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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms
ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation
along the Levi-Civita connection preserves I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: the 2-
form ωJ +

√
−1 ωK is holomorphic on (M, I).

Converse is also true:

THEOREM: (Calabi-Yau)
A compact, Kähler, holomorphically symplectic manifold admits a unique
hyperkähler metric in any Kähler class.

REMARK: In many cases, “hyperkähler manifold” means “holomorphi-
cally symplectic complex manifold of Kähler type”.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-
morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition
∇ = ∇0,1 +∇1,0,

∇0,1 : B −→ Λ0,1(M)⊗B, ∇1,0 : B −→ Λ1,0(M)⊗B.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.

REMARK: The curvature of a Chern connection on B is an End(B)-valued
(1,1)-form: ΘB ∈ Λ1,1(End(B)).

REMARK: A converse is true, too. Given a Hermitian connection ∇ on
a vector bundle B with curvature in Λ1,1(End(B)), we obtain a holomorphic
structure operator ∂ = ∇0,1. Then, ∇ is a Chern connection of (B, ∂).
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Hyperholomorphic connections

REMARK: Let M be a hyperkähler manifold. The group SU(2) = U(1,H)

of unitary quaternions acts on Λ∗(M) multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B over

M is a Hermitian connection with SU(2)-invariant curvature Θ ∈ Λ2(M) ⊗
End(B).

REMARK: Since the invariant 2-forms satisfy Λ2(M)SU(2) =
⋂
I∈CP1 Λ1,1

I (M),

a hyperholomorphic connection defines a holomorphic structure on B

for each I induced by quaternions.

REMARK: The hyperholomorphic connections induce holomorphic structure

on B over (M, I), (M,J), (M,K) and over (M,L) for any quaterion L ∈ H
such that L2 = −1.
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SU(2)-action on cohomology

REMARK: All manifolds will be tacitly assumed compact.
DEFINITION: Let Hm(M) =

⊕
p+q=mH

p,q(M, I) be cohomology of a Kähler
manifold (M, I). We represent U(1) as the unit circle in C The complex
rotation, or Hodge rotation is U(1)-action ρI(t) on Hm(M,R) is ρI(t)(α) =
tp−qα for α ∈ Hp,q(M).

PROPOSITION: Let M be a hyperkähler manifold, and G ⊂ Aut(H∗(M,R))
be group generated by the Hodge rotations for I, J,K. Then G is naturally
isomorphic to a quotient of SU(2) = U(1,H).

One of the reasons for this observation is the following theorem. Define
sp(1,1) as the Lie algebra of quaternionic-linear transforms of V = H2 pre-
serving a quaternionic pseudo-Hermitian form of signature (1,1).

THEOREM: Let ωI , ωJ , ωK be the Kähler forms on a hyperkähler mani-
fold, and and LI ,ΛI , LJ ,ΛJ , LK,ΛK the corresponding generators of the Lef-
schetz sl(2)-triples. Then the Lie algebra a generated by the action of
LI ,ΛI , LJ ,ΛJ , LK,ΛK on Λ∗(V ) is isomorphic to sp(1,1) ∼= so(1,4). More-
over, its Lie group contains the Hodge rotations associated with I, J,K.

REMARK: The group SU(2) generated by Hodge rotations acts on differ-
ential forms, and this action commutes with the Laplacian.
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Hyperholomorphic bundles

DEFINITION: Let F be a coherent sheaf on a Kähler manifold (M, I, ω).
The degree of F is

∫
M c1(F ) ∧ ωn−1

DEFINITION: Let F be a coherent sheaf over an n-dimensional Kähler
manifold (M,ω), and slope(F ) := degω F

rank(F ). A torsion-free sheaf F is called

stable if for all subsheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a
direct sum of stable sheaves of the same slope, F is called polystable.

DEFINITION: Let B be a stable bundle on a manifold (M, I, ω) equipped
with a hyperkähler structure (I, J,K). It is called hyperholomorphic if c1(B)
and c2(B) is SU(2)-invariant. It is called projectively hyperholomorphic if
c2(EndB) is SU(2)-invariant.

THEOREM: A bundle B is hyperholomorphic if and only if it admits a
Chern conection with its curvature form ΘB ∈ Λ2(M) ⊗ End(B) SU(2)-
invariant, and such connection is unique.

COROLLARY: Let L = aI+ bJ+ cK be a unit quaternion, L2 = −1; we use
the same letter to denote a complex structure aI+bJ+cK on M . Then there
is a bijective correspondence between the hyperholomorphic bundles on
(M, I) and on (M,L).
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Deforming the complex structure

DEFINITION: A hyperkähler manifold (M, I, J,K) is called of maximal

holonomy, or IHS if π1(M) = 0 and H2,0(M) = C.

THEOREM: Let L be a general complex structure of hyperkähler type on a

hyperkähler manifold M of maximal holonomy. Then all stable bundles on

(M,L) are hyperholomorphic for any hyperkähler structure on (M,L).

