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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form. The set of all Kähler classes is called

Kähler cone.
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Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are Kähler. Then (M, I, J,K, g) is

called hyperkähler.

CLAIM: A hyperkähler manifold (M, I, J,K) is holomorphically symplectic

(equipped with a holomorphic, non-degenerate 2-form). Then M is equipped

with 3 symplectic forms ωI, ωJ, ωK.

LEMMA: The form Ω := ωJ+
√
−1ωK is a holomorphic symplectic 2-form

on (M, I).

THEOREM: (Calabi-Yau, 1978) Let M be a compact, holomorphically sym-

plectic Kähler manifold. Then M admits a hyperkähler metric, which is

uniquely determined by the cohomology class of its Kähler form ωI.
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Eugenio Calabi,

born 11 May 1923
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Levi-Civita connection and Kähler geometry

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) (M, I, g) is Kähler

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes
all contractible loops instead, Vγ,∇ generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x ∈M.
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The Berger’s list

THEOREM: (de Rham)

A complete, simply connected Riemannian manifold with non-irreducible holon-

omy splits as a Riemannian product.

THEOREM: (Berger’s classification of holonomies, 1955)

Let G be an irreducible holonomy group of a Riemannian manifold which is

not locally symmetric. Then G belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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Marcel Berger,

14 April 1927 – 15 October 2016
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Subject of these lectures

1. Determine the shape of the Kähler cone of a hyperkähler manifold. It

turns out that it is determined by a quadratic inequality and a set of linear

inequaities associated with the rational curves.

2. Interpret various quantities associated with a hyperkäher manifold, such

as its automorphism group and its moduli space, im terms of the shape of

the Kähler cone.

3. Associate a hyperbolic manifold to each hyperkähler manifold. Interpret

the statement about the shape of the Kähler cone as a statement about this

manifold.

4. Using ergodic theory and hyperbolic geometry, prove that the group of

holomorphic automorphisms of a hyperkähler manifold acts on the polyhedral

faces of its Kähler cone with finitely many orbits (“Morrison-Kawamata cone

conjecture”).

The results are obtained in a serie of joint papers with Ekaterina

Amerik.
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Calabi-Yau manifolds

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. We consider K(M) as a holomorphic line bundle,

K(M) = ΩnM . Denote by ΘK the curvature of the connection on K(M)

induced by Levi-Civita connection. The Ricci curvature Ric of M is a sym-

metric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature

vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a

finite covering which is Calabi-Yau. This is due to Bogomolov.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-

Yau manifold, any holomorphic p-form η is parallel with respect to the

Levi-Civita connection: ∇(η) = 0.

REMARK: Its proof is based on spinors: η gives a harmonic spinor, and on

a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting

a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-

terior power of a holomorphic symplectic form is a non-degenerate section

of canonical bundle.
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Hyperkähler manifold

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-

Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically

symplectic manifold lies in Sp(n) (a group of complex unitary matrices

preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kähler manifold with a Calabi-

Yau metric is called hyperkähler.

REMARK: Since Sp(n) = SU(H, n), a hyperkähler manifold admits quater-

nionic action in its tangent bundle.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic

symplectic form outside of singularities, which are all of form C2/±1. Then

its resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T , then all the singularities

of T/±1 are of this form. Its resolution T̃/±1 is called a Kummer surface.

It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and

let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic

to the Kummer surface ˜T/±1.
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K3 surfaces

DEFINITION: A K3-surface is a deformation of a Kummer surface.

“K3: Kummer, Kähler, Kodaira” (a name is due to A. Weil).

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”

THEOREM: Any complex compact surface with c1(M) = 1 and H1(M) = 0
is isomorphic to K3. Moreover, it is hyperkähler.
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Hilbert schemes

REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds of maximal holonomy are these 2 and the three series: tori,
Hilbert schemes of K3, and generalized Kummer.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with π1(M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach’s solution of Hilbert’s
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M̃ of M which
is a product of Kaehler manifolds of the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,
with all Mi, Ki simply connected, T a torus, and Hol(Ml) = Sp(nl), Hol(Kl) =
SU(ml)
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic χ(M) of a Kähler man-
ifold is a sum

∑
(−1)p dimHp,0(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, χ(M) can be ex-
pressed as a polynomial expressions of the Chern classes, χ(M) = tdn
where tdn is an n-th component of the Todd polynomial,

td(M) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 +

1

720
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

22− c4) + ...

REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore χ(M̃) = pχ(M) for any unramified
p-fold covering M̃ −→M.

REMARK: Bochner’s vanishing and the classical theory of invariants imply:
1. When Hol(M) = SU(n), we have dimHp,0(M) = 1 for p = 1, n, and

0 otherwise. In this case, χ(M) = 2 for even n and 0 for odd.
2. When Hol(M) = Sp(n),we have dimHp,0(M) = 1 for even p with

0 6 p 6 2n, and 0 otherwise. In this case, χ(M) = n+ 1.

COROLLARY: π1(M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU(2n + 1), π1(M) is finite by Cheeger-Gromoll, but can be
non-trivial.
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