Hyperholomorphic bundles

Misha Verbitsky

UFF, April 5, 2019

Calibrations

DEFINITION: (Harvey-Lawson, 1982)

Let $W \subset V$ be a *p*-dimensional subspace in a Euclidean space, and Vol(*W*) denote the Riemannian volume form of $W \subset V$, defined up to a sign. For any *p*-form $\eta \in \Lambda^p V$, let **comass** comass(η) be the maximum of $\frac{\eta(v_1, v_2, ..., v_p)}{|v_1||v_2|...|v_p|}$, for all *p*-tuples $(v_1, ..., v_p)$ of vectors in *V* and face be the set of planes $W \subset V$ where $\frac{\eta}{\operatorname{Vol}(W)} = \operatorname{comass}(\eta)$.

DEFINITION: A **precalibration** on a Riemannian manifold is a differential form with comass ≤ 1 everywhere.

DEFINITION: A calibration is a precalibration which is closed.

DEFINITION: Let η be a k-dimensional precalibration on a Riemannian manifold, and $Z \subset M$ a k-dimensional subvariety (we always assume that the Hausdorff dimension of the set of singular points of Z is $\leq k - 2$, because in this case a compactly supported differential form can be integrated over Z). We say that Z is calibrated by η if at any smooth point $z \in Z$, the space T_zZ is a face of the precalibration η .

Calibrations (2)

REMARK: Clearly, for any precalibration η , one has

$$\operatorname{Vol}(Z) \geqslant \int_{Z} \eta, \quad (*)$$

where Vol(Z) denotes the Riemannian volume of a compact Z, and the equality happens iff Z is calibrated by η . If, in addition, η is closed, the number $\int_Z \eta$ is a cohomological invariant. Then, the inequality (*) implies that Z minimizes the Riemannian volume in its homology class.

DEFINITION: A subvariety Z is called **minimal** if for any sufficiently small deformation Z' of Z in class C^1 , one has $Vol(Z') \ge Vol(Z)$.

REMARK: Calibrated subvarieties are obviously minimal.

EXAMPLE: (Wirtenger's inequality) Let ω be a Kähler form. Then $\frac{\omega^d}{d!2^d}$ is a calibration which calibrates *d*dimensional complex subvarieties. In patricular, complex subvarieties in Kähler manifolds are minimal.

REMARK: In most applications, **calibrations are parallel with respect to the Levi-Civita form.** To simplify the exposition, we tacitly assume that **all calibrations we consider are parallel.**

Calibrated instantons

DEFINITION: Let M be n-dimensional Riemannian manifold, and $\Phi \in \Lambda^{n-4}(M)$ a calibration. Consider the map $R : \Lambda^2(M) \longrightarrow \Lambda^2(M)$ taking η to $*(\eta \land \Phi)$. Let $\Lambda_1, ..., \Lambda_k \subset \Lambda^2(M)$ be its eigenspaces. Calibrated instanton is a vector bundle (B, ∇) with orthogonal connection over M with curvature $\Theta_B \in \Lambda^2(M) \otimes \text{End}(B)$ which satisfies $\Theta_B \in \Lambda_k \otimes \text{End}(B)$.

REMARK: This theory was developed by Donaldson, Thomas, Tian, Tao, and has same properties as the usual instanton equation: Uhlenbeck compactness, ellipticity, deformation theory and so on.

EXAMPLE: Let dim M = 4, $\Phi = 1$. In this case, $R^2 = 1$ and R = * has two eigenspaces, $\Lambda^2(M) = \Lambda^+(M) \oplus \Lambda^-(M)$. The calibrated instantons in this case are **ASD (anti-selfdual) connections** with $\Theta_B \in \Lambda^- \otimes \text{End}(B)$ and **selfdual connections** with $\Theta_B \in \Lambda^+ \otimes \text{End}(B)$.

EXAMPLE: (M, ω) is Kähler, $\Phi = \frac{\omega^2}{4}$. The instantons corresponding to the negative eigenspace are called **Yang-Mills bundles**, and **the corresponding** category is equivalent to the category of (poly-)stable holomorphic bundles on (M, ω) .

The $\overline{\partial}$ -operator on vector bundles

DEFINITION: A $\overline{\partial}$ -operator on a smooth bundle is a map $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on *B* can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

REMARK: If $\overline{\partial}$ is a holomorphic structure operator, then $\overline{\partial}^2 = 0$.

THEOREM: Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\overline{\partial}$ -operator, satisfying $\overline{\partial}^2 = 0$. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

DEFINITION: $\overline{\partial}$ -operator $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ on a smooth manifold is called a holomorphic structure operator, if $\overline{\partial}^2 = 0$.

