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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz,Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, [%y) =
—qg(y, Iz), hence w(x,y) := g(x, [y) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler
class of M, and w the Kahler form. The set of all Kahler classes is called
Kahler cone.
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Hyperkahler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure
operators I,J, K : TM —s T'M, satisfying the quaternionic relation 2 = J2 =
K? = JJK = —1Id. Suppose that I, J, K are Kahler. Then (M,I,J, K,g) is
called hyperkahler.

CLAIM: A hyperkahler manifold (M, I, J, K) is holomorphically symplectic
(equipped with a holomorphic, non-degenerate 2-form). Then M is equipped
with 3 symplectic forms wy, wj, wg.

LEMMA: The form Q2 .= wj++v—1lwg is a holomorphic symplectic 2-form
on (M,I). =

THEOREM: (Calabi-Yau, 1978) Let M be a compact, holomorphically sym-
plectic Kahler manifold. Then M admits a hyperkahler metric, which is
uniquely determined by the cohomology class of its Kahler form wjy.
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Eugenio Calabi,
born 11 May 1923
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Levi-Civita connection and Kahler geometry

DEFINITION: Let (M,g) be a Riemannian manifold. A connection V is
called orthogonal if V(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry’)
For any Riemannian manifold, the Levi-Civita connection exists,
and it is unique.

THEOREM: Let (M,1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) (M, 1I,q) is Kahler

(ii) One has V(I) = 0, where V is the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B, V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, ¢ : Bz — B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~v. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(¢) = 0 for some tensor ¢ € B®¥" g (B*)®J, the holonomy
group preserves o.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
evi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T;:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(TxM, glz, I|z) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point = € M.
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The Berger’s list

THEOREM: (de Rham)
A complete, simply connected Riemannian manifold with non-irreducible holon-

omy splits as a Riemannian product.

THEOREM: (Berger’s classification of holonomies, 1955)
Let G be an irreducible holonomy group of a Riemannian manifold which is
not locally symmetric. Then G belongs to the Berger’s list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R=" Kahler manifolds
SU(n) acting on R°", n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*™ hyperkdhler manifolds
Sp(n) x Sp(1)/{£1} quaternionic-Kahler
acting on R4, n > 1 manifolds
G acting on R’ Go>-manifolds
Spin(7) acting on R® Spin(7)-manifolds

-
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Marcel Berger,
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Subject of these lectures

1. Determine the shape of the Kahler cone of a hyperkahler manifold. It
turns out that it is determined by a quadratic inequality and a set of linear
inequaities associated with the rational curves.

2. Interpret various quantities associated with a hyperkaher manifold, such
as its automorphism group and its moduli space, im terms of the shape of
the Kahler cone.

3. Associate a hyperbolic manifold to each hyperkahler manifold. Interpret
the statement about the shape of the Kahler cone as a statement about this
manifold.

4. Using ergodic theory and hyperbolic geometry, prove that the group of
holomorphic automorphisms of a hyperkahler manifold acts on the polyhedral
faces of its Kahler cone with finitely many orbits (“Morrison-Kawamata cone
conjecture’).

The results are obtained in a serie of joint papers with Ekaterina

Amerik.
O



Hyperkahler geometry and hyperbolic gometry M. Verbitsky

Calabi-Yau manifolds

DEFINITION:.:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢y (M,Z) = 0.

DEFINITION: Let (M, I,w) be a Kaehler n-manifold, and K(M) := A™O(M)
its canonical bundle. We consider K(M) as a holomorphic line bundle,
K(M) = Q"M. Denote by ©j the curvature of the connection on K(M)
induced by Levi-Civita connection. The Ricci curvature Ric of M is a sym-
metric 2-form Ric(x,y) = O (z, [y).

DEFINITION: A Kahler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)
Let (M, I,g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kahler manifold has a
finite covering which is Calabi-Yau. This is due to Bogomolov.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form n is parallel with respect to the
Levi-Civita connection: V(n) = 0.

REMARK: Its proof is based on spinors: n gives a harmonic spinor, and on
a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-

terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.
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Hyperkahler manifold

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Kahler manifold with a Calabi-
Yau metric is called hyperkahler.

REMARK: Since Sp(n) = SU(H, n), a hyperkahler manifold admits quater-
nionic action in its tangent bundle.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T*CP"™ (Calabi).

REMARK: T*CP! is a resolution of a singularity Cz/il.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic
symplectic form outside of singularities, which are all of form (CQ/il. Then
iIts resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities

of T'/41 are of this form. Its resolution T/4+1 is called a Kummer surface.
It is holomorphically symplectic.

REMARK: Take a symmetric square SmeT, with a natural action of T', and
let T[2] be a blow-up of a singular divisor. Then Tl2] is naturally isomorphic
to the Kummer surface 7'/+1.
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K3 surfaces
DEFINITION: A K3-surface is a deformation of a Kummer surface.

“K3: Kummer, Kahler, Kodaira” (a name is due to A. Weil).

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”

THEOREM: Any complex compact surface with ¢;(M) =1 and HY(M) =0
Is iIsomorphic to K3. Moreover, it is hyperkahler.
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Hilbert schemes
REMARK: A complex surface is a 2-dimensional complex manifold.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O’'Grady. All known compact hyperkaehler
manifolds of maximal holonomy are these 2 and the three series: tori,
Hilbert schemes of K3, and generalized Kummer.

15



Hyperkahler geometry and hyperbolic gometry M. Verbitsky

Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Rieman-
nian manifold with w1 (M) infinite. Then a universal covering of M is a
product of R and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian
manifold is “virtually polycyclic”’: it is projected to a free abelian sub-
group with finite kernel.

REMARK: This is equivalent to any compact Ricci-flat manifold having a
finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's
18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov’'s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M of M which
IS a product of Kaehler manifolds of the following form:

M=Tx M x..xMxKyx..xKj

with all M;, K; simply connected, T a torus, and Hol(M;) = Sp(n;), Hol(kK;) =
SU(mp)
16
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Holomorphic Euler characteristic

DEFINITION: A holomorphic Euler characteristic (M) of a Kdahler man-
ifold is a sum Y (—=1)Pdim HP.O(M).

THEOREM: (Riemann-Roch-Hirzebruch) For an n-fold, x(M) can be ex-

pressed as a polynomial expressions of the Chern classes, xy(M) = tdy
where td,, is an n-th component of the Todd polynomial,

1 1 1 1
td(M) = 1+501+E(C%—|—02)—|—2—40102—I—ﬁo(—c‘lt—l—llc%@—|—clcg—|—3c%2—04)—|—...
REMARK: The Chern classes are obtained as polynomial expression of the
curvature (Gauss-Bonnet). Therefore x (M) = py(M) for any unramified
p-fold covering M — M.

REMARK: Bochner’'s vanishing and the classical theory of invariants imply:
1. When Hol(M) = SU(n), we have dim HP9(M) =1 for p = 1,n, and
O otherwise. In this case, x(M) = 2 for even n and 0 for odd.
2. When Hol(M) = Sp(n),we have dim HPO(M) = 1 for even p with
0 <p < 2n, and 0 otherwise. In this case, x(M) =n+ 1.

COROLLARY: m (M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If
Hol(M) = SU2n+ 1), m1(M) is finite by Cheeger-Gromoll, but can be
non-trivial.
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