C-symplectic structures and their applications: a new proof of Bogomolov's and Voisin's theorems.

Misha Verbitsky

Geometric structures on manifolds, HSE, 23.09.2021

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and Symp $\subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a vector space, and Symp an infinite-dimensional (Fréchet) manifold.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀.

REMARK: Let $\Gamma := \text{Diff} / \text{Diff}_0$ be the mapping class group of M. The quotient $\text{Teich}_s / \Gamma = \text{Symp} / \text{Diff}$, is identified with the set of symplectic structures up to diffeomorphism.

DEFINITION: Two symplectic structures are called **isotopic** if they lie in the same orbit of $Diff_0$, and **diffeomorphic** is they lie in the same orbit of Diff.

Moser's theorem

DEFINITION: Let M be compact. Define the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser's lemma: Let ω_t , $t \in [0, 1]$ be a smooth family of symplectic structures on a compact manifold M. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are diffeomorphic.

Proof of Moser's theorem: The period map $P: U \longrightarrow H^2(M, \mathbb{R})$ is a smooth submersion of infinite-dimensional smooth manifolds. By Moser's lemma, the fibers of P are 0-dimensional. **Therefore,** P **is locally a diffeomorphism.**

The proof of Moser's lemma

Moser's lemma: Let ω_t , $t \in [0, 1]$ be a smooth family of symplectic structures on a compact manifold M. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then there exists a smooth family $\Psi_t \in \text{Diff}_0(M)$ of diffeomorphisms such that $\Psi_t^* \omega_0 = \omega_t$.

Proof: We construct Ψ_t as a solution of the equation $\Psi_t^{-1} \frac{d\Psi_t}{dt} = X_t$, where $X_t \in TM$ is a vector field depending on $t \in [0, 1]$.

Step 1: Since all ω_t are cohomologous, the form $\frac{d\omega_t}{dt}$ is exact. This gives $\frac{d\omega_t}{dt} = d\eta_t$, where $\eta_t \in \Lambda^1(M)$ smoothly depends on $t \in [0, 1]$. Let X_t be the vector field which satisfies $\omega_t \,\lrcorner\, X_t = \eta_t$. Cartan's formula gives $\text{Lie}_{X_t} \,\omega_t = d(\omega_t \,\lrcorner\, X_t) = d\eta_t = \frac{d\omega_t}{dt}$.

Step 2: Let Ψ_t be the flow of diffeomorphisms obtained by integrating X_t . By construction, $\operatorname{Lie}_{X_t} \omega_t = \frac{d\omega_t}{dt}$. Integrating it in t, we obtain

$$\Psi_1^*\omega_0 = \int_0^1 \Psi_t \operatorname{Lie}_{X_t} \omega_t dt = \int_0^1 \frac{d\omega_t}{dt} dt = \omega_1.$$

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

REMARK: The "usual definition": complex structure is an atlas on a manifold with differentials of all transition functions in $GL(n, \mathbb{C})$.

THEOREM: (Newlander-Nirenberg) These two definitions are equivalent.

REMARK: An almost complex structure *I* is uniquely determined by a subbundle $B \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ such that $TM \otimes_{\mathbb{R}} \mathbb{C} = B \oplus \overline{B}$. Then we write $I = \sqrt{-1}$ on *B* and $I = -\sqrt{-1}$ on \overline{B} .

Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and $\Omega \in \Lambda^2(M, \mathbb{C})$ a differential form. We say that Ω is **non-degenerate** if ker $\Omega \cap T_{\mathbb{R}}M = 0$. We say that it is **holomorphically symplectic** if it is non-degenerate, $d\Omega = 0$, and $\Omega(IX, Y) = \sqrt{-1} \Omega(X, Y)$.

