Hyperholomorphic bundles on hyperkähler manifolds

Misha Verbitsky

Seminario di algebra e geometria October 14, 2025, Università di Bologna

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I \cdot, \cdot)$, $\omega_J := g(J \cdot, \cdot)$, $\omega_K := g(K \cdot, \cdot)$.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the Levi-Civita connection preserves I, J, K.

REMARK: A hyperkähler manifold is **holomorphically symplectic:** the 2-form $\omega_I + \sqrt{-1} \omega_K$ is holomorphic on (M, I).

Converse is also true:

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

REMARK: In many cases, "hyperkähler manifold" means "holomorphically symplectic complex manifold of Kähler type".

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition $\nabla = \nabla^{0,1} + \nabla^{1,0}$.

$$\nabla^{0,1}: B \longrightarrow \Lambda^{0,1}(M) \otimes B, \quad \nabla^{1,0}: B \longrightarrow \Lambda^{1,0}(M) \otimes B.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

REMARK: The curvature of a Chern connection on B is an End(B)-valued (1,1)-form: $\Theta_B \in \Lambda^{1,1}(End(B))$.

REMARK: A converse is true, too. Given a Hermitian connection ∇ on a vector bundle B with curvature in $\Lambda^{1,1}(\operatorname{End}(B))$, we obtain a holomorphic structure operator $\overline{\partial} = \nabla^{0,1}$. Then, ∇ is a Chern connection of $(B, \overline{\partial})$.

Hyperholomorphic connections

REMARK: Let M be a hyperkähler manifold. The group $SU(2) = U(1, \mathbb{H})$ of unitary quaternions acts on $\Lambda^*(M)$ multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B over M is a Hermitian connection with SU(2)-invariant curvature $\Theta \in \Lambda^2(M) \otimes End(B)$.

REMARK: Since the invariant 2-forms satisfy $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$, a hyperholomorphic connection defines a holomorphic structure on B for each I induced by quaternions.

REMARK: The hyperholomorphic connections induce holomorphic structure on B over (M,I), (M,J), (M,K) and over (M,L) for any quaterion $L \in \mathbb{H}$ such that $L^2 = -1$.

SU(2)-action on cohomology

REMARK: All manifolds will be tacitly assumed compact.

DEFINITION: Let $H^m(M) = \bigoplus_{p+q=m} H^{p,q}(M,I)$ be cohomology of a Kähler manifold (M,I). We represent U(1) as the unit circle in $\mathbb C$ **The complex rotation**, or **Hodge rotation** is U(1)-action $\rho_I(t)$ on $H^m(M,\mathbb R)$ is $\rho_I(t)(\alpha) = t^{p-q}\alpha$ for $\alpha \in H^{p,q}(M)$.

PROPOSITION: Let M be a hyperkähler manifold, and $G \subset \operatorname{Aut}(H^*(M,\mathbb{R}))$ be group generated by the Hodge rotations for I,J,K. Then G is naturally isomorphic to a quotient of $SU(2) = U(1,\mathbb{H})$.

One of the reasons for this observation is the following theorem. Define $\mathfrak{sp}(1,1)$ as the Lie algebra of quaternionic-linear transforms of $V=\mathbb{H}^2$ preserving a quaternionic pseudo-Hermitian form of signature (1,1).

THEOREM: Let $\omega_I, \omega_J, \omega_K$ be the Kähler forms on a hyperkähler manifold, and and $L_I, \Lambda_I, L_J, \Lambda_J, L_K, \Lambda_K$ the corresponding generators of the Lefschetz $\mathfrak{sl}(2)$ -triples. Then the Lie algebra \mathfrak{a} generated by the action of $L_I, \Lambda_I, L_J, \Lambda_J, L_K, \Lambda_K$ on $\Lambda^*(V)$ is isomorphic to $\mathfrak{sp}(1,1) \cong \mathfrak{so}(1,4)$. Moreover, its Lie group contains the Hodge rotations associated with I, J, K.

REMARK: The group SU(2) generated by Hodge rotations acts on differential forms, and this action commutes with the Laplacian.

