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The Kähler cone and its faces

The work presented here is done in collaboration with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone, and Kah its closure in H1,1(M,R), called the nef cone. A face

of a Kähler cone is an intersection of the boundary of Kah and a hyperplane

V ⊂ H1,1(M,R) which has a non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.
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(−2)-classes on a K3 surface

CLAIM: (Hodge index theorem)

Let M be a Kähler surface. Then the form η −→
∫
M η ∧ η has signature

(+,−,−, ...) on H1,1(M,R).

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the

two components of

{v ∈ H1,1(M,R) |
∫
M
η ∧ η > 0}

which contains a Kähler form.

DEFINITION: A cohomology class η ∈ H2(M,Z) on a K3 surface is called

(−2)-class if
∫
M η ∧ η = −2.

REMARK: Let M be a K3 surface, and η ∈ H1,1(M,Z) a (−2)-class. Then

either η or −η is effective. Indeed, χ(η) = 2 + η2

2 = 1 by Riemann-Roch.

3



Hyperkähler geometry and hyperbolic gometry M. Verbitsky

Kähler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (−2)-

classes. Then Kah(M) is the set of all v ∈ Pos(M) such that 〈v, s〉 > 0 for

all s ∈ S.

Proof: This is a version of Nakai-Moishezon theorem which follows immedi-

ately from Demailly-Paun characterization of Kähler classes.

DEFINITION: A Weyl chamber on a K3 surface is a connected component

of Pos(M)\S⊥, where S⊥ is a union of all planes s⊥ for all (-2)-classes s ∈ S.

The reflection group of a K3 surface is a group W generated by reflections

with respect to all s ∈ S.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W , and W

acts transitively on the set of all Weyl chambers. Moreover, the Kähler cone

of M is one of its Weyl chambers.
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Cone conjecture for a K3 surface

THEOREM: Let M be a K3 surface. Then Aut(M) is the group of all

isometries of H1,1(M,Z) preserving the Kähler chamber.

Proof: This result directly follows from the global Torelli theorem.

COROLLARY: (H. Sterk) Morrison-Kawamata cone conjecture holds

for a K3 surface.

Proof. Step 1: A group Γ of isometries of a lattice Λ acts with finitely many

orbits on the set {l ∈ Λ | l2 = x} for any given x (see Kneser, Quadratische

Formen, Satz 30.2). Therefore, Γ acts with finitely many orbits on the

set of (−2)-vectors in Λ. This can be used to show that Γ acts with finitely

many orbits on faces of all Weyl chambers.

Step 2: For each pair of faces F, F ′ of a Kähler cone and w ∈ O(Λ) mapping

F to F ′, w maps Kah to itself or to an adjoint Weyl chamber K′. Then

K′ = r(K), where r is the reflection fixing F ′. In the first case, w ∈ Aut(M). In

the second case, rw maps F to F ′ and maps Kah to itself, hence rw ∈ Aut(M).
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Hyperkähler manifolds (reminder)

DEFINITION: A hyperkähler manifold is a compact, Kähler, holomorphi-

cally symplectic manifold.

DEFINITION: A hyperkähler manifold M is called of maximal holonomy,

or IHS, if π1(M) = 0, H2,0(M) = C.

This definition is motivated by the following theorem of Bogomolov.

THEOREM: Any hyperkähler manifold admits a finite covering which

is a product of a torus and several hyperkähler manifolds of maximal

holonomy.

REMARK: Further on, we shall assume (sometimes, implicitly) that all hy-

perkähler manifolds we consider are of maximal holonomy.

6



Hyperkähler geometry and hyperbolic gometry M. Verbitsky

The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki (BBF) form.

It is defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.

COROLLARY: The space H1,1(M) of I-invariant cohomology classes has

signature (1, b2 − 2) (hyperbolic signature).
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Kleinian groups

DEFINITION: Kleinian group is a discrete subgroup Γ ⊂ SO(1, n) of finite

Haar covolume (that is, the quotient SO(1, n)/Γ has finite volume).

DEFINITION: An arithmetic subgroup of an algebraic group G is a finite

index subgroup in GZ.

REMARK: From Borel and Harish-Chandra, it follows that any arithmetic

subgroup of SO(1, n) is Kleinian, for n > 2.

DEFINITION: Let V be a real space equipped with a quadratic form of sig-

nature (1, n). A hyperbolic orbifold is a quotient of P+(V ) (projectivisation

of a positive cone) by a Kleinian subgroup of SO(V ).

