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Calibrations

DEFINITION: (Harvey-Lawson, 1982)

Let W ⊂ V be a p-dimensional subspace in a Euclidean space, and Vol(W )

denote the Riemannian volume form of W ⊂ V , defined up to a sign. For any

p-form η ∈ ΛpV , let comass comass(η) be the maximum of
η(v1,v2,...,vp)
|v1||v2|...|vp|

, for all

p-tuples (v1, ..., vp) of vectors in V and face be the set of planes W ⊂ V where
η

Vol(W ) = comass(η).

DEFINITION: A precalibration on a Riemannian manifold is a differential

form with comass 6 1 everywhere.

DEFINITION: A calibration is a precalibration which is closed.

DEFINITION: Let η be a k-dimensional precalibration on a Riemannian

manifold, and Z ⊂M a k-dimensional subvariety (we always assume that the

Hausdorff dimension of the set of singular points of Z is 6 k − 2, because in

this case a compactly supported differential form can be integrated over Z).

We say that Z is calibrated by η if at any smooth point z ∈ Z, the space

TzZ is a face of the precalibration η.
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Calibrations (2)

REMARK: Clearly, for any precalibration η, one has

Vol(Z) >
∫
Z
η, (∗)

where Vol(Z) denotes the Riemannian volume of a compact Z, and the equal-
ity happens iff Z is calibrated by η. If, in addition, η is closed, the number∫
Z η is a cohomological invariant. Then, the inequality (*) implies that Z

minimizes the Riemannian volume in its homology class.

DEFINITION: A subvariety Z is called minimal if for any sufficiently small
deformation Z′ of Z in class C1, one has Vol(Z′) > Vol(Z).

REMARK: Calibrated subvarieties are obviously minimal.

EXAMPLE: (Wirtenger’s inequality)
Let ω be a Kähler form. Then ωd

d!2d
is a calibration which calibrates d-

dimensional complex subvarieties. In patricular, complex subvarieties in
Kähler manifolds are minimal.

REMARK: In most applications, calibrations are parallel with respect to
the Levi-Civita form. To simplify the exposition, we tacitly assume that all
calibrations we consider are parallel.
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Calibrated instantons

DEFINITION: Let M be n-dimensional Riemannian manifold, and Φ ∈
Λn−4(M) a calibration. Consider the map R : Λ2(M)−→ Λ2(M) taking η

to ∗(η∧Φ). Let Λ1, ...,Λk ⊂ Λ2(M) be its eigenspaces. Calibrated instanton

is a vector bundle (B,∇) with orthogonal connection over M with curvature

ΘB ∈ Λ2(M)⊗ End(B) which satisfies ΘB ∈ Λk ⊗ End(B).

REMARK: This theory was developed by Donaldson, Thomas, Tian, Tao,

and has same properties as the usual instanton equation: Uhlenbeck com-

pactness, ellipticity, deformation theory and so on.

EXAMPLE: Let dimM = 4, Φ = 1. In this case, R2 = 1 and R = ∗ has

two eigenspaces, Λ2(M) = Λ+(M) ⊕ Λ−(M). The calibrated instantons in

this case are ASD (anti-selfdual) connections with ΘB ∈ Λ−⊗End(B) and

selfdual connections with ΘB ∈ Λ+ ⊗ End(B).

EXAMPLE: (M,ω) is Kähler, Φ = ω2

4 . The instantons corresponding to the

negative eigenspace are called Yang-Mills bundles, and the corresponding

category is equivalent to the category of (poly-)stable holomorphic

bundles on (M,ω).
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The ∂-operator on vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,
using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

REMARK: If ∂ is a holomorphic structure operator, then ∂
2

= 0.

THEOREM: Let ∂ : V −→ Λ0,1(M) ⊗ V be a ∂-operator, satisfying ∂
2

= 0.
Then B := ker ∂ ⊂ V is a holomorphic vector bundle of the same rank.

DEFINITION: ∂-operator ∂ : V −→ Λ0,1(M) ⊗ V on a smooth manifold is
called a holomorphic structure operator, if ∂

2
= 0.

REMARK: For any C∞-bundle (B, ∂) equipped with a holomorphic structure
operator, the sheaf B := ker ∂ is a holomorphic bundle, and B = B ⊗OM
C∞M. This means that the category of holomorphic bundles is equivalent
to the category of C∞-bundles equipped with a holomorphic structure
operator.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-
morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition
∇ = ∇0,1 +∇1,0,

∇0,1 : B −→ Λ0,1(M)⊗B, ∇1,0 : B −→ Λ1,0(M)⊗B.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.

