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Hyperkähler manifolds

DEFINITION: A hyperkähler manifold is a compact, Kähler, holomorphi-

cally symplectic manifold.

DEFINITION: A hyperkähler manifold M is called maximal holonomy, or

IHS, if π1(M) = 0, H2,0(M) = C.

This definition is motivated by the following theorem of Bogomolov.

THEOREM: Any hyperkähler manifold admits a finite covering which

is a product of a torus and several hyperkähler manifolds of maximal

holonomy.

REMARK: Further on, we shall assume (sometimes, implicitly) that all hy-

perkähler manifolds we consider are of maximal holonomy.
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The Bogomolov-Beauville-Fujiki (BBF) form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki (BBF) form.

It is defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.

COROLLARY: The space H1,1(M) of I-invariant cohomology classes has

signature (1, b2 − 2) (hyperbolic signature).
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The Kähler cone and its faces

All results on MBM geometry are joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone (set of all Kähler classes), and Kah its closure in H1,1(M,R),

called the nef cone. A face of a Kähler cone is an intersection of the

boundary of Kah and a hyperplane V ⊂ H1,1(M,R) which has a non-empry

interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.

REMARK: Today I will describe the Kähler cone on holomorphically sym-

plectic manifolds in terms of topological invariants, called MBM classes.

These are (roughly speaking) classes of minimal rational curves.
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Birational contractions and Kawamata bpf

DEFINITION: Base point set of a holomorphic line bundle is an intersection

of all zero divisors of its sections. A line bundle with trivial base point set is

called base point free (bpf). A line bundle L with nL bpf is called semiample

CLAIM: Let L be a semiample line bundle on a compact complex variety M .

Then M is equipped with a holomorphic map ϕ : M −→X such that

L = ϕ∗L0, where L0 is an ample bundle on X.

DEFINITION: A line bundle L is nef if c1(L) lies in the closure of the Kähler

cone, and big if
∫
M c1(L)dimCM > 0.

THEOREM: (Kawamata bpf theorem; very weak form)

Let L be a nef line bundle on M such that nL − KM is big. Then L is

semiample.

For Calabi-Yau manifolds this means just that big and nef bundles are

semiample.
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Birational contractions

DEFINITION: Birational contraction of a complex manifold is a holomor-

phic birational map M −→X to a complex variety X.

REMARK: From Kawamata bpf it follows that any big and nef bundle L

on Calabi-Yau is obtained as L = ϕ∗L0, where ϕ : M −→X is a birational

contraction and L0 an ample bundle on X.

REMARK: Let M be a hyperkähler manifold, η the cohomology class of an

extremal curve, ω0 an integer point on the corresponding face of the Kähler

cone, and L the holomorphic line bundle with cq(L) = ω0. Then L is big and

nef. Then the corresponding birational contraction contracts all curves C

with [C] = λη. Indeed, 〈L1, C〉 = 0.
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The Teichmüller space

Definition: Let M be a compact complex manifold, and Diff0(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the (infinite-dimensional) space of all complex structures on
M , and let Teich := Comp /Diff0(M). We call it the Teichmüller space.

Remark: When M is Calabi-Yau, Teich is a finite-dimensional complex
space, but often non-Hausdorff.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkähler type, that is, holomor-
phically symplectic and Kähler. It is open in the usual Teichmüller space.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .
We call Γ := Diff+(M)/Diff0(M) the mapping class group.

DEFINITION: Let ΓI be the subgroup of Γ preserving a connected compo-
nent TeichI of Teich. Then ΓI is called monodromy group of (M, I).

REMARK: Monodromy group can be obtained as a group generated by
monodromy for all Gauss-Manin systems on families of deformations of (M, I).
It has finite index in Γ.
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Birational geometry of hyperkähler manifolds

REMARK: Let (M, I) be a hyperkähler manifold, and ϕ : (M, I) 99K (M, I ′)
a bimeromorphic map to another hyperkähler manifold. Since the canonical

bundle of (M, I) and (M, I ′) is trivial, ϕ is an isomorphism in codimension 1.