REMARK: The space P+(V ) is equipped with a unique (up to a scalar factor)

SO(1, n)-invariant Riemannian metric. We consider a hyperbolic orbifold as a

Riemannian orbifold, equipped with this metric, which is called the hyperbolic

metric.
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Monodromy group

From Eyal Markman’s “Survey of Torelli theorem...”: some consequences of
global Torelli.

DEFINITION: Monodromy group Mon(M) of a hyperkähler manifold (M, I)
is a subgroup of O(H2(M,Z), q) generated by monodromy of Gauss-Manin
connections for all families of deformations of (M, I). The Hodge mon-
odromy group Mon(M, I) is a subgroup of Mon(M) preserving the Hodge
decomposition.

THEOREM: Mon(M) is an arithmetic subgroup of SO(H2(M,R), q).

DEFINITION: Let (M, I ′) be a holomorphic symplectic manifold pseudo-
isomorphic to (M, I). A Kähler chamber of (M, I) is an image of the Kähler
cone of (M, I ′) under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on H1,1(M, I) mapping Kähler chambers to Kähler
chambers.

CLAIM: The group of automorphisms Aut(M, I) is a group of all ele-
ments of Mon(M, I) preserving the Kähler cone.
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Positive cone

DEFINITION: Let P be the set of all real vectors in H1,1(M, I) satisfy-

ing q(v, v) > 0, where q is the Bogomolov-Beauville-Fujiki form on H2(M).

The positive cone Pos(M, I) as a connected component of P containing a

Kähler form. Then PPos(M, I) is a hyperbolic space, and Mon(M, I) acts on

PPos(M, I) by hyperbolic isometries.

THEOREM: The positive cone is partitoned onto Kähler chambers.

Interiors of different Kähler chambers are disjoint, the closure of their union

contains the positive cone.

DEFINITION: Let H1,1(M,Q) be the set of all rational (1,1)-classes on

(M, I), and KahQ(M, I) the set of all Kähler classes in H1,1(M,Q)⊗QR. Then

KahQ(M, I) is called ample cone of M .
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Hyperbolic manifolds associated with a hyperkähler manifold

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite

index subgroup in O(H2(M,Z), q). Therefore, Mon(M, I) acts on PPosQ(M, I) :=

P(Pos(M, I)∩H1,1(M,Q)⊗QR) with finite covolume; in other words, Mon(M, I)

is Kleinian, and the quotient PPosQ(M, I)/Mon(M, I) is a finite volume hyper-

bolic orbifold.

REMARK: Notice that Aut(M, I) is a stabilizer of Kah(M) in Mon(M, I).

THEOREM: (cone conjecture)

The quotient KahQ(M, I)/Aut(M, I) is a finite hyperbolic polyhedron in

PPosQ(M, I)/Mon(M, I).

REMARK: In other words, the action of Aut(M, I) on KahQ(M, I) has a

finite polyhedral fundamental domain.
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MBM classes (reminder)

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)

satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a (non-algebraic) hyperkähler manifold with the

Pocard group H1,1(M,Z) generated by a negative class η ∈ H2(M,Z). The

class η is called MBM if (M, I) contains a curve C.

The MBM property is in fact deformational invariant:

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that η is of type (1,1) with respect to I and

I ′. Then η is MBM in (M, I) ⇔ it is MBM in (M, I ′).

DEFINITION: Let z ∈ H2(M,Z) be a negative class on a hyperkähler mani-

fold (M, I). It is called an MBM class if for any complex structure I ′ in the

same deformation class satisfying z ∈ H1,1(M, I ′), z is an MBM class.
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MBM classes and the Kähler cone (reminder)

THEOREM: (Amerik-V.) Let (M, I) be a hyperkähler manifold, and S ⊂
H1,1(M, I) the set of all MBM classes in H1,1(M, I). Consider the correspond-

ing set of hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the

Kähler cone of (M, I) is a connected component of Pos(M, I)\∪S⊥, where

Pos(M, I) is a positive cone of (M, I). Moreover, for any connected compo-

nent K of Pos(M, I)\ ∪S⊥, there exists γ ∈ O(H2(M)) in a monodromy group

of M , and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I),

such that γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.

THEOREM: (Morrison-Kawamata cone conjecture)

The group Mon(M, I) acts on the set of faces of the Kähler cone with

finitely many orbits.

