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Teichmüller space for symplectic structures

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a vector space, and Symp an infinite-dimensional (Fréchet)

manifold.

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0.

REMARK: Let Γ := Diff /Diff0 be the mapping class group of M . The

quotient Teichs /Γ = Symp /Diff, is identified with the set of symplectic

structures up to diffeomorphism.

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diff0, and diffeomorphic is they lie in the same orbit of

Diff.
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Moser’s theorem

DEFINITION: Let M be compact. Define the period map

Per : Teichs −→H2(M,R) mapping a symplectic structure to its cohomology

class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Moser’s lemma: Let ωt, t ∈ [0,1] be a smooth family of symplectic structures

on a compact manifold M . Assume that the cohomology class [ωt] ∈ H2(M)

is constant in t. Then all ωt are diffeomorphic.

Proof of Moser’s theorem: The period map P : U −→H2(M,R) is a smooth

submersion of infinite-dimensional smooth manifolds. By Moser’s lemma, the

fibers of P are 0-dimensional. Therefore, P is locally a diffeomorphism.
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The proof of Moser’s lemma

Moser’s lemma: Let ωt, t ∈ [0,1] be a smooth family of symplectic structures

on a compact manifold M . Assume that the cohomology class [ωt] ∈ H2(M)

is constant in t. Then there exists a smooth family Ψt ∈ Diff0(M) of

diffeomorphisms such that Ψ∗tω0 = ωt.

Proof: We construct Ψt as a solution of the equation Ψ−1
t

dΨt
dt = Xt, where

Xt ∈ TM is a vector field depending on t ∈ [0,1].

Step 1: Since all ωt are cohomologous, the form dωt
dt is exact. This gives

dωt
dt = dηt, where ηt ∈ Λ1(M) smoothly depends on t ∈ [0,1]. Let Xt be the

vector field which satisfies ωtyXt = ηt. Cartan’s formula gives LieXt ωt =

d(ωtyXt) = dηt = dωt
dt .

Step 2: Let Ψt be the flow of diffeomorphisms obtained by integrating Xt.

By construction, LieXt ωt = dωt
dt . Integrating it in t, we obtain

Ψ∗1ω0 =
∫ 1

0
ΨtLieXt ωtdt =

∫ 1

0

dωt

dt
dt = ω1.
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

REMARK: The “usual definition”: complex structure is an atlas on a man-
ifold with differentials of all transition functions in GL(n,C).

THEOREM: (Newlander-Nirenberg)
These two definitions are equivalent.

REMARK: An almost complex structure I is uniquely determined by a
subbundle B ⊂ TM ⊗R C such that TM ⊗R C = B ⊕ B. Then we write
I =
√
−1 on B and I = −

√
−1 on B.
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Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.

6



C-symplectic structures M. Verbitsky

C-symplectic structures

CLAIM: Let M be a smooth 2n-dimensional manifold. Then there is a
bijective correspondence between the set of almost complex structures,
and the set of sub-bundles T0,1M ⊂ TM ⊗R C satisfying dimC T

0,1M = n
and T0,1M ∩TM = 0 (the last condition means that there are no real vectors
in T1,0M , that is, that T0,1M ∩ T1,0M = 0).

Proof: Set I
∣∣∣T1,0M =

√
−1 and I

∣∣∣T0,1M = −
√
−1 .

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed
complex-valued form Ω on M is called C-symplectic if Ωn+1 = 0 and Ωn∧Ωn

is a non-degenerate volume form.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and

T
0,1
Ω (M) := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M) satisfies assumptions of the claim above, hence defines an

almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is
integrable.

Proof: Rank of Ω is 2n because Ωn+1 = 0 and it is non-degenerate. Then
ker Ω⊕ker Ω = TCM . The relation [T0,1

Ω (M), T0,1
Ω (M)] ⊂ T0,1

Ω (M) follows from
Cartan’s formula.
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

SympS the space of all holomorphically symplectic forms. The quotient

TeichS := SympS
Diff0

is called the holomorphically symplectic Teichmüller

space, and the map TeichS −→H2(M,C) taking (M, I,Ω) to the cohomology

class [Ω] ∈ H2(M,C) the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is

immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of holomorphic sym-

plectic forms on a compact manifold. Assume that the cohomology class

[Ωt] ∈ H2(M,C) is constant, and H0,1(M, It) = 0, where H0,1(M, It) =

H1(M,O(M,It)) is cohomology of the sheaf of holomorphic functions. Then

there exists a smooth family of diffeomorphisms Vt ∈ Diff0(M), such

that V ∗t Ω0 = Ωt.

8



C-symplectic structures M. Verbitsky

Holomorphically symplectic Moser’s lemma

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of holomorphic sym-
plectic forms on a compact manifold. Assume that the cohomology class
[Ωt] ∈ H2(M,C) is constant, and H0,1(M, It) = 0, where H0,1(M, It) =
H1(M,O(M,It)) is cohomology of the sheaf of holomorphic functions. Then
there exists a smooth family of diffeomorphisms Vt ∈ Diff0(M), such
that V ∗t Ω0 = Ωt.