THEOREM: Let (M, I, J,K) be a maximal holonomy hyperkähler manifold,

B a hyperholomorphic bundle, and W ⊂ H2(M,R) the smallest rational sub-

space which contains the Kähler classes ωI , ωJ , ωK. Let I1 be a complex

deformation of I of hyperkähler type such that the corresponding holomor-

phic symplectic form ΩI1 satisfies [ΩI1] ∈ W ⊗R C. Choose a hyperkähler

structure (I1, J1,K1) such that ωI1, ωJ1
, ωK1

∈W . Then B can be deformed

to a hyperholomorphic bundle on B1 on (M, I1, J1,K1). Moreover, there

is a natural diffeomorphism from the moduli space of deformations of B to

the moduli of deformations of B1.

Idea of the proof: Use the twistor rotations for different hyperkähler struc-

tures (I ′, J ′,K′) with ωI ′, ωJ ′, ωK′ ∈W to connect I to I1.
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Deformation theory for stable bundles

DEFINITION: Let X be a Kähler manifold, and B a stable bundle on X. A
space M is a (coarse) moduli space of deformations of B if its points are
in bijective correspondence with isomorphism classes of stable bundles which
are deformationally equivalent to B, and for any deformation B of B over
Y ×X, there exists a unique morphism ϕ : Y −→M such that for all s ∈ Y ,
the restriction of B to {s} × X is isomorphic to the bundle on X associated
with the point ϕ(s) ∈M.

CLAIM: Let B be a stable bundle on a Kähler manifold (X, I), and M its
moduli space. Then locally around B the space M is naturally embedded
in the vector space H1(X,End(B)); the image is given by a sequence of
homogeneous equations of degree 2,3, ..., called obstructions.
CLAIM: The first of these obstructions is the Yoneda square map v → v2

taking v ∈ H1(X,End(B)) = Ext1(B,B) to v2 ∈ H2(X,End(B)) = Ext2(B,B).

DEFINITION: We say that the deformation of a stable bundle B has only
quadratic obstructions if all higher obstructions vanish, and the image of
M in H1(X,End(B)) is given by the equation v2 = 0.

THEOREM: Let (M, I, J,K) be a hyperkähler manifold, and B a stable
projectively hyperholomorphic bundle on (M, I). Then its deformation has
only quadratic obstructions.
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Trianalytic subvarieties

DEFINITION: A complex structure L = aI+bJ+cB, with a2+b2+c2 = 1, is

called induced complex structure, or induced by the quaternion action.

DEFINITION: Let (M, I, J,K, g) be a hyperkähler manifold. A complex sub-

variety Z ⊂ (M, I) is called trianalytic if it is complex analytic with respect

to J and K.

CLAIM: A trianalytic subvariety Z ⊂ (M, I) is complex analytic with re-

spect to any induced complex structure L = aI + bJ + cB.

THEOREM: Let Z ⊂ (M,L) be a complex subvariety in (M,L) for general

induced L = aI + bJ + cB. Then Z is trianalytic.

REMARK: There are trianalytic subvarieties in any deformation of a gen-

eralized Kummer manifold. However, a general deformation of a Hilbert

scheme of K3 has no positive-dimensional subvarieties. We don’t know

about O’Grady’s examples.
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Almost complex structures on real analytic varieties

DEFINITION: Let I be an ideal sheaf in the ring of real analytic functions
in an open ball B in Rn. The set of common zeroes of I is equipped with
a structure of ringed space, with O(B)/I as the structure sheaf. We denote
this ringed space by Spec(O(B)/I). A real analytic variety is a ringed space
which is locally isomorphic to Spec(O(B)/I), for some ideal I ⊂ O(B), such
that the natural sheaf morphism O(X)−→ C(X) is injective.

REMARK: This map does not need to be injective, even when X is a
real analytic space underlying a complex variety.

DEFINITION: An almost complex structure on a real analytic variety M
is an endomorphism I : Ω1(OM)−→Ω1(OM) satisfying I2 = − Id.

DEFINITION: Let X be a complex analytic variety. The real analytic
variety underlying X (denoted by Xr

R) is a ringed space with the same
topology as X, but with a different structure sheaf, denoted OXr

R
. The sheaf

OXr
R

is obtained as the image of the natural map from the sheaf of the real
analytic functions on X in C(X).

THEOREM: A real analytic variety underlying a given complex variety is
equipped with a natural almost complex structure. In this case, this
almost complex structure is called integrable.

10



Hyperholomorphic bundles M. Verbitsky

Deligne-Simpson singular hyperkähler varieties

Deligne and Simpson defined singular hyperkähler varieties in terms of twistor
spaces. I will give an equivalent definition, without mention twistors. This
definition is not equivalent to the modern definition, which is due to
Beauville.

DEFINITION: Let M be a real analytic variety equipped with almost complex
structures I, J and K, such that I ◦ J = −J ◦ I = K. Then M is called
an almost hypercomplex variety. We say that (M, I, J,K) is a singular
hypercomplex variety if (M, I) and (M,J) is integrable.
CLAIM: In this case, an almost complex structure L = aI + bJ + cK is
integrable for any unit quaternion L such that L2 = −1.