Hyperholomorphic bundles

DEFINITION: Let F be a coherent sheaf on a Kähler manifold (M, I, ω) . The degree of F is $\int_M c_1(F) \wedge \omega^{n-1}$

DEFINITION: Let F be a coherent sheaf over an n-dimensional Kähler manifold (M,ω) , and $\operatorname{slope}(F) := \frac{\deg_{\omega} F}{\operatorname{rank}(F)}$. A torsion-free sheaf F is called **stable** if for all subsheaves $F' \subset F$ one has $\operatorname{slope}(F') < \operatorname{slope}(F)$. If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: Let B be a stable bundle on a manifold (M, I, ω) equipped with a hyperkähler structure (I, J, K). It is called **hyperholomorphic** if $c_1(B)$ and $c_2(B)$ is SU(2)-invariant. It is called **projectively hyperholomorphic** if $c_2(\operatorname{End} B)$ is SU(2)-invariant.

THEOREM: A bundle B is hyperholomorphic **if and only if it admits a** Chern conection with its curvature form $\Theta_B \in \Lambda^2(M) \otimes \text{End}(B)$ SU(2)-invariant, and such connection is unique.

COROLLARY: Let L = aI + bJ + cK be a unit quaternion, $L^2 = -1$; we use the same letter to denote a complex structure aI + bJ + cK on M. Then there is a bijective correspondence between the hyperholomorphic bundles on (M, I) and on (M, L).

Deforming the complex structure

DEFINITION: A hyperkähler manifold (M, I, J, K) is called **of maximal** holonomy, or **IHS** if $\pi_1(M) = 0$ and $H^{2,0}(M) = \mathbb{C}$.

THEOREM: Let L be a general complex structure of hyperkähler type on a hyperkähler manifold M of maximal holonomy. Then all stable bundles on (M, L) are hyperholomorphic for any hyperkähler structure on (M, L).

THEOREM: Let (M,I,J,K) be a maximal holonomy hyperkähler manifold, B a hyperholomorphic bundle, and $W \subset H^2(M,\mathbb{R})$ the smallest rational subspace which contains the Kähler classes $\omega_I,\omega_J,\omega_K$. Let I_1 be a complex deformation of I of hyperkähler type such that the corresponding holomorphic symplectic form Ω_{I_1} satisfies $[\Omega_{I_1}] \in W \otimes_{\mathbb{R}} \mathbb{C}$. Choose a hyperkähler structure (I_1,J_1,K_1) such that $\omega_{I_1},\omega_{J_1},\omega_{K_1}\in W$. Then B can be deformed to a hyperholomorphic bundle on B_1 on (M,I_1,J_1,K_1) . Moreover, there is a natural diffeomorphism from the moduli space of deformations of B to the moduli of deformations of B_1 .

Idea of the proof: Use the twistor rotations for different hyperkähler structures (I', J', K') with $\omega_{I'}, \omega_{J'}, \omega_{K'} \in W$ to connect I to I_1 .

Deformation theory for stable bundles

DEFINITION: Let X be a Kähler manifold, and B a stable bundle on X. A space \mathcal{M} is a (coarse) moduli space of deformations of B if its points are in bijective correspondence with isomorphism classes of stable bundles which are deformationally equivalent to B, and for any deformation \mathcal{B} of B over $Y \times X$, there exists a unique morphism $\varphi: Y \longrightarrow \mathcal{M}$ such that for all $s \in Y$, the restriction of \mathcal{B} to $\{s\} \times X$ is isomorphic to the bundle on X associated with the point $\varphi(s) \in \mathcal{M}$.

CLAIM: Let B be a stable bundle on a Kähler manifold (X, I), and \mathcal{M} its moduli space. Then locally around B the space \mathcal{M} is naturally embedded in the vector space $H^1(X, \operatorname{End}(B))$; the image is given by a sequence of homogeneous equations of degree 2, 3, ..., called obstructions.

CLAIM: The first of these obstructions is the Yoneda square map $v \to v^2$ taking $v \in H^1(X, \text{End}(B)) = \text{Ext}^1(B, B)$ to $v^2 \in H^2(X, \text{End}(B)) = \text{Ext}^2(B, B)$.

DEFINITION: We say that the deformation of a stable bundle B has only quadratic obstructions if all higher obstructions vanish, and the image of \mathcal{M} in $H^1(X, \operatorname{End}(B))$ is given by the equation $v^2 = 0$.

THEOREM: Let (M, I, J, K) be a hyperkähler manifold, and B a stable projectively hyperholomorphic bundle on (M, I). Then its deformation has only quadratic obstructions.

