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Teichmuller space for symplectic structures

DEFINITION: Let I‘(/\QM) be the space of all 2-forms on a manifold M,
and Symp C (A2M) the space of all symplectic 2-forms. We equip M(A2M)
with C°°-topology of uniform convergence on compacts with all derivatives.
Then M(A2M) is a vector space, and Symp an infinite-dimensional (Fréchet)
manifold.

DEFINITION: Teichmuller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp / Diffg.

REMARK: Let I' := Diff /Diffy be the mapping class group of M. The
quotient Teichs /T = Symp / Diff, is identified with the set of symplectic
structures up to diffeomorphism.

DEFINITION: Two symplectic structures are called isotopic if they lie in
the same orbit of Diffg, and diffeomorphic is they lie in the same orbit of
Diff.
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Moser’s theorem

DEFINITION: Let M be compact. Define the period map
Per : Teichs — HQ(M, R) mapping a symplectic structure to its cohomology
class.

THEOREM: (Moser, 1965)
The Teichmuler space Teichg is a manifold (possibly, non-Hausdorff), and
the period map Per: Teichs — H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser’s lemma: Let wy, t € [0, 1] be a smooth family of symplectic structures
on a compact manifold M. Assume that the cohomology class [w;] € H2(M)
is constant in ¢t. Then all w; are diffeomorphic.

Proof of Moser’s theorem: The period map P: U — H?2(M,R) is a smooth
submersion of infinite-dimensional smooth manifolds. By Moser’'s lemma, the
fibers of P are O-dimensional. Therefore, P is locally a diffeomorphism. =
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The proof of Moser’s lemma

Moser’s lemma: Let wy, t € [0, 1] be a smooth family of symplectic structures
on a compact manifold M. Assume that the cohomology class [w:] € H2(M)
is constant in . Then there exists a smooth family W; ¢ Diffg(M) of
diffeomorphisms such that Wjwg = w;.

Proof: We construct W; as a solution of the equation W, 1d6\l';t = X4, where
X; € TM is a vector field depending on t € [0, 1].

Step 1: Since all wy are cohomologous, the form dc‘;zt IS exact. This gives

dc‘i‘zt = dny, where n; € A1(M) smoothly depends on t € [0,1]. Let X; be the

vector field which satisfies w2 Xy = n. Cartan’s formula gives Liey, w; =
d(wi o Xy) = dngy = %,

Step 2: Let W; be the flow of diffeomorphisms obtained by integrating X;.
dwi

By construction, LieXt Wy = dt Integrating it in t, we obtain
1dwt
o =/\ULie wdt:/ —dt = w1.
1%0 0 t X; Wt 0 dt 1
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,,.

T he eigenvalues of this operator are ++/—1. The corresponding eigenvalue
decomposition is denoted TM = 7% M @ T1.0(M).

DEFINITION: An almost complex structure is integrable if VX,Y € TLOM,
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

REMARK: The “usual definition”: complex structure is an atlas on a man-
ifold with differentials of all transition functions in GL(n,C).

THEOREM: (Newlander-Nirenberg)
These two definitions are equivalent.

REMARK: An almost complex structure I is uniquely determined by a
subbundle B ¢ TM ®p C such that TM r C = B ® B. Then we write

I=+/—-1 onBand I =—-—/—1 on B.
5
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Holomorphically symplectic manifolds

DEFINITION: Let (M,I) be a complex manifold, and Q € A2(M,C) a dif-
ferential form. We say that €2 is non-degenerate if kerQ2 N ITpxM = 0. We
say that it is holomorphically symplectic if it is non-degenerate, df2 = 0O,
and Q(IX,Y) =vV/-1Q(X,Y).

REMARK: The equation Q(IX,Y) = +v/—12Q2(X,Y) means that 2 is complex
linear with respect to the complex structure on Tr M induced by I.

REMARK: Consider the Hodge decomposition TeM = T19M & 701 M (de-
composition according to eigenvalues of I). Since Q(IX,Y) = /-1 Q(X,Y)
and I(Z) = —/—1 Z for any Z € T%1(M), we have ker(Q) > T%1(M). Since
kerQ2 NIpM = 0, real dimension of its kernel is at most dimp M, giving
dimg ker Q = dim M. Therefore, ker(Q) = 79111,

COROLLARY: Let €2 be a holomorphically symplectic form on a complex
manifold (M,I). Then [ is determined by 2 uniquely.
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C-symplectic structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a
bijective correspondence between the set of almost complex structures,
and the set of sub-bundles 791V c TM ®p C satisfying dim¢T%1M = n
and 791 M NTM = 0 (the last condition means that there are no real vectors
in 7100, that is, that T91M N T10M = 0).

Proof: Set I|y10y =+v/~1 and I|po1y =—v—1. =

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed
complex-valued form € on M is called C-symplectic if Q"1 =0 and Q"AQ"
IS @ non-degenerate volume form.