REMARK: For any C^{∞} -bundle $(B,\overline{\partial})$ equipped with a holomorphic structure operator, the sheaf $\mathcal{B} := \ker \overline{\partial}$ is a holomorphic bundle, and $B = \mathcal{B} \otimes_{\mathcal{O}_M} C^{\infty}M$. This means that the category of holomorphic bundles is equivalent to the category of C^{∞} -bundles equipped with a holomorphic structure operator.

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition $\nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: B \longrightarrow \Lambda^{0,1}(M) \otimes B, \quad \nabla^{1,0}: B \longrightarrow \Lambda^{1,0}(M) \otimes B.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

REMARK: The curvature of a Chern connection on *B* is an End(*B*)-valued (1,1)-form: $\Theta_B \in \Lambda^{1,1}(\text{End}(B))$.

REMARK: A converse is true, too. Given a Hermitian connection ∇ on a vector bundle *B* with curvature in $\Lambda^{1,1}(\text{End}(B))$, we obtain a holomorphic structure operator $\overline{\partial} = \nabla^{0,1}$. Then, ∇ is a Chern connection of $(B,\overline{\partial})$.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the Levi-Civita connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

Hyperholomorphic connections

REMARK: Let *M* be a hyperkähler manifold. The group SU(2) of unitary quaternions acts on $\Lambda^*(M)$ multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle *B* over *M* is a Hermitian connection with SU(2)-invariant curvature $\Theta \in \Lambda^2(M) \otimes End(B)$.

REMARK: Since the invariant 2-forms satisfy $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$, **a hyperholomorphic connection defines a holomorphic structure on** *B* for each *I* induced by quaternions.

REMARK: Let M be a compact hyperkähler manifold. Then SU(2) preserves harmonic forms, hence **acts on cohomology.**

CLAIM: All Chern classes of hyperholomorphic bundles are SU(2)-invariant.

Proof: Use $\Lambda^{2p}(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda^{p,p}_I(M)$.

REMARK: Converse is also true (for stable bundles). See the next slide.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

slope(F) :=
$$\frac{1}{\operatorname{rank}(F)} \int_M \frac{c_1(F) \wedge \omega^{n-1}}{\operatorname{vol}(M)}$$
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if the curvature of its Chern connection satisfies $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$. A Yang-Mills connection is a Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

$$\int_{M} |\Theta_B|^2 \operatorname{Vol}_M$$

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let *B* be a holomorphic vector bundle. Then *B* admits Yang-Mills connection if and only if *B* is polystable. Moreover such a connection is unique.

Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let M be a hyperkähler manifold. Then for any SU(2)-invariant 2-form $\eta \in \Lambda^2(M)$, one has $\eta \wedge \omega^{n-1} = 0$.

COROLLARY: Any bundle admitting hyperholomorphic connection is Yang-Mills, of slope 0 (and hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given holomorphic vector bundle is unique (if exists). Such a bundle is called hyperholomorphic.

THEOREM: Let *B* be a polystable holomorphic bundle on (M, I), where (M, I, J, K) is hyperkähler. Then the (unique) **Yang-Mills connection on** *B* **is hyperholomorphic if and only if the cohomology classes** $c_1(B)$ and $c_2(B)$ are SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with SU(2)-invariant $c_1(B)$ and $c_2(B)$ is a hyperkähler variety (possibly singular).

COROLLARY: Let (M, I, J, K) be a hyperkähler manifold, and L = aI + bJ + cK a generic induced complex structure (that is, a complex structure outside of a certain countable set). Then any stable bundle on (M, L) is hyperholomorphic.

Calibrations on hyperkähler manifolds

THEOREM: (Grantcharov, V.) Let (M, I, J, K, g) be a hyperkähler manifold, $\omega_I, \omega_J, \omega_K$ the corresponding symplectic forms, and $\Theta_p := \frac{(\omega_I^2 + \omega_J^2 + \omega_K^2)^p}{c_p}$ the standard SU(2)-invariant 4*p*-form normalized by $c_p = \sum_{k=1}^p \frac{(p!)^2}{(k!)^2} (2k)! 4^{p-k}$. Then Θ_p is a calibration, and its faces are *p*-dimensional quaternionic subspaces of *TM*.

REMARK: The corresponding calibrated subvarieties are called **trianalytic subvarieties**. These are subvarieties which are complex analytic with respect to I, J and K.

THEOREM: In the above assumptions, let $\dim_{\mathbb{R}} M = 4n$, and $\Theta_{n-1} \in \Lambda^{4n-4}(M)$ be the calibration defined above. Then the corresponding operator $R(\eta) = *(\eta \land \Theta_{n-1})$ has two eigenspaces on $\Lambda^2(M)$, the space $\Lambda^2(M)^{SU(2)}$ of SU(2)-invariant forms and the space of 2-forms of weight 2 with respect to SU(2). The instantons associated with $\Lambda^2(M)^{SU(2)}$ are precisely the hyperholomorphic bundles.