Trianalytic subvarieties

DEFINITION: A complex structure L = aI + bJ + cB, with $a^2 + b^2 + c^2 = 1$, is called **induced complex structure**, or **induced by the quaternion action**.

DEFINITION: Let (M, I, J, K, g) be a hyperkähler manifold. A complex subvariety $Z \subset (M, I)$ is called **trianalytic** if it is complex analytic with respect to J and K.

CLAIM: A trianalytic subvariety $Z \subset (M, I)$ is complex analytic with respect to any induced complex structure L = aI + bJ + cB.

THEOREM: Let $Z \subset (M, L)$ be a complex subvariety in (M, L) for general induced L = aI + bJ + cB. Then Z is trianalytic.

REMARK: There are trianalytic subvarieties in any deformation of a generalized Kummer manifold. However, a general deformation of a Hilbert scheme of K3 has no positive-dimensional subvarieties. We don't know about O'Grady's examples.

Almost complex structures on real analytic varieties

DEFINITION: Let I be an ideal sheaf in the ring of real analytic functions in an open ball B in \mathbb{R}^n . The set of common zeroes of I is equipped with a structure of ringed space, with $\mathcal{O}(B)/I$ as the structure sheaf. We denote this ringed space by $Spec(\mathcal{O}(B)/I)$. A **real analytic variety** is a ringed space which is locally isomorphic to $Spec(\mathcal{O}(B)/I)$, for some ideal $I \subset \mathcal{O}(B)$, such that the natural sheaf morphism $\mathcal{O}(X) \longrightarrow C(X)$ is injective.

REMARK: This map does not need to be injective, even when X is a real analytic space underlying a complex variety.

DEFINITION: An almost complex structure on a real analytic variety M is an endomorphism $I: \Omega^1(\mathcal{O}_M) \longrightarrow \Omega^1(\mathcal{O}_M)$ satisfying $I^2 = -\operatorname{Id}$.

DEFINITION: Let X be a complex analytic variety. The **real analytic** variety underlying X (denoted by $X_{\mathbb{R}}^r$) is a ringed space with the same topology as X, but with a different structure sheaf, denoted $\mathcal{O}_{X_{\mathbb{R}}^r}$. The sheaf $\mathcal{O}_{X_{\mathbb{R}}^r}$ is obtained as the image of the natural map from the sheaf of the real analytic functions on X in C(X).

THEOREM: A real analytic variety underlying a given complex variety is equipped with a natural almost complex structure. In this case, this almost complex structure is called integrable.

Deligne-Simpson singular hyperkähler varieties

Deligne and Simpson defined singular hyperkähler varieties in terms of twistor spaces. I will give an equivalent definition, without mention twistors. This definition is not equivalent to the modern definition, which is due to Beauville.

DEFINITION: Let M be a real analytic variety equipped with almost complex structures I, J and K, such that $I \circ J = -J \circ I = K$. Then M is called **an almost hypercomplex variety.** We say that (M, I, J, K) is a **singular hypercomplex variety** if (M, I) and (M, J) is integrable.

CLAIM: In this case, an almost complex structure L = aI + bJ + cK is integrable for any unit quaternion L such that $L^2 = -1$.

A caution: Take the quotient M/G of a hypercomplex manifold by an action of a finite group G, preserving the hypercomplex structure. Then M/G is not hypercomplex, unless G acts freely.

EXAMPLE: Let $Z \subset M$ be a trianalytic subvariety in a hyperkähler manifold. Then Z is singular hypercomplex.

EXAMPLE: Let projectively hyperholomorphic bundle on a hyperkähler manifold, and \mathcal{M} moduli space of deformations of B. Then \mathcal{M} is a hyperholomorphic variety.

The desingularization theorem

THEOREM: Let M be a hypercomplex variety, and I an integrable induced complex structure. **Then the normalization of** (M,I) **is smooth.** Moreover, M is locally isomorphic to the variety $\bigcup_i V_i$, where $V_i \subset \mathbb{C}^{2n}$ is a collection of quaternionic subspaces in $\mathbb{C}^{2n} = \mathbb{H}^n$.

COROLLARY: Let Z be the moduli of projectively hyperholomorphic bundles, or a trianalytic subvariety in a hyperkähler manifold. **Then its normalization is hyperkähler**.

REMARK: If we could take care of compactness, this could bring us to new examples of hyperkähler manifolds!