Proof. Step 1: If we find a vector field Xt such that LieXt Ωt = d
dtΩt, we

have

V ∗t1Ω0 =
∫ t1

0
LieXt Ωtdt =

∫ t1
0

dΩt

dt
dt = Ωt1

where Vt is a diffeomorphism flow integrating Xt. It remains to find Xt ∈
TRM.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective (an
exercise).

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),
we could obtain it as ΩtyXt (Step 2), which gives d

dtΩt = dαt = d(ΩtyXt) =
LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d

dtΩt = dαt.
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Holomorphically symplectic Moser’s lemma (2)

It remains to find Xt ∈ TRM such that LieXt Ωt = d
dtΩt.

Step 2: The contraction map Λ2,0M ⊗R TRM −→ Λ1,0(M) is surjective.

Step 3: Since d
dtΩt is exact, one has d

dtΩt = dαt. If αt has Hodge type (1,0),

we could obtain it as ΩtyXt (Step 2), which gives d
dtΩt = dαt = d(ΩtyXt) =

LieXt Ωt. It remains to find αt ∈ Λ1,0(M, It) such that d
dtΩt = dαt.

Step 4: Let Ω′t := d
dtΩt and dimCM = 2n. Differentiating Ωn+1

t = 0 in

t, we obtain Ω′t ∧ Ωn
t = 0. Since Φ := Ωn

t is a holomorphic volume form,

the multiplication map Λ0,2(M)
∧Φ−→ Λ2n,2(M) is an isomorphism of vector

bundles. Then Ω′t ∧Ωn
t = 0 implies that Ω′t ∈ Λ1,1(M) + Λ2,0(M).

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser’s lemma

is implied by the following statement.

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).
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Holomorphically symplectic Moser’s lemma (3)

LEMMA: Let M be a complex manifold which satisfies H0,1(M) = 0, and

η ∈ Λ1,1(M) + Λ2,0(M) an exact form. Then η = dα, for some α ∈ Λ1,0(M).

Proof. Step 1: Let η = dβ, where β = β1,0 + β0,1. Since η ∈ Λ1,1(M) +

Λ2,0(M), we have ∂(β0,1) = 0. The first cohomology of the complex (Λ0,∗(M), ∂)

vanish, because H0,1(M) = 0, hence β0,1 = ∂ψ, for some ψ ∈ C∞M.

Step 2: This gives η = d(β− dψ), hence α := β− dψ = β1,0 + β0,1− ∂ψ− β0,1

is a (1,0)-form which satisfies η = dα.

COROLLARY: Let CSymp be the space of all C-symplectic structures

with C∞-topology. Denote by TeichC the corresponding Teichmüller space,

TeichC := CSymp
Diff0(M). Define the period map Per : TeichC −→H2(M,C) map-

ping Ω to its cohomology class. Then Per is locally a homeomorphism to

its image.

Proof: All fibers of Per are 0-dimensional.
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Local Torelli theorem

Bogomolov’s local Torelli theorem can be stated as follows.

Theorem 1: Consider a holomorphically symplectic manifold (M,Ω0). As-
sume that the Hodge-de Rham spectral sequence degenerates in H2(MΩ0

)
and in H1(MΩ0

). Assume, moreover, that H2,0(MΩ0
) is generated by Ω0.

Let U ⊂ CSymp be a small neighbourhood of [Ω0] ∈ CSymp, and Per :
U −→H2(M,C) the period map. Then Per is a local homeomorphism to
the subset {η ∈ H2(M,C) | ηn+1 = 0}.

Proof: Local injectivity of the period map follows from Moser isotopy. It
remains to prove the surjectivity.

Let Ωt, t ∈] − ε, ε[ be a deformation of a C-symplectic form, and Ω′t := dΩt
dt .

Differentiating Ωn+1
t = 0, we obtain (n + 1)Ω′t ∧Ωn

t = 0, which is equivalent
to Ω′t ∈ Λ2,0(MΩt

)⊕ Λ1,1(MΩt
).

Conversely, whenever Ω′t satisfies Ω′t ∈ Λ2,0(MΩt
)⊕Λ1,1(MΩt

), we have
dΩn+1

t
dt =

0, which gives Ωn+1
t = 0 for all t.

Therefore, the surjectivity of the period map is implied if we prove the
following result.
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Surjectivity of the period map

PROPOSITION: In assumptions of Theorem 1, let Ω0 be a C-symplectic

structure, [ηt] ∈ H2(M,C) a family of cohomology classes, t ∈] − ε, ε[, and

[Ωt] := [Ω0] +
∫ t
0[ηt]dt. Assume that [ηt] ∧ [Ωn

t ] = 0 for all t. Then, after

shrinking the interval ]− ε, ε[ if necessary, [Ωt] can be represented by a

C-symplectic form Ωt in such a way that ηt := Ωt
dt is cohomologous to

[ηt].