REMARK: The equation $\Omega(IX, Y) = \sqrt{-1}\Omega(X, Y)$ means that Ω is complex linear with respect to the complex structure on $T_{\mathbb{R}}M$ induced by *I*.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$ (decomposition according to eigenvalues of *I*). Since $\Omega(IX,Y) = \sqrt{-1} \Omega(X,Y)$ and $I(Z) = -\sqrt{-1} Z$ for any $Z \in T^{0,1}(M)$, we have $\ker(\Omega) \supset T^{0,1}(M)$. Since $\ker \Omega \cap T_{\mathbb{R}}M = 0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}} \ker \Omega = \dim M$. **Therefore,** $\ker(\Omega) = T^{0,1}M$.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

C-symplectic structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a bijective correspondence between the set of almost complex structures, and the set of sub-bundles $T^{0,1}M \subset TM \otimes_{\mathbb{R}} \mathbb{C}$ satisfying $\dim_{\mathbb{C}} T^{0,1}M = n$ and $T^{0,1}M \cap TM = 0$ (the last condition means that there are no real vectors in $T^{1,0}M$, that is, that $T^{0,1}M \cap T^{1,0}M = 0$).

Proof: Set $I|_{T^{1,0}M} = \sqrt{-1}$ and $I|_{T^{0,1}M} = -\sqrt{-1}$.

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and

 $T_{\Omega}^{0,1}(M) := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M)$ satisfies assumptions of the claim above, hence **defines an** almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable.

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and it is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Cartan's formula.

Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and Symp_S the space of all holomorphically symplectic forms. The quotient Teich_S := $\frac{\text{Symp}_S}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map Teich_S $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

We want to prove that **the period map is locally an embedding.** This is immediately implied by the following version of Moser's lemma.

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of holomorphic symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M,I_t)})$ is cohomology of the sheaf of holomorphic functions. Then there exists a smooth family of diffeomorphisms $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Holomorphically symplectic Moser's lemma

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of holomorphic symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M,I_t)})$ is cohomology of the sheaf of holomorphic functions. Then there exists a smooth family of diffeomorphisms $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Proof. Step 1: If we find a vector field X_t such that $\operatorname{Lie}_{X_t} \Omega_t = \frac{d}{dt} \Omega_t$, we have

$$V_{t_1}^* \Omega_0 = \int_0^{t_1} \operatorname{Lie}_{X_t} \Omega_t dt = \int_0^{t_1} \frac{d\Omega_t}{dt} dt = \Omega_{t_1}$$

where V_t is a diffeomorphism flow integrating X_t . It remains to find $X_t \in T_{\mathbb{R}}M$.

Step 2: The contraction map $\Lambda^{2,0}M \otimes_{\mathbb{R}} T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ is surjective (an exercise).

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \sqcup X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \sqcup X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

Holomorphically symplectic Moser's lemma (2)

It remains to find $X_t \in T_{\mathbb{R}}M$ such that $\operatorname{Lie}_{X_t}\Omega_t = \frac{d}{dt}\Omega_t$.

Step 2: The contraction map $\Lambda^{2,0}M \otimes_{\mathbb{R}} T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ is surjective.

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \lrcorner X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \lrcorner X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

Step 4: Let $\Omega'_t := \frac{d}{dt}\Omega_t$ and $\dim_{\mathbb{C}} M = 2n$. Differentiating $\Omega^{n+1}_t = 0$ in t, we obtain $\Omega'_t \wedge \Omega^n_t = 0$. Since $\Phi := \Omega^n_t$ is a holomorphic volume form, the multiplication map $\Lambda^{0,2}(M) \xrightarrow{\Lambda \Phi} \Lambda^{2n,2}(M)$ is an isomorphism of vector bundles. Then $\Omega'_t \wedge \Omega^n_t = 0$ implies that $\Omega'_t \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$.

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser's lemma **is implied by the following statement.**

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Holomorphically symplectic Moser's lemma (3)

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Proof. Step 1: Let $\eta = d\beta$, where $\beta = \beta^{1,0} + \beta^{0,1}$. Since $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$, we have $\overline{\partial}(\beta^{0,1}) = 0$. The first cohomology of the complex $(\Lambda^{0,*}(M),\overline{\partial})$ vanish, because $H^{0,1}(M) = 0$, hence $\beta^{0,1} = \overline{\partial}\psi$, for some $\psi \in C^{\infty}M$.

Step 2: This gives $\eta = d(\beta - d\psi)$, hence $\alpha := \beta - d\psi = \beta^{1,0} + \beta^{0,1} - \partial\psi - \beta^{0,1}$ is a (1,0)-form which satisfies $\eta = d\alpha$.