REMARK: In the next slide, I will say "has no subvarieties" meaning "has no positive-dimensional subvarieties".

Manifolds without subvarieties

REMARK: A hyperkähler manifold (M, I, J, K) has no trianalytic subvarieties if and only if (M, L) has no complex subvarieties for general induced complex structure L = aI + bJ + cK.

THEOREM: Let (M,I,J,K) be a hyperkähler manifold with no trianalytic subvarieties, and B a projectively hyperholomorphic bundle. Assume that any semistable deformation of B is stable (this happens, for instance, when $\operatorname{rk} B = 2$ and $c_1(B)$ is not divisible by 2, or when $\operatorname{rk} B = 23$ and $c_1(B)$ is not divisible by 3). Then the deformation space of B is compact, and its normalization is hyperkähler.

Idea of the proof: The deformation space is compactified by coherent sheaves, which might only have isolated singularities because M has no trianalytic subvarieties. These isolated singularities can be resolved the same way as we resolve the singularities of singular hypercomplex varieties. The resolution gives a quaternionic Kähler instanton bundle over $\mathbb{C}P^{2n-1} = \mathrm{Tw}(\mathbb{H}P^n)$. This leads to a contradiction, because a smooth family of vector bundles needs to have constant Chern classes.

EXAMPLE: Since a general deformation of $K3^{[n]}$ has no subvarieties, this theorem can be applied to hyperholomorphic bundles on $K3^{[n]}$.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

$$slope(F) := \frac{1}{rank(F)} \int_{M} \frac{c_1(F) \wedge \omega^{n-1}}{vol(M)}.$$

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called **Yang-Mills** (Hermitian-Einstein) if the curvature of its Chern connection satisfies $\Theta_B \wedge \omega^{n-1} = \operatorname{slope}(F) \cdot \operatorname{Id}_B \cdot \omega^n$. A Yang-Mills connection is a Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

$$\int_M |\Theta_B|^2 \operatorname{Vol}_M$$

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B be a holomorphic vector bundle. Then B admits Yang-Mills connection if and only if B is polystable. Moreover such a connection is unique.

Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let M be a hyperkähler manifold. Then for any SU(2)-invariant 2-form $\eta \in \Lambda^2(M)$, one has $\eta \wedge \omega^{n-1} = 0$.

COROLLARY: Any bundle admitting hyperholomorphic connection is Yang-Mills, of slope 0 (and hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given holomorphic vector bundle is unique (if exists). Such a bundle is called hyperholomorphic.

THEOREM: Let B be a polystable holomorphic bundle on (M, I), where (M, I, J, K) is hyperkähler. Then the (unique) **Yang-Mills connection on** B **is hyperholomorphic if and only if the cohomology classes** $c_1(B)$ **and** $c_2(B)$ **are** SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with SU(2)-invariant $c_1(B)$ and $c_2(B)$ is a hyperkähler variety (possibly singular).

COROLLARY: Let (M, I, J, K) be a hyperkähler manifold, and L = aI + bJ + cK a generic induced complex structure (that is, a complex structure outside of a certain countable set). Then any stable bundle on (M, L) is hyperholomorphic.

Bando and Siu: admissible connections with singularities

DEFINITION: Let M be Kähler and $Z \subset M$ a closed subset of Hausdorff codimension \geqslant 4. A Chern connection ∇ on a bundle B is called **admissible** if the form $\text{Tr}(\Theta_B \wedge \Theta_B)$ is integrable, and $|\text{Tr}\Theta_B|$ is bounded.

THEOREM: (Bando, Siu)

The bundle B on $M \setminus Z$ can be extended to a coherent sheaf on M if and only if it admits an admissible connection.

THEOREM: (Bando, Siu)

A torsion-free coherent sheaf on M is polystable if and only if its non-singular part admits an admissible connection with $\Lambda \Theta_B = const \operatorname{Id}_B$.

DEFINITION: A polystable reflexive hyperholomorphic sheaf on a hyperkahler manifold is a direct sum of stable reflexive sheaves with $c_1(B), c_2(B)$ SU(2)-invariant.

THEOREM: A polystable reflexive hyperholomorphic sheaf F admits an admissible connection with SU(2)-invariant curvature. Conversely, if F is reflexive and admits an admissible connection with SU(2)-invariant curvature, it is hyperholomorphic.