A caution: Take the quotient M/G of a hypercomplex manifold by an action
of a finite group G, preserving the hypercomplex structure. Then M/G is
not hypercomplex, unless G acts freely.

EXAMPLE: Let Z ⊂M be a trianalytic subvariety in a hyperkähler manifold.
Then Z is singular hypercomplex.

EXAMPLE: Let projectively hyperholomorphic bundle on a hyperkähler man-
ifold, and M moduli space of deformations of B. Then M is a hyperholo-
morphic variety.
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The desingularization theorem

THEOREM: Let M be a hypercomplex variety, and I an integrable induced

complex structure. Then the normalization of (M, I) is smooth. Moreover,

M is locally isomorphic to the variety
⋃
i Vi, where Vi ⊂ C2n is a collection of

quaternionic subspaces in C2n = Hn.

COROLLARY: Let Z be the moduli of projectively hyperholomorphic bun-

dles, or a trianalytic subvariety in a hyperkähler manifold. Then its normal-

ization is hyperkähler.

REMARK: If we could take care of compactness, this could bring us to

new examples of hyperkähler manifolds!

REMARK: In the next slide, I will say “has no subvarieties” meaning

“has no positive-dimensional subvarieties”.
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Manifolds without subvarieties

REMARK: A hyperkähler manifold (M, I, J,K) has no trianalytic subvarieties
if and only if (M,L) has no complex subvarieties for general induced
complex structure L = aI + bJ + cK.

THEOREM: Let (M, I, J,K) be a hyperkähler manifold with no trianalytic
subvarieties, and B a projectively hyperholomorphic bundle. Assume that
any semistable deformation of B is stable (this happens, for instance, when
rkB = 2 and c1(B) is not divisible by 2, or when rkB = 23 and c1(B) is not
divisible by 3). Then the deformation space of B is compact, and its
normalization is hyperkähler.

Idea of the proof: The deformation space is compactified by coherent
sheaves, which might only have isolated singularities because M has no triana-
lytic subvarieties. These isolated singularities can be resolved the same way as
we resolve the singularities of singular hypercomplex varieties. The resolution
gives a quaternionic Kähler instanton bundle over CP2n−1 = Tw(HPn). This
leads to a contradiction, because a smooth family of vector bundles needs to
have constant Chern classes.

EXAMPLE: Since a general deformation of K3[n] has no subvarieties, this
theorem can be applied to hyperholomorphic bundles on K3[n].
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact
Kähler manifold M . Let

slope(F ) :=
1

rank(F )

∫
M

c1(F ) ∧ ωn−1

vol(M)
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all sub-
sheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a direct sum of stable
sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is
called Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connec-
tion satisfies ΘB ∧ ωn−1 = slope(F ) · IdB ·ωn. A Yang-Mills connection is a
Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral∫
M
|ΘB|2 VolM

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B
be a holomorphic vector bundle. Then B admits Yang-Mills connection if

and only if B is polystable. Moreover such a connection is unique.
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Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let M be a hyperkähler manifold. Then for any SU(2)-invariant
2-form η ∈ Λ2(M), one has η ∧ ωn−1 = 0.

COROLLARY: Any bundle admitting hyperholomorphic connection is
Yang-Mills, of slope 0 (and hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given
holomorphic vector bundle is unique (if exists). Such a bundle is called
hyperholomorphic.

THEOREM: Let B be a polystable holomorphic bundle on (M, I), where
(M, I, J,K) is hyperkähler. Then the (unique) Yang-Mills connection on B
is hyperholomorphic if and only if the cohomology classes c1(B) and
c2(B) are SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with
SU(2)-invariant c1(B) and c2(B) is a hyperkähler variety (possibly singular).

COROLLARY: Let (M, I, J,K) be a hyperkähler manifold, and L = aI +
bJ + cK a generic induced complex structure (that is, a complex structure
outside of a certain countable set). Then any stable bundle on (M,L) is
hyperholomorphic.
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Bando and Siu: admissible connections with singularities

DEFINITION: Let M be Kähler and Z ⊂ M a closed subset of Hausdorff
codimension > 4. A Chern connection ∇ on a bundle B is called admissible
if the form Tr(ΘB ∧ΘB) is integrable, and |Tr ΘB| is bounded.

THEOREM: (Bando, Siu)
The bundle B on M\Z can be extended to a coherent sheaf on M if and
only if it admits an admissible connection.

THEOREM: (Bando, Siu)
A torsion-free coherent sheaf on M is polystable if and only if its non-
singular part admits an admissible connection with ΛΘB = const IdB.

DEFINITION: A polystable reflexive hyperholomorphic sheaf on a hy-
perkahler manifold is a direct sum of stable reflexive sheaves with c1(B), c2(B)
SU(2)-invariant.

THEOREM: A polystable reflexive hyperholomorphic sheaf F admits an
admissible connection with SU(2)-invariant curvature. Conversely, if F

is reflexive and admits an admissible connection with SU(2)-invariant
curvature, it is hyperholomorphic.
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