COROLLARY: Let CSymp be the space of all C-symplectic structures with C^{∞} -topology. Denote by Teich_C the corresponding Teichmüller space, Teich_C := $\frac{\text{CSymp}}{\text{Diff}_0(M)}$. Define **the period map** Per : Teich_C $\longrightarrow H^2(M, \mathbb{C})$ mapping Ω to its cohomology class. Then Per is locally a homeomorphism to its image.

Proof: All fibers of Per are 0-dimensional. ■

Local Torelli theorem

Bogomolov's local Torelli theorem can be stated as follows.

Theorem 1: Consider a holomorphically symplectic manifold (M, Ω_0) . Assume that the Hodge-de Rham spectral sequence degenerates in $H^2(M_{\Omega_0})$ and in $H^1(M_{\Omega_0})$. Assume, moreover, that $H^{2,0}(M_{\Omega_0})$ is generated by Ω_0 . Let $U \subset CSymp$ be a small neighbourhood of $[\Omega_0] \in CSymp$, and Per : $U \longrightarrow H^2(M, \mathbb{C})$ the period map. Then Per is a local homeomorphism to the subset $\{\eta \in H^2(M, \mathbb{C}) \mid \eta^{n+1} = 0\}$.

Proof: Local injectivity of the period map follows from Moser isotopy. It remains to prove the surjectivity.

Let Ω_t , $t \in] -\varepsilon, \varepsilon[$ be a deformation of a C-symplectic form, and $\Omega'_t := \frac{d\Omega_t}{dt}$. Differentiating $\Omega^{n+1}_t = 0$, we obtain $(n+1)\Omega'_t \wedge \Omega^n_t = 0$, which is equivalent to $\Omega'_t \in \Lambda^{2,0}(M_{\Omega_t}) \oplus \Lambda^{1,1}(M_{\Omega_t})$.

Conversely, whenever Ω'_t satisfies $\Omega'_t \in \Lambda^{2,0}(M_{\Omega_t}) \oplus \Lambda^{1,1}(M_{\Omega_t})$, we have $\frac{d\Omega^{n+1}_t}{dt} = 0$, which gives $\Omega^{n+1}_t = 0$ for all t.

Therefore, the surjectivity of the period map is implied if we prove the following result.

Surjectivity of the period map

PROPOSITION: In assumptions of Theorem 1, let Ω_0 be a C-symplectic structure, $[\eta_t] \in H^2(M, \mathbb{C})$ a family of cohomology classes, $t \in] - \varepsilon, \varepsilon[$, and $[\Omega_t] := [\Omega_0] + \int_0^t [\eta_t] dt$. Assume that $[\eta_t] \wedge [\Omega_t^n] = 0$ for all t. Then, after shrinking the interval $] - \varepsilon, \varepsilon[$ if necessary, $[\Omega_t]$ can be represented by a C-symplectic form Ω_t in such a way that $\eta_t := \frac{\Omega_t}{dt}$ is cohomologous to $[\eta_t]$.

Proof: Small deformations of a manifold with degenerate Hodge-de Rham spectral sequence also have degenerate Hodge-de Rham, by semi-continuity of $H^{p,q}(M)$. Represent Ω_t as a function of $t \in]-\varepsilon, \varepsilon[$, and let η_t be a (2,0)+(1,1) form on M_{Ω_t} representing $[\eta_t]$. Then Ω_t is a solution of the following non-linear differential equation

$$\frac{d\Omega_t}{dt} = \eta_t$$

This equation is non-linear, because the choice of the form η_t depends on Ω_t ; however, this ODE can be solved for small values of t.

Lagrangian submanifolds and C-symplectic structures

DEFINITION: Let (M, Ω) be a holomorphically symplectic manifold, and $X \subset M$ a complex analytic subvariety. It is called **holomorphic Lagrangian** if dim $X = \frac{1}{2} \dim M$, and $\Omega|_X = 0$ in all smooth points of X.

PROPOSITION: Let Ω be a C-symplectic form on M, and $X \subset M$ a submanifold, dim $X = \frac{1}{2} \dim M$, such that $\Omega|_X = 0$. Then X is holomorphic Lagrangian with respect to the complex structure induced by Ω .

Proof: Write $\Omega = \omega_1 + \sqrt{-1} \omega_2$, where ω_1, ω_2 are real forms. The complex structure on M can be written as $I = \omega_1 \circ \omega_2^{-1}$. However, ω_i map TX to the space of 1-forms vanishing on TX, hence $\omega_1 \circ \omega_2^{-1}$ map TX to itself.

