deformation to normal cone M. Verbitsky

C-symplectic Moser’s lemma

THEOREM: (Soldatenkov, V.)
Let (M, It,Ωt), t ∈ [0,1] be a family of C-symplectic forms on a compact
manifold. Assume that the cohomology class [Ωt] ∈ H2(M,C) is constant,
and H0,1(M, It) = 0, where H0,1(M, It) = H1(M,O(M,It)) is cohomology of
the sheaf of holomorphic functions. Then there exists a smooth family of
diffeomorphisms Vt ∈ Diff0(M), such that V ∗t Ω0 = Ωt.

Proof. Step 1: If we find a vector field Xt such that LieXt Ωt = d
dtΩt, we

have (like in the proof of Moser’s lemma)

V ∗t1Ω0 =
∫ t1

0
LieXt Ωtdt =

∫ t1

0

dΩt

dt
dt = Ωt1

where Vt is a diffeomorphism flow such that dVt
dt = Xt. It remains to find

the family Xt ∈ TRM.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective (an
exercise).

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),
we could obtain it as ΩtyXt (Step 2), which gives d

dtΩt = dαt = d(ΩtyXt) =
LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d

dtΩt = dαt.
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Holomorphically symplectic Moser’s lemma (2)

It remains to find Xt ∈ TRM such that LieXt Ωt = d
dtΩt.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective.

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),

we could obtain it as ΩtyXt (Step 2), which gives d
dtΩt = dαt = d(ΩtyXt) =

LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d
dtΩt = dαt.

Step 4: Let Ω′t := d
dtΩt and dimCM = 2n. Differentiating Ωn+1

t = 0 in

t, we obtain Ω′t ∧ Ωn
t = 0. Since Φ := Ωn

t is a holomorphic volume form,

the multiplication map Λ0,2(M)
∧Φ−→ Λ2n,2(M) is an isomorphism of vector

bundles. Then Ω′t ∧Ωn
t = 0 implies that Ω′t ∈ Λ1,1(M, IΩt

) + Λ2,0(M, IΩt
).

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser’s lemma

is implied by the following statement.

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).
7
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Holomorphically symplectic Moser’s lemma (3)

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).

Proof. Step 1: Let η = dβ, where β = β1,0 + β0,1. Since η ∈ Λ1,1(M) +

Λ2,0(M), we have ∂(β0,1) = 0. The first cohomology of the complex (Λ0,∗(M), ∂)

vanish, because H0,1(M) = 0, hence β0,1 = ∂ψ, for some ψ ∈ C∞M.

Step 2: This gives η = d(β− dψ), hence α := β− dψ = β1,0 + β0,1− ∂ψ− β0,1

is a (1,0)-form which satisfies η = dα.
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C-symplectic Moser lemma for non-compact manifolds

As in the usual symplectic situation, the Moser argument can be also applied

to non-compact manifold.

THEOREM: (Soldatenkov, V.) Let π : X → ∆ be a smooth family of

holomorphic symplectic manifolds (not necessarily compact) over the unit

disc, trivial as a family of C∞ manifolds. Denote by Xt = π−1(t) its fiber, and

let Ωt ∈ H0(Xt,Ω2
Xt) be its holomorphic symplectic form, smoothly depending

on t. Using the C∞ trivialization to identify cohomology groups of the fibres,

assume that the cohomology class of Ωt does not depend on t ∈ ∆, and

H1(Xt,OXt) = 0. Let K ⊂ Xt0 be a compact subset. Then there exists an

open neighbourhood U ⊂∆ of t0 ∈∆, and an open subset Ũ ⊂ π−1(U), with

K ⊂ Ũ , with the following property. The set Ũ is locally trivially fibred over

U , with all fibres Ũ ∩π−1(t), t ∈ U isomorphic as holomorphic symplectic

manifolds.

We will apply this result when K is a bimeromorphically contractible La-

grangian submanifold.
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Family of Lagrangian subvarieties

Lemma 1: Let (M, It,Ωt), t ∈ [0,1] be a smooth family of C-symplectic
manifolds (not necessarily compact), with all Ωt exact, and Et ⊂ (M, It)
holomorphic Lagrangian subvarieties. Assume that H0,1(M, It) = 0. Then E

has a family Ut of open neighbourhoods in M such that (Ut, It,Ωt, E) is
trivialized by a flow of diffeomorphisms.