REMARK: This would follow if we prove that Mon(M, I) acts on MBM

classes with finitely many orbits.
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MBM classes and the Kähler cone: the picture

Allowed partition Prohibited partition
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MBM classes and the cone conjecture

Theorem 1: Let (M, I) be a hyperkähler manifold, and {si} the set of MBM

classes of type (1,1). Then Mon(M, I) acts on {si} with finitely many

orbits.

COROLLARY: (Morrison-Kawamata cone conjecture)

The group Aut(M, I) acts on the ample cone with finte polyhedral

fundamental domain.

Proof: The quotient Kah(M, I)/Aut(M, I) is a finite polyhedron in

Pos(M, I)/Mon(M, I).

REMARK: Theorem 1 is immediately implied by the following result

of hyperbolic geometry.

Theorem 2: Let X be a hyperbolic manifold of dimension > 2, and {Si} an

infinite set of geodesic hypersurfaces. Then either this set is finite, or
⋃
Si

is dense in X.
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Ratner’s orbit closure theorem

DEFINITION: Let G be a Lie group, and Γ ⊂ G a discrete subgroup. We

say that Γ has finite covolume if the Haar measure of G/Γ is finite. In this

case Γ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup

of a reductive group G is a lattice whenever G has no non-trivial characters

over Q. In particular, all arithmetic subgroups of a semi-simple group are

lattices.

DEFINITION: Let G be a Lie group, and g ∈ G any element. We say that g

is unipotent if g = eh for a nilpotent element h in its Lie algebra. A group G

is generated by unipotents if G is multiplicatively generated by unipotent

one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.

Then the closure of any H-orbit Hx in G/Γ is an orbit of a closed,

connected subgroup S ⊂ G, such that S ∩ xΓx−1 ⊂ S is a lattice in S.
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Ratner’s measure classification theorem

DEFINITION: Let (M,µ) be a space with a measure, and G a group acting
on M preserving µ. This action is ergodic if all G-invariant measurable subsets
M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet’s theorem, any G-invariant measure on M is ex-
pressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, Γ a lattice, and G/Γ the quotient
space, considered as a space with Haar measure. Consider an orbit S · x ⊂ G
of a closed subgroup S ⊂ G, put the Haar measure on S · x, and assume that
its image in G/Γ is closed. A measure on G/Γ is called algebraic if it is
proportional to the pushforward of the Haar measure on S · x/Γ to G/Γ.

THEOREM: (Ratner’s measure classification theorem)
Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space,
considered as a space with Haar measure. Consider a finite measure µ on
G/Γ. Assume that µ is invariant and ergodic with respect to an action of a
subgroup H ⊂ G generated by unipotents. Then µ is algebraic.
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Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)

A limit µ of a sequence µi of algebraic measures is again an algebraic

measure. Moreover, if the support of µ has the same dimension as µi,

this sequence stabilizes.

Proof: Follows from Ratner’s measure classification theorem.

DEFINITION: A measure µ on M is called probabilistic if µ(M) = 1.

THEOREM: (Dani-Margulis)

Let µi be a converging sequence of probabilistic algebraic measures on a Lie

group G, associated with subgroups Si ⊂ G generated by unipotents, and

C ⊂ G a compact subset such that µi(C) > ε for some ε > 0. Then µi
converges to a probabilistic measure on G.

REMARK: The space of measures with µ(M) 6 1 is compact, but the limit

of probabilistic measures is not generally probabilistic.
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Geodesic hypersurfaces in hyperbolic manifolds

THEOREM: Let X be a complete Riemannian orbifold of dimension at least
3, constant negative curvature and finite volume, and {Si} a set of infinitely
many complete, locally geodesic hypersurfaces. Then the union of Si is
dense in X.

Proof. Step 1: The group SO(1, n−1)is generated by unipotents. Therefore,
Ratner’s theorem can be applied to Si which are orbits of SO(1, n− 1). Any
subgroup of SO(1, n) strictly containing SO(1, n− 1) coincides with SO(1, n).
By Ratner’s theorem, either Si is closed and has finite volume, or it is dense.
Therefore, we may assume that Si is a closed hyperbolic hypersurface
in X.

Step 2: Denote by µi the probabilistic algebraic measure supported in Si.
Using the structure theorem for cusps, we obtain that the support of all µi
intersects a certain compact K ⊂ X. Using Dani-Margulis theorem, we obtain
that µi has a subsequence converging to an algebraic measure µ. By Moses-
Shah, µ is supported in an orbit of a subgroup H1 strictly containing
SO(1, n− 1).

Step 3: By Step 1, H1 = SO(1, n)
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