We proof Voisin's theorem on deformation of Lagrangian submanifolds.

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let $\Omega_t, t \in$] $-\varepsilon, \varepsilon$ [be a family of C-symplectic structures, and $X \subset M_{\Omega_0}$ a holomorphic Lagrangian submanifold which satisfies dd^c -lemma in $\Lambda^2(X)$. Assume that the restriction $\Omega_t|_X$ is exact. Then $X_0 = X \subset M_{\Omega_0}$ can be extended to a continuous family $X_t \subset M_{\Omega_t}$ of holomorphic Lagrangian submanifolds.

A proof of Voisin's theorem

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let $\Omega_t, t \in$] $-\varepsilon, \varepsilon$ [be a family of C-symplectic structures, and $X \subset M_{\Omega_0}$ a holomorphic Lagrangian submanifold which satisfies dd^c -lemma in $\Lambda^2(X)$. Assume that the restriction $\Omega_t|_X$ is exact. Then $X_0 = X \subset M_{\Omega_0}$ can be extended to a continuous family $X_t \subset M_{\Omega_t}$ of holomorphic Lagrangian submanifolds.

Proof. Step 1: Let $[\eta_t]$ be the cohomology class of $\frac{d\Omega_t}{dt}$. Since the family Ω_t is uniquely determined by its image under the period map, and this image is uniquely determined by the family $[\eta_t]$, it would suffice to find a family Θ_t of C-symplectic structures such that $\Theta_0 = \Omega_0$, the derivative $\frac{d\Theta_t}{dt}$ is cohomologous to η_t , and $\Theta_t|_{X_0} = 0$.

Step 2: Let $\eta_t \in \Lambda^{2,0}(M_{\Theta_t}) + \Lambda^{1,1}(M_{\Theta_t})$ be a closed representative of the class $[\eta_t]$ for the complex manifold M_{Θ_t} . We find Θ_t as a solution of an equation $\frac{d\Theta_t}{dt} = \eta_t - d\alpha_t$, where $\eta_t|_X = d\alpha_t|_X$. Then Voisin Theorem follows from $\Theta_0|_X = 0$ and $\frac{d\Theta_t}{dt}|_X = 0$.

A proof of Voisin's theorem (2)

Step 2: Let $\eta_t \in \Lambda^{2,0}(M_{\Theta_t}) + \Lambda^{1,1}(M_{\Theta_t})$ be a closed representative of the class $[\eta_t]$ for the complex manifold M_{Θ_t} . We find Θ_t as a solution of an equation $\frac{d\Theta_t}{dt} = \eta_t - d\alpha_t$, where $\eta_t|_X = d\alpha_t|_X$, where $X = X_0$. Then Voisin **Theorem follows from** $\Theta_0|_X = 0$ and $\frac{d\Theta_t}{dt}|_X = 0$.

Step 3: Since $\eta_t|_X$ is exact, we can write $\eta_t|_X = d\beta_t$, for a smooth family β_t of 1-forms on X. Since $\eta_t \in \Lambda^{2,0}(M_{\Theta_t}) + \Lambda^{1,1}(M_{\Theta_t})$, we have $\overline{\partial}_t(\beta_t^{0,1}) = 0$, where $\overline{\partial}_t$ means the $\overline{\partial}$ -operator taken on M_{Θ_t} .

Since X_{Ω_t} is Kähler for small t, the dd^c -lemma implies that there exists $f \in C^{\infty}X$ such that $d\beta_t^{0,1} = \partial_t\beta_t^{0,1} = \partial_t\overline{\partial}_t f = -d(\partial_t f)$. Then $d\beta = d\beta^{1,0} - d(\partial_t f)$. Replacing β by $\beta^{1,0} - \partial_t f$, we may assume that $\eta_t|_X = d\beta_t$, where β_t is a (1,0)-form.

Step 4: We extend β_t to a smooth family α_t of (1,0)-forms on M. Then $\eta_t - d\alpha_t$ is a family of (2,0) + (1,1)-forms on M_{Θ_t} , vanishing on X. We have constructed a family Θ_t of C-symplectic structures vanishing on X, and equivalent to Ω_t .