This allows one to identify H2(M, I) and H2(M, I ′). Further on, we call

(M, I ′) “a birational model” for (M, I), and identify H2(M) for all birational

(and bimeromorphic) models.

THEOREM: (Huybrechts)

Bimeromorphic hyperkähler manifolds are diffeomorphic. Moreover, they oc-

cur as non-separate (non-Hausdorff) points on the corresponding Te-

ichmüller space. Conversely, all non-separate points on the Teichmüller

space correspond to manifolds which are bimeromorphic.
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MBM classes

THEOREM: (Huybrechts, Boucksom)

Let (M, I) be a hyperkähler manifold, and η ∈ H1,1(M) a nef cohomology

class such that q(η, η) > 0. Then 〈η, C〉 = 0 for some rational curve C on

(M, I).

REMARK: “MBM classes” are classes of rational curves which occur this

way as obstructions to Kählerness.

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)

satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology

class z ∈ H1,1(M, I) is called minimal if for any Q-effective homology classes

z1, z2 ∈ H1,1(M, I) satisfying z1 + z2 = z, the classes z1, z2 are proportional.

A negative rational homology class z ∈ H1,1(M, I) is called monodromy bi-

rationally minimal (MBM) if γ(z) is minimal and Q-effective for one of

birational models (M, I ′) of (M, I), where γ ∈ O(H2(M)) is an element of the

monodromy group of (M, I).
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MBM classes are deformationally invariant

This property is deformationally invariant.

This is the main result of this talk.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that η is of type (1,1) with respect to I and

I ′. Then η is MBM in (M, I) ⇔ it is MBM in (M, I ′).

DEFINITION: Let P be the set of all real vectors in H1,1(M, I) satisfying

q(v, v) > 0, where q is the Bogomolov-Beauville-Fujiki form on H2(M). The

positive cone Pos(M, I) as a connected component of P containing a Kähler

form. Then PPos(M, I) is a hyperbolic space, and Aut(M, I) acts on PPos(M, I)

by hyperbolic isometries.

REMARK: Let C ∈ H1,1(M) be a negative class. Then its orthogonal

complement C⊥ bisects the positive cone onto two components.
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MBM classes for Pic(M) = Z

The MBM classes are better understood if the Picard group has rank one and

generated by a negative vector (in this case M is non-algebraic).

DEFINITION: A homology class z is called Q-effective if Nz is effective

(represented by a curve) for some N ∈ Z>0.

THEOREM: Let (M, I) be a hyperkähler manifold, rk Pic(M, I) = 1, and

z ∈ H1,1(M, I) a non-zero negative class. Then z is monodromy birationally

minimal if and only if ±z is Q-effective.

Proof. Step 1: Clearly, any negative rational curve in (M, I) represents an

MBM class.

Step 2: If (M, I) has no rational curves, its Kähler cone is equal to the

positive cone (Huybrechts, Boucksom). Therefore, z is orthogonal to a

Kähler class, and hence non-effective.

REMARK: This argument proves that MBM classes correspond to faces

of a Kähler cone for rk Pic(M, I) = 1.
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MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.
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MBM classes and the Kähler cone: the picture

REMARK: This implies that z⊥ ∩ Pos(M, I) either has dense intersection

with the interior of the Kähler chambers (if z is not MBM), or is a union

of walls of those (if z is MBM); that is, there are no “barycentric partitions”

in the decomposition of the positive cone into the Kähler chambers.

Allowed partition Prohibited partition
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Families of rational curves: lower bound on dimension

THEOREM: (Z. Ran)

Let M be a hyperkähler manifold of dimension 2n. Then any rational curve

C ⊂M deforms in a family of dimension at least 2n− 2.

Proof: By adjunction formula, deg(NC) = −2 and rk(NC) = 2n − 1, which

implies that C deforms in a family of dimension at least 2n − 3. The extra

parameter is due to the existence of the twistor space Tw(M). This is

a complex manifold of dimension n + 1, fibered over CP1 in such a way

that M is one of the fibers and the other fibers correspond to the other

complex structures coming from the hyperkähler action on M . The same

adjunction argument shows that C deforms in Tw(M) in a family of dimension

at least 2n− 2. But all deformations of C are contained in M since the

neighbouring fibers contain no curves.
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Families of rational curves: coisotropicity

DEFINITION: A complex analytic subvariety Z of a holomorphically sym-

plectic manifold (M,Ω) is called isotropic if Ω|Z = 0 and coisotropic if Ω

has rank 1
2 dimCM − codimCZ on TZ in all smooth points of Z, which is the

minimal possible rank for a 2n− p-dimensional subspace in a 2n-dimensional

symplectic space.