Proof. Step 1: Find the vector field Xt as in the proof of Moser’s lemma, in
such a way that d(ΩtyXt) = d

dtΩt. This is possible to do because H0,1(M, It) =
0. We want to modify Xt in such a way that it is tangent to E.
Let αt = ΩtyXt; this form satisfies dαt = d

dtΩt. Since E is Lagrangian,
Xt is tangent to E if and only if αt|E = 0. However, d

dtΩt|E = 0, hence
αt|E is closed. Shrinking M if necessary, we can assume that the restriction
H1(M)−→H1(E) is surjective. Then we replace αt by αt − γt, where γt is
closed on M and satisfies (αt− γt)|E = 0. Now we replace Xt by Yt such that
ΩtyYt = αt−γt. This is another solution of Moser’s equation d(ΩtyYt) = d

dtΩt,
but now Yt is tangent to E.

Step 2: Since E is compact, Yt can be integrated to a flow of diffeo-
morphisms in a neighbourhood of E mapping (I0,Ω0) to (It,Ωt), t ∈ [0,1].
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Weinstein normal form for holomorphic Lagrangian submanifolds

COROLLARY: Let (M, I,Ω) be a holomorphically symplectic manifold (not

necessarily compact) with Ω exact, and E ⊂ (M, I) a compact holomorphic

Lagrangian subvariety. Assume that H0,1(M, It) = 0 and the restriction map

H1(M)−→H1(E) is surjective. Assume, finally, that a neighbourhood of E

can be smoothly deformed to a neighbourhood of the zero section in T ∗E as

a C-symplectic manifold with exact holomorphic symplectic form. Then E

has a neighbourhood which is isomorphic to a neighbourhood of E in

T ∗E as a holomorphically symplectic manifold.

Proof: Now, Lemma 1 is used to trivialise this family in a neighbourhood of

E.
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Grauert-Riemenschneider theorem

The Grauert-Riemenschneider theorem takes care of the vanishing of H1(U,OU)
in an appropriate neighbourhood U of a bimeromorphically contractible sub-
variety.
THEOREM: (Grauert-Riemenschneider)
Let f : X −→ Y be a generically finite and surjective morphism of complex
varieties. Then Rif∗(KX) = 0, where Ri is the derived direct image and KX
the canonical bundle.
Proof: R. Lazarsfeld, Positivity in Algebraic Geometry. (Vol. I, page 257,
Theorem 4.3.9.)

COROLLARY: Let E ⊂ M be a contractible Lagrangian subvariety of a
holomorphic symplectic manifold. Then any open neighbourhood of E in
M contains a tubular neighbourhood U ⊃ E such that Hi(OE) = 0 for
any i > 0.

Proof: Let f : M −→M1 be the bimeromorphic contraction, mapping E to a
point x ∈ M1. Consider a Stein neighbourhood V 3 x, and let U := f−1(V ).
Since M is holomorphically symplectic, its canonical bundle is trivial, giv-
ing KM = OM . This implies that Rif∗(OU) = 0. The Grothendieck spec-
tral sequence with E2-table Hj(Rif∗(OU)) converges to Hi+j(OU), giving
Hk(OU) = Hk(f∗OU) = Hk(OV ) = 0 because V is Stein.
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Contractible holomorphic Lagrangian submanifolds

THEOREM: Let E be a smooth subvariety of a projective symplectic variety
X of dimension 2n. Assume that E can be contracted to a point. Then E
is isomorphic to CPn.
Proof: Y. Hu and S.-T. Yau, HyperKahler Manifolds and Birational Transformations, Adv.

Theor. Math. Phys. 6 (2002) 557-574, Theorem C.

There are two problems with the proof. First, it is based on a (very important,
interesting and insightful) paper K. Cho, Y. Miyaoka, and N.I. Shepherd-Barron, Char-

acterizations of projective spaces and applications and Applications to Complex Symplectic

Manifolds. Adv. Stud. Pure Math., 2002: 1-88 (2002).

which is famous for being mostly wrong. Second, it assumes that X is pro-
jective, and we want a local result.

The part of Cho-Miyaoka-Shepherd-Barron which we need was fixed by S. Ke-
bekus in Kebekus, S. Characterizing the projective space after Cho, Miyaoka and Shepherd-

Barron. In Complex geometry (Göttingen, 2000), pages 147-155. Kebekus also assumes
that X is projective, but his argument can be improved. In the end, we obtain

THEOREM: (Amerik, V.)
Let E be a compact complex submanifold of a holomorphic symplectic variety
X. Assume that E can be contracted to a point. Then E is isomorphic to
CPn.