REMARK: The curvature of a Chern connection on B is an End(B)-valued
(1,1)-form: ΘB ∈ Λ1,1(End(B)).

REMARK: A converse is true, too. Given a Hermitian connection ∇ on
a vector bundle B with curvature in Λ1,1(End(B)), we obtain a holomorphic
structure operator ∂ = ∇0,1. Then, ∇ is a Chern connection of (B, ∂).
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms
ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation
along the Levi-Civita connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The
subgroup of GL(TxM) generated by parallel translations (along all paths) is
called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).

THEOREM: (Calabi-Yau)
A compact, Kähler, holomorphically symplectic manifold admits a unique
hyperkähler metric in any Kähler class.
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Hyperholomorphic connections

REMARK: Let M be a hyperkähler manifold. The group SU(2) of unitary
quaternions acts on Λ∗(M) multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B over
M is a Hermitian connection with SU(2)-invariant curvature Θ ∈ Λ2(M) ⊗
End(B).

REMARK: Since the invariant 2-forms satisfy Λ2(M)SU(2) =
⋂
I∈CP1 Λ1,1

I (M),
a hyperholomorphic connection defines a holomorphic structure on B

for each I induced by quaternions.

REMARK: Let M be a compact hyperkähler manifold. Then SU(2) preserves
harmonic forms, hence acts on cohomology.

CLAIM: All Chern classes of hyperholomorphic bundles are SU(2)-
invariant.

Proof: Use Λ2p(M)SU(2) =
⋂
I∈CP1 Λp,pI (M).

REMARK: Converse is also true (for stable bundles). See the next slide.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact
Kähler manifold M . Let

slope(F ) :=
1

rank(F )

∫
M

c1(F ) ∧ ωn−1

vol(M)
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all sub-
sheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a direct sum of stable
sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is
called Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connec-
tion satisfies ΘB ∧ ωn−1 = slope(F ) · IdB ·ωn. A Yang-Mills connection is a
Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral∫
M
|ΘB|2 VolM

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B
be a holomorphic vector bundle. Then B admits Yang-Mills connection if

and only if B is polystable. Moreover such a connection is unique.
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Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let M be a hyperkähler manifold. Then for any SU(2)-invariant
2-form η ∈ Λ2(M), one has η ∧ ωn−1 = 0.

COROLLARY: Any bundle admitting hyperholomorphic connection is
Yang-Mills, of slope 0 (and hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given
holomorphic vector bundle is unique (if exists). Such a bundle is called
hyperholomorphic.

THEOREM: Let B be a polystable holomorphic bundle on (M, I), where
(M, I, J,K) is hyperkähler. Then the (unique) Yang-Mills connection on B
is hyperholomorphic if and only if the cohomology classes c1(B) and
c2(B) are SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with
SU(2)-invariant c1(B) and c2(B) is a hyperkähler variety (possibly singular).

COROLLARY: Let (M, I, J,K) be a hyperkähler manifold, and L = aI +
bJ + cK a generic induced complex structure (that is, a complex structure
outside of a certain countable set). Then any stable bundle on (M,L) is
hyperholomorphic.
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Calibrations on hyperkähler manifolds

THEOREM: (Grantcharov, V.)

Let (M, I, J,K, g) be a hyperkähler manifold, ωI , ωJ , ωK the corresponding sym-

plectic forms, and Θp :=
(ω2
I+ω2

J+ω2
K)p

cp
the standard SU(2)-invariant 4p-form

normalized by cp =
∑p
k=1

(p!)2

(k!)2(2k)!4p−k. Then Θp is a calibration, and its

faces are p-dimensional quaternionic subspaces of TM.

REMARK: The corresponding calibrated subvarieties are called trianalytic

subvarieties. These are subvarieties which are complex analytic with respect

to I, J and K.

THEOREM: In the above assumptions, let dimRM = 4n, and Θn−1 ∈
Λ4n−4(M) be the calibration defined above. Then the corresponding operator

R(η) = ∗(η ∧Θn−1) has two eigenspaces on Λ2(M), the space Λ2(M)SU(2)

of SU(2)-invariant forms and the space of 2-forms of weight 2 with respect

to SU(2). The instantons associated with Λ2(M)SU(2) are precisely the

hyperholomorphic bundles.
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