Proof: Small deformations of a manifold with degenerate Hodge-de Rham

spectral sequence also have degenerate Hodge-de Rham, by semi-continuity of

Hp,q(M). Represent Ωt as a function of t ∈]−ε, ε[, and let ηt be a (2,0)+(1,1)

form on MΩt
representing [ηt]. Then Ωt is a solution of the following non-

linear differential equation

dΩt

dt
= ηt.

This equation is non-linear, because the choice of the form ηt depends on Ωt;

however, this ODE can be solved for small values of t.
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Lagrangian submanifolds and C-symplectic structures

DEFINITION: Let (M,Ω) be a holomorphicalllly symplectic manifold, and

X ⊂ M a complex analytic subvariety. It is called holomorphic Lagrangian

if dimX = 1
2 dimM , and Ω|X = 0 in all smooth points of X.

PROPOSITION: Let Ω be a C-symplectic form on M , and X ⊂ M a sub-

manifold, dimX = 1
2 dimM , such that Ω|X = 0. Then X is holomorphic

Lagrangian with respect to the complex structure induced by Ω.

Proof: Write Ω = ω1 +
√
−1 ω2, where ω1, ω2 are real forms. The complex

structure on M can be written as I = ω1 ◦ ω−1
2 . However, ωi map TX to the

space of 1-forms vanishing on TX, hence ω1 ◦ ω−1
2 map TX to itself.

We proof Voisin’s theorem on deformation of Lagrangian submanifolds.

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let Ωt, t ∈
] − ε, ε[ be a family of C-symplectic structures, and X ⊂ MΩ0

a holomorphic

Lagrangian submanifold which satisfies ddc-lemma in Λ2(X). Assume that

the restriction Ωt|X is exact. Then X0 = X ⊂ MΩ0
can be extended to a

continuous family Xt ⊂MΩt
of holomorphic Lagrangian submanifolds.
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A proof of Voisin’s theorem

THEOREM: (Voisin theorem). In assumptions of Theorem 1, let Ωt, t ∈
] − ε, ε[ be a family of C-symplectic structures, and X ⊂ MΩ0

a holomorphic

Lagrangian submanifold which satisfies ddc-lemma in Λ2(X). Assume that

the restriction Ωt|X is exact. Then X0 = X ⊂ MΩ0
can be extended to a

continuous family Xt ⊂MΩt
of holomorphic Lagrangian submanifolds.

Proof. Step 1: Let [ηt] be the cohomology class of dΩt
dt . Since the family

Ωt is uniquely determined by its image under the period map, and this image

is uniquely determined by the family [ηt], it would suffice to find a family

Θt of C-symplectic structures such that Θ0 = Ω0, the derivative dΘt
dt is

cohomologous to ηt, and Θt

∣∣∣X0
= 0.

Step 2: Let ηt ∈ Λ2,0(MΘt
) + Λ1,1(MΘt

) be a closed representative of the

class [ηt] for the complex manifold MΘt
. We find Θt as a solution of an

equation dΘt
dt = ηt−dαt, where ηt|X = dαt|X . Then Voisin Theorem follows

from Θ0|X = 0 and dΘt
dt |X = 0.
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A proof of Voisin’s theorem (2)

Step 2: Let ηt ∈ Λ2,0(MΘt
) + Λ1,1(MΘt

) be a closed representative of the

class [ηt] for the complex manifold MΘt
. We find Θt as a solution of an

equation dΘt
dt = ηt − dαt, where ηt|X = dαt|X , where X = X0. Then Voisin

Theorem follows from Θ0|X = 0 and dΘt
dt |X = 0.

Step 3: Since ηt|X is exact, we can write ηt|X = dβt, for a smooth family βt
of 1-forms on X. Since ηt ∈ Λ2,0(MΘt

) + Λ1,1(MΘt
), we have ∂t(β

0,1
t ) = 0,

where ∂t means the ∂-operator taken on MΘt
.

Since XΩt
is Kähler for small t, the ddc-lemma implies that there exists f ∈

C∞X such that dβ0,1
t = ∂tβ

0,1
t = ∂t∂tf = −d(∂tf). Then dβ = dβ1,0 − d(∂tf).

Replacing β by β1,0− ∂tf, we may assume that ηt|X = dβt, where βt is a

(1,0)-form.

Step 4: We extend βt to a smooth family αt of (1,0)-forms on M . Then

ηt− dαt is a family of (2,0) + (1,1)-forms on MΘt
, vanishing on X. We have

constructed a family Θt of C-symplectic structures vanishing on X, and

equivalent to Ωt.
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