THEOREM: Let M be a hyperkähler manifold, C ⊂ M a minimal rational

curve, and Z ⊂ M the union of all deformations of C in M . Then Z is a

coisotropic subvariety of M.

Proof. Step 1: Let V be a MRC quotient of Z. Since fibers of π : Z −→ V

are rationally connected, they are isotropic.

Step 2: Let k := codimZ. Let T be the irreducible component of the

parameter space for deformations of C in M . We have dim(T ) > 2n − 2 by

Ziv Ran. Therefore the dimension of the universal family of curves over T

is at least 2n − 1. Since it projects onto Z which is 2n − k-dimensional, the

fibers of this projection are of dimension at least k − 1.
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Families of rational curves: coisotropicity (2)

THEOREM: Let M be a hyperkähler manifold, C ⊂ M a minimal rational
curve, and Z ⊂ M the union of all deformations of C in M . Then Z is a
coisotropic subvariety of M.

Proof. Step 1: Let V be a MRC quotient of Z. Since fibers of π : Z −→ V

are rationally connected, they are isotropic.

Step 2: Let k := codimZ. Let T be the irreducible component of the
parameter space for deformations of C in M . We have dim(T ) > 2n − 2 by
Ziv Ran. Therefore the dimension of the universal family of curves over T
is at least 2n − 1. Since it projects onto Z which is 2n − k-dimensional, the
fibers of this projection are of dimension at least k − 1.

Step 3: By bend-and-break, there is only a finite number of minimal
rational curves through two general points. This means that the fibers
of the MRC fibration π : Z −→ V are at least k-dimensional, and dimV 6
dimM − 2k.

Step 4: Since the fibers of π are isotropic, one has rk Ω|Z 6 dimV =
1/2 dimM − k, hence Z is coisotropic, and the inequality dimV 6 dimM − 2k
is equality.
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Families of rational curves: upper bound

COROLLARY: The deformation space of minimal rational curves on

a holomorphic symplectic manifold is 2n− 2-dimensional.

Proof. Step 1: Let C be a minimal rational curve, and Z the union of all

its deformations. Let k := codimZ. Consider the MRC map π : Z −→ V . We

have shown that dimV = dimM − 2k.

Step 2: Since dimV = dimM−2k, the fibers of π : Z −→ V are k-dimensional.

Applying bend-and-break again, we obtain that there is a 2k − 2-dimensional

family of deformations of C in each fiber of π.
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Families of rational curves: deformational invariance (local)

COROLLARY: Let C be a minimal rational curve in a hyperkähler manifold

M0. Then any small deformation Mt of M = M0 such that the homology

class z of C stays of type (1,1) on Mt, contains a deformation of C.

Proof: From Riemann-Roch theorem it follows that C deforms in a family of

dimension at least 2n−3 + dim(Def(M)). Since the deformations of C inside

any Mt form a family of dimension 2n− 2, the conclusion follows.
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Families of rational curves: deformational invariance (global)

COROLLARY: If C is minimal, any deformation Mt of M = M0 such

that the corresponding homology class remains of type (1,1), has a

birational model containing a rational curve in that homology class.

Proof: Let Teich(M)0 be the connected component of the Teichmüller space

of M containing the parameter point for our complex manifold M0, and

Teichz(M)0 the part of it where z remains of type (1,1). Connecting Mt

with M0 by a path and applying the above corollary, we obtain the proof.

Birational models appear since Teichz(M) is not Hausdorff, so that at the

end of a path we might arrive to another point of Teichz(M), not separable

from Mt. However, a theorem of Huybrechts implies that unseparable points

of Teichz(M) correspond to bimeromorphic complex manifolds.

REMARK: This proves the deformational invariance of MBM classes.
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