THEOREM: Let Q € A2(M,C) be a C-symplectic form, and
T (M) ={veTM®C | Q.v=0}.

Then Tg’l(M) satisfies assumptions of the claim above, hence defines an
almost complex structure I on M. If, in addition, €2 is closed, I IS
integrable.

Proof: Rank of € is 2n because Q"+l = 0 and it is non-degenerate. Then
ker Qpker Q2 = TeM. The relation [Tg’l(M),Tg’l(M)] C Tg’l(M) follows from
Cartan’s formula. =

-
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M,I1,2) be a holomorphically symplectic manifold, and
Sympg the space of all holomorphically symplectic forms. The quotient
Teichg = S[y)g?r%s is called the holomorphically symplectic Teichmuller
space, and the map Teichg — H2(M, C) taking (M, I,) to the cohomology
class [Q] € H2(M,C) the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is
immediately implied by the following version of Moser’'s lemma.

THEOREM: Let (M,I1;,€2;), t € [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
%] € H?(M,C) is constant, and H9Y(M, 1) = 0, where HOY(M,I,) =
H(M, O(ar.1,)) is cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms V; € Diffg(M), such
that V"¢ = €2;.
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Holomorphically symplectic Moser’s lemma

THEOREM: Let (M, I;,<2), t € [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
€] € H?(M,C) is constant, and H9(M,I,) = 0, where HO%Y(M, ;) =
H (M, O(ar,1,)) is cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms V; € Diffg(M), such
that V"¢ = €2;.

Proof. Step 1: If we find a vector field X; such that Liex, 2y = %Qt, we
have
t1 t1 th
VEQ =/ Lie th:/ Pl =0
£12°0 0 Xe et 0 dt 2
where V4 is a diffeomorphism flow integrating X;. It remains to find X; €
TpM.

Step 2: The contraction map A2OM ®@p TeM — ALO(M) is surjective (an
exercise).

Step 3: Since %Qt IS exact, one has %Qt = doy. If o has Hodge type (1,0),
we could obtain it as Q;1X; (Step 2), which gives %Qt = dop = d(Q2:1X3) =
Liex, Q2. It remains to find oy € AVO(M, I;) such that $Q; = da.

O]
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Holomorphically symplectic Moser’s lemma (2)
It remains to find X; € TrM such that Liey, Q; = £<.
Step 2: The contraction map A29M ®p T M — ALO(M) is surjective.

Step 3: Since %Qt is exact, one has %Qt = doy. If a4 has Hodge type (1,0),
we could obtain it as Q;.X; (Step 2), which gives 4 = doy = d(241X;) =
Liey, €. It remains to find o, € ALO(M, I;) such that $Q; = day.

Step 4: Let Q) := %0 and dim¢M = 2n. Differentiating QL = 0 in
t, we obtain 2, A Q} = 0. Since & = QP is a holomorphic volume form,
the multiplication map A%2(M) AR A22(M) is an isomorphism of vector
bundles. Then Q) A QP = 0 implies that Q] ¢ ALL(M) + AZ20(M).

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser’s lemma
Is implied by the following statement.

LEMMA: Let M be a complex manifold which satisfies H%1(M) = 0, and
n e ANLI(M) +A20(M) an exact form. Then n = da, for some o € ALO(M).
10
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Holomorphically symplectic Moser’s lemma (3)

LEMMA: Let M be a complex manifold which satisfies H%1(M) = 0, and
n e ALL(M) 4+ A209(M) an exact form. Then n = da, for some o € ALO(M).

Proof. Step 1: Let n = dB3, where 8 = gL.0 + 801 Since n € ALI(M) +
A20(M), we have 8(89°1) = 0. The first conomology of the complex (A%*(M), )
vanish, because H%1(M) = 0, hence %1 = 9¢y, for some ¢ € C>®M.

Step 2: This gives n = d(8 — di)), hence a := B —dy = 104 01 — 5y — pO:1
iIs a (1,0)-form which satisfies n = da. =

COROLLARY: Let CSymp be the space of all C-symplectic structures
with C°°-topology. Denote by Teichs the corresponding Teichmuller space,
Teichgo = D%?%E“ﬁ). Define the period map Per : Teichpy — H2(M,C) map-
ping 2 to its cohomology class. Then Per is locally a homeomorphism to

its image.

Proof: All fibers of Per are O-dimensional. m

11



C-symplectic structures M. Verbitsky
Local Torelli theorem
Bogomolov's local Torelli theorem can be stated as follows.

Theorem 1: Consider a holomorphically symplectic manifold (M, 2g). As-
sume that the Hodge-de Rham spectral sequence degenerates in HQ(MQO>
and in H'(Mgq,). Assume, moreover, that H29(Mq,) is generated by .
Let U C CSymp be a small neighbourhood of [2g] € CSymp, and Per :
U — H2(M,C) the period map. Then Per is a local homeomorphism to
the subset {n € H2(M,C) | n"*t1 =0}.

Proof: Local injectivity of the period map follows from Moser isotopy. It
remains to prove the surjectivity.