13
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Deformation to the normal cone

Let X ⊂ M be a comples submanifold in a complex manifold. Deformation

to the normal cone is a holomorphic deformation of a neighbourhood of

X ⊂ M over the disk such that its central fiber is the total space of the

normal bundle NX, and the rest of the fibers are M . It is obtained as

follows.

Let X ⊂M be a complex subvariety. Consider a product M1 := M ×∆ of M

with the disk ∆, and let M̃1 be the blow-up of M1 in X × {0}. Denote by

π̃1 : X̃ −→∆ the blow-down composed with the projection. The preimage

π̃−1
1 (0) is a union of two irreducible components, the proper preimage of

M × {0}, denoted D1, and the blow-up divisor, denoted D2.

DEFINITION: The deformation to the normal cone is the complement

M̃ := M̃1\D1.

Clearly, the central fiber of the natural projection M̃ −→∆ is D2\(D1 ∩D2).

14
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Deformation to the normal cone

CLAIM: When X is smooth, and M is a tubular neighbourhood of X in

M , the complement D2\(D1 ∩ D2) is naturally isomorphic to NX, and the

“deformation to the normal cone” family π̃ : M̃ −→∆ is locally trivial

in smooth category.

Proof. Step 1: The blow-up divisor E = PNM1
X = P(NX ⊕ OX), and its

intersection with D1 is the set of all l ∈ P(NX ⊕OX) tangent to M ×{0}. We

identify this intersection with P(NX). This gives D2\(D1 ∩ D2) = P(NX ⊕
OX)\P(NX) = Tot(NX).

Step 2: Now, the tubular neighbourhood of X ⊂ M is diffeomorphic to

Tot(NX), hence all fibers of π̃ : M̃ −→∆ are diffeomorphic; later today we

will construct explicitly a vector field transversal the fibers of π and trivializing

this family.
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Deformation to the normal cone in holomorphic symplectic category

THEOREM 1: (Amerik, V.)

Let (M,Ω) be a holomorphically symplectic manifold, and X ⊂M a compact

holomorphic Lagrangian submanifold, isomorphic to CPn as shown above. As-

sume that M admits a proper, birational map which contracts X. Then there

exists a smooth, holomorphic deformation of a neighbourhood of X in M over

the disk ∆, such that its central fiber is biholomorphic to a neighbourhood

of X in T ∗X, the rest of the fibers are biholomorphic to a neighbourhood of

X in M , and the holomorphic symplectic form on T ∗X can be smoothly

extended to the holomorphic symplectic form on the rest of the fibers.

REMARK: Note that this deformation in complex analytic category is already

constructed: it is the “deformation to the normal cone” family. However, to

apply the C-symplectic Moser lemma, we need to have a smooth family

of holomorphically symplectic forms on its fibers.
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Deducing Weinstein theorem from the deformation to normal cone

COROLLARY: Let (M, I,Ω) be a holomorphically symplectic manifold (not

necessarily compact) with Ω exact, and E ⊂ (M, I) a compact holomorphic La-

grangian submanifold. Assume that E can be bimeromorphically contracted.

Then E is isomorphic to CPn. Moreover, E has a neighbourhood which

is biholomorphically symplectomorphic to a neighbourhood of CPn in

T ∗CPn.

Proof: Let π̃ : M̃ −→∆ be the holomorphically symplectic deformation to

the normal cone, constructed above. The fibers of π̃ are holomorphically

symplectic and admit bimeromorphic contraction to a Stein manifold. By

Grauert-Riemenschneider, the fibers Mt := π̃−1(t) satisfy H1(OMt
) = 0, hence

the assumptions of the non-compact version C-symplectic Moser lemma are

satisfied, and the family π̃ : M̃ −→∆ is trivial in certain neighbourhoof

of X ×∆.
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Deformation to the normal cone: preliminaries

We deduce the proof of Theorem 1 from the following propositions, which

will be proven later.

Proposition 1: Let (M,Ω) be a holomorphically symplectic manifold, and

X ⊂ M a compact holomorphic Lagrangian submanifold. Assume that M

admits a proper, birational map to a Stein variety which contracts X. Then

the natural map H0(OM)−→H0(OM/J iX) is surjective, for any i > 0

Proposition 2: Let (M,Ω) be a holomorphically symplectic manifold, and

X ⊂ M a compact holomorphic Lagrangian submanifold. Assume that M

admits a proper, birational map which contracts X. Then for any sec-

tion η0 of Ω1M |X there exists a closed 1-form η of Ω1M defined in a

neighbourhood of X such that η|X = η0.
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Deformation to the normal cone: the proof

Proof of Theorem 1. Step 1: Let π̃ : M̃ −→∆ be the deformation to the

normal cone. Consider a fiberwise holomorphic symplectic form Ω̃ := t−1Ω

on π̃−1(∆\0), where t is the parameter in ∆. To prove Theorem 1 it suffices

to extend this form smoothly to a holomorphically symplectic form on

the central fiber.

Step 2: Replacing M by a smaller neighbourhood of X, we will find a

holomorphic 1-form θ ∈ Ω1M such that dθ = Ω and θ|X = 0. This is done

as follows. Since Ω|X is exact, and a manifold is homotopy equivalent to its

sufficiently small neighbourhood, it would suffice to prove Theorem 1 when

Ω is exact, Ω = dη. Shrinking a neighbourhood of X if necessarily and using

Grauert-Riemenschneider again, we may also assume that H1(OM) = 0. Since

∂η0,1 = 0, this form is ∂-exact: there exists f ∈ C∞M such that ∂ = η0,1.

Replacing η by η− df , we obtain a (1,0)-form η such that dη = Ω. This form

is clearly holomorphic. Replacing η by θ := η− η0, where η0 is constructed as

in Proposition 2, we obtain that dθ = Ω and θ|X = 0.
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Deformation to the normal cone: the proof (2)

Step 3: Let M̃
π̃−→ ∆ be the deformation to the normal cone family, and t

the coordinate on ∆. In Step 3, we prove that the fiberwise form t−1Ω
can be smoothly extended to the central fiber.

Locally in X we can write X by a system of holomorphic equations q1 = q2 =
... = qn = 0, and the holomorphically symplectic form as Ω =

∑n
i=1 dpi ∧ dqi.

The coordinates on the central fiber of the deformation to the normal cone
family M̃

π̃−→ ∆ are given by p1, ..., pn, q̃1, ..., q̃n. Trivializing the neighbour-
hood of x×∆ ∈ X ×∆ along ∆ in the usual way, we write q̃i = t−1qi: this is
the standard way to write coordinates on the blow-up. Since qi = tq̃i, and qi
generate the ideal of X, a function on M̃ which vanishes on X is divisible by
t.

Writing θ in these coordinates, and using θ|X = 0, we obtain

θ =
n∑
i=1

uidqi + vidpi =
n∑
i=1

uitdq̃i + uiq̃idt+ vidpi

where vi|X = 0, hence divisible by t. The form θ1 :=
∑n
i=1 uitdq̃i + vidpi is

divisible by t and its fiberwise differential is equal to dθ, hence d(t−1θ1) is a

smooth form which is equal to t−1Ω on the general fibers of M̃
π̃−→ ∆.
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Deformation to the normal cone: the proof (3)

Step 4: It remains to show that d(t−1θ1) is non-degenerate in a neigh-

bourhood of X in the central fiber of M̃
π̃−→ ∆. Writing Ω =

∑n
i=1 dpi∧dqi

as above and passing to the coordinates qi = tq̃i, we obtain Ω =
∑n
i=1 tdpi ∧

dq̃i +
∑n
i=1 dpi ∧ q̃idt. Since the last term vanishes on the fibers, the form

Ω1 = t−1Ω =
∑n
i=1 dpi ∧ dq̃i is smooth, non-degenerate on the central fiber,

and equal to t−1Ω on the general fibers. This proves Theorem 1.
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Closed 1-forms in a neighbourhood of a contractible Lagrangian variety

Proposition 2: Let (M,Ω) be a holomorphically symplectic manifold, and
X ⊂ M a compact holomorphic Lagrangian submanifold. Assume that M
admits a proper, birational map which contracts X. Then for any sec-
tion η0 of Ω1M |X there exists a closed 1-form η of Ω1M defined in a
neighbourhood of X such that η|X = η0.

Proof. Step 1: Since X is rationally connected, the pullback map π∗ :
H0(Ω1M)−→H0(Ω1X) = 0 vanishes. Therefore, η0 vanishes on X, and we
may consider η0 as a section of the conormal bundle N∗X ⊂ Ω1M |X . We
interpret sections of N∗X as 1-jets of functions on M constant on X. To
find a closed form η such that η|X = η0, it would suffice to find a function
f ∈ OM such that its 1-jet in the normal direction to X is equal to
η0 ∈ H0(N∗X).