Let €, ¢t €] — ¢,e[ be a deformation of a C-symplectic form, and Qg = dd—%.

Differentiating QP =0, we obtain (n 4 1)} A Q7 = 0, which is equivalent
to ) € A20(Mq,) & AL1(Mg,).

n+1
Conversely, whenever Q] satisfies 2} € A20(Mgq,)®AL1(Mq,), we have dQC’it =

0, which gives Q11 =0 for all t.

Therefore, the surjectivity of the period map is implied if we prove the
following result.
12
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Surjectivity of the period map

PROPOSITION: In assumptions of Theorem 1, let €29 be a C-symplectic
structure, [n] € H2(M,C) a family of cohomology classes, ¢t €] — ¢,¢[, and
[Q4] := [Q0] + [§[n)dt. Assume that [n] A [27] = O for all t. Then, after
shrinking the interval | — ¢, ¢[ if necessary, [2;] can be represented by a
C-symplectic form <2; in such a way that »; .= % Is cohomologous to

[7¢].

Proof: Small deformations of a manifold with degenerate Hodge-de Rham
spectral sequence also have degenerate Hodge-de Rham, by semi-continuity of
HP9(M). Represent €2; as a function of t €] —¢,¢[, and let s be a (2,0)4(1,1)
form on Mg, representing [n:]. Then € is a solution of the following non-
linear differential equation

dS24

o

T his equation is non-linear, because the choice of the form »n; depends on £2;
however, this ODE can be solved for small values of t. m
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Lagrangian submanifolds and C-symplectic structures

DEFINITION: Let (M,S2) be a holomorphicalllly symplectic manifold, and
X C M a complex analytic subvariety. It is called holomorphic Lagrangian
if dimX = 3dim M, and Q|x =0 in all smooth points of X.

PROPOSITION: Let €2 be a C-symplectic form on M, and X C M a sub-
manifold, dimX = %dim M, such that @2|x = 0. Then X is holomorphic
Lagrangian with respect to the complex structure induced by (2.

Proof: Write Q2 = w1 + vV—1 wo, wWhere wq,wo are real forms. The complex
structure on M can be written as [ = w; ow2_1. However, w; map T'X to the
space of 1-forms vanishing on T'X, hence w1 ow2_1 map T°X to itself. m

We proof Voisin's theorem on deformation of Lagrangian submanifolds.

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let Q4 t €
] —e,¢[ be a family of C-symplectic structures, and X C Mg, a holomorphic
Lagrangian submanifold which satisfies dd’-lemma in A2(X). Assume that
the restriction £2;|x is exact. Then Xg = X C Mg, can be extended to a

continuous family X; C Mg, of holomorphic Lagrangian submanifolds.
14
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A proof of Voisin’s theorem

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let 4, t €
] —¢,¢[ be a family of C-symplectic structures, and X C Mg, a holomorphic
Lagrangian submanifold which satisfies dd’-lemma in A2(X). Assume that
the restriction £;|x is exact. Then Xg = X C Mg, can be extended to a
continuous family X; C Mg, of holomorphic Lagrangian submanifolds.

Proof. Step 1: Let [n:] be the cohomology class of th. Since the family
C2: IS uniquely determined by its image under the period map, and this image
is uniquely determined by the family [n:], it would suffice to find a family

©; of C-symplectic structures such that ©g = {2g, the derivative dgt IS

cohomologous to n:, and @t’Xo = 0.

Step 2: Let n € A29(Mg,) + AV1(Mg,) be a closed representative of the
class [n:] for the complex manifold Mg,. We find ©; as a solution of an
equation dgt = 1y —dayg, where n¢|x = dag|x. Then Voisin Theorem follows

from ©g|x =0 and %t/ = 0.

15
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A proof of Voisin’s theorem (2)

Step 2: Let n € A29(Mg,) + Ab1(Mg,) be a closed representative of the
class [n:] for the complex manifold Mg,. We find ©; as a solution of an
equation dggt = n¢ — dag, where n¢|x = dat|x, where X = Xg. Then Voisin

Theorem follows from ©g|xy = 0 and d@t|X = 0.

Step 3: Since n|x is exact, we can write n|x = dB¢, for a smooth family 3
of 1-forms on X. Since n; € A?9(Mg,) + AL (Mg,), we have (B = o,
where 9; means the 9-operator taken on Mg,.

Since Xq, is Kahler for small ¢, the dd“-lemma implies that there exists f €
C>®X such that dgy"" = ;80" = 9,0,f = —d(8;f). Then dB = dpL.0 — d(d,f).
Replacing g by 819 — 9, f, we may assume that n;|x = d3;, where g; is a
(1,0)-form.

Step 4: We extend B; to a smooth family oy of (1,0)-forms on M. Then
—day is a family of (2,0) + (1,1)-forms on Mg,, vanishing on X. We have
constructed a family ©; of C-symplectic structures vanishing on X, and
equivalent to ¢2;. =
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