Step 2: Consider the exact sequence of sheaves

0−→ (JX)2 −→OM
δ−→ J1M |X −→ 0

where δ takes a function and gives its 1-jet in X, and JX is the ideal of X.
To finish the proof of Proposition 2, it would suffice to prove that δ is
surjective on global sections. This follows from Proposition 1, because
J1M |X = OM/(JX)2, and the natural map H0(OM)−→H0(OM/(JX)2) is
surjective.
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Mittag-Leffler systems

DEFINITION: Consider a diagram of sheaves ... → Hi → Hi−1 → ... → H0,

and let Hk,i be the image of Hk in Hi. Clearly, ... ⊂ Hk,i ⊂ Hk−1,i ⊂ Hk−2,i ⊂ ....
The diagram is called a Mittag-Leffler system if for each i, the sequence

Hk,i ⊃ Hk+1,i ⊃ ... stabilizes.

THEOREM: For any Mittag-Leffler system, the inverse limit commutes

with the cohomology: Hj(lim← Hk) = lim← Hj(Hk).

Proof: Stacks Project, Lemma 10.86.4.

DEFINITION: Let X ⊂ M be a complex subvariety, and J ⊂ OM an ideal

sheaf. We say that the sheaf J is supported in X if for some k > 0 we have

JkX ⊂ J ⊂ JX.

We change Proposition 1 to get more freedom in the choice of an ideal.
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Surjectivity of restrictions

Proposition 1’: Let (M,Ω) be a holomorphically symplectic manifold, and
X ⊂ M a compact holomorphic Lagrangian submanifold. Assume that M
admits a proper, birational map to a Stein variety which contracts X. Then
the natural map H0(OM)−→H0(Jk) is surjective, for any k > 0, and
some (and, therefore, any) ideal J supported in X.

Proof. Step 1: Denote by ÔM and ĴX the JX-adic completions. Clearly, sur-
jectivity of H0(OM)−→H0(Jk) implies the surjectivity of H0(ÔM)−→H0(Ĵk).
The converse implication follows from the Artin algebraization theo-
rem, which tells us that any formal solution of any system of equations over
the adic completion of a ring can be chosen in its strict Hensel completion
(the ring of germs of H0(OM) in X is clearly Henselian).

Step 2: From the exact sequence 0−→ Ĵk −→ ÔM −→ ÔM/Ĵk −→ 0 it follows
that the surjectivity of H0(ÔM)−→H0(Ĵk) is implied by H1(Ĵk) = 0. Since
J i is a Mittag-Leffler system, Proposition 2 would follow if we prove that
H1(Jk/Jk+1) = 0 for all k.

Step 3: We deduced Proposition 1 from the following lemma.
Lemma 1: Let X ⊂ M be a complex submanifold which admits a proper,
birational map to a Stein variety which contracts X. Then there exists an
ideal J supported in X such that Hi(Jk/Jk−1) = 0, for any i, k > 0.
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DEFINITION: A complex analytic space is called 1-convex if it admits a

proper holomorphic, bimeromorphic map to a Stein variety.

DEFINITION: Given a coherent sheaf A on X, denote by L(A) the complex

analytic space obtained as the relative spectrum of
⊕

Symk(A) over X. When

A is a vector bundle, L(A) is the total space A∗.

DEFINITION: A coherent sheaf A on a compact complex analytic space X

is called ample if for any coherent sheaf F on X there exists k > 0 such that

Symk(A) ⊗ F is globally generated. It is called cohomologically positive if

there exists k > 0 such that Hi(Symk(A) ⊗ F) = 0 for all i > 0, and weakly

positive if the zero section of L(A) admits a 1-convex neighbourhood.
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Ample sheaves on Moishezon manifolds: results of Vo Van Tan (2)

THEOREM: (Vo Van Tan)

These three conditions (ampleness, weak positivity, cohomological positivity)

are equivalent.

Proof: Vo Van Tan, On Grauert’s conjecture and the characterization of Moishezon spaces,

Commentarii Mathematici Helvetici volume 58, pages 678-686 (1983), Theorem 1.

THEOREM: (Vo Van Tan)

Let X ⊂ M be a bimeromorphically contractible subvariety, and JX its ideal.

Then there exists an ample ideal sheaf J supported at X.

Proof: Vo Van Tan, On Grauert’s conjecture and the characterization of Moishezon spaces,

Commentarii Mathematici Helvetici volume 58, pages 678-686 (1983), Theorem 2.

Lemma 1 immediately follows from this assertion, because a quotient

of an ample sheaf is ample, and the cohomology of an ample sheaf on CPn

vanish by Kodaira.
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