Hyperbolic geometry and the proof of Morrison-Kawamata cone conjecture (3)

Misha Verbitsky

Complex Geometry: discussion meeting 20 March 2017 to 25 March 2017

Ramanujan Lecture Hall, ICTS, Bengaluru

The Kähler cone and its faces

The work presented here is done in collaboration with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah $\subset H^{1,1}(M,\mathbb{R})$ is Kähler cone, and Kah its closure in $H^{1,1}(M,\mathbb{R})$, called **the nef cone**. A face of a Kähler cone is an intersection of the boundary of Kah and a hyperplane $V \subset H^{1,1}(M,\mathbb{R})$ which has a non-empty interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic automorphisms of M acts on the set of faces of Kah with finite number of orbits.

(-2)-classes on a K3 surface

CLAIM: (Hodge index theorem)

Let *M* be a Kähler surface. Then the form $\eta \longrightarrow \int_M \eta \wedge \eta$ has signature (+, -, -, ...) on $H^{1,1}(M, \mathbb{R})$.

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the two components of

$$\{v \in H^{1,1}(M,\mathbb{R}) \mid \int_M \eta \wedge \eta > 0\}$$

which contains a Kähler form.

DEFINITION: A cohomology class $\eta \in H^2(M,\mathbb{Z})$ on a K3 surface is called (-2)-class if $\int_M \eta \wedge \eta = -2$.

REMARK: Let *M* be a K3 surface, and $\eta \in H^{1,1}(M,\mathbb{Z})$ a (-2)-class. Then either η or $-\eta$ is effective. Indeed, $\chi(\eta) = 2 + \frac{\eta^2}{2} = 1$ by Riemann-Roch.

Kähler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (-2)-classes. Then Kah(M) is the set of all $v \in Pos(M)$ such that $\langle v, s \rangle > 0$ for all $s \in S$.

Proof: This is a version of Nakai-Moishezon theorem which follows immediately from Demailly-Paun characterization of Kähler classes. ■

DEFINITION: A Weyl chamber on a K3 surface is a connected component of $Pos(M) \setminus S^{\perp}$, where S^{\perp} is a union of all planes s^{\perp} for all (-2)-classes $s \in S$. **The reflection group** of a K3 surface is a group W generated by reflections with respect to all $s \in S$.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W, and W acts transitively on the set of all Weyl chambers. Moreover, **the Kähler cone** of M is one of its Weyl chambers.

Cone conjecture for a K3 surface

THEOREM: Let *M* be a K3 surface. Then Aut(M) is the group of all isometries of $H^{1,1}(M,\mathbb{Z})$ preserving the Kähler chamber.

Proof: This result **directly follows from the global Torelli theorem.**

COROLLARY: (H. Sterk) Morrison-Kawamata cone conjecture holds for a K3 surface.

Proof. Step 1: A group Γ of isometries of a lattice Λ acts with finitely many orbits on the set $\{l \in \Lambda \mid l^2 = x\}$ for any given x (see Kneser, *Quadratische Formen*, Satz 30.2). Therefore, Γ acts with finitely many orbits on the set of (-2)-vectors in Λ . This can be used to show that Γ acts with finitely many orbits on faces of all Weyl chambers.

Step 2: For each pair of faces F, F' of a Kähler cone and $w \in O(\Lambda)$ mapping F to F', w maps Kah to itself or to an adjoint Weyl chamber K'. Then K' = r(K), where r is the reflection fixing F'. In the first case, $w \in Aut(M)$. In the second case, rw maps F to F' and maps Kah to itself, hence $rw \in Aut(M)$.

Hyperkähler manifolds (reminder)

DEFINITION: A hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **of maximal holonomy**, or **IHS**, if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

This definition is motivated by the following theorem of Bogomolov.

THEOREM: Any hyperkähler manifold **admits a finite covering which is a product of a torus and several hyperkähler manifolds of maximal holonomy.**

REMARK: Further on, we shall assume (sometimes, implicitly) that **all hyperkähler manifolds we consider are of maximal holonomy**.

The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki (BBF) form**. **It is defined by the Fujiki's relation uniquely, up to a sign.** The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

COROLLARY: The space $H^{1,1}(M)$ of *I*-invariant cohomology classes has signature $(1, b_2 - 2)$ (hyperbolic signature).

Kleinian groups

DEFINITION: Kleinian group is a discrete subgroup $\Gamma \subset SO(1, n)$ of finite Haar covolume (that is, **the quotient** $SO(1, n)/\Gamma$ has finite volume).

DEFINITION: An arithmetic subgroup of an algebraic group G is a finite index subgroup in $G_{\mathbb{Z}}$.

REMARK: From Borel and Harish-Chandra, it follows that any arithmetic subgroup of SO(1, n) is Kleinian, for $n \ge 2$.

DEFINITION: Let V be a real space equipped with a quadratic form of signature (1, n). A hyperbolic orbifold is a quotient of $\mathbb{P}^+(V)$ (projectivisation of a positive cone) by a Kleinian subgroup of SO(V).

REMARK: The space $\mathbb{P}^+(V)$ is equipped with a unique (up to a scalar factor) SO(1,n)-invariant Riemannian metric. We consider a hyperbolic orbifold as a Riemannian orbifold, equipped with this metric, which is called **the hyperbolic metric**.

Monodromy group

From Eyal Markman's "Survey of Torelli theorem...": some consequences of global Torelli.

DEFINITION: Monodromy group Mon(M) of a hyperkähler manifold (M, I) is a subgroup of $O(H^2(M, \mathbb{Z}), q)$ generated by monodromy of Gauss-Manin connections for all families of deformations of (M, I). The Hodge monodromy group Mon(M, I) is a subgroup of Mon(M) preserving the Hodge decomposition.

THEOREM: Mon(M) is an arithmetic subgroup of $SO(H^2(M, \mathbb{R}), q)$.

DEFINITION: Let (M, I') be a holomorphic symplectic manifold pseudoisomorphic to (M, I). A Kähler chamber of (M, I) is an image of the Kähler cone of (M, I') under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on $H^{1,1}(M, I)$ mapping Kähler chambers to Kähler chambers.

CLAIM: The group of automorphisms Aut(M, I) is a group of all elements of Mon(M, I) preserving the Kähler cone.

Positive cone

DEFINITION: Let *P* be the set of all real vectors in $H^{1,1}(M, I)$ satisfying q(v,v) > 0, where *q* is the Bogomolov-Beauville-Fujiki form on $H^2(M)$. The **positive cone** Pos(M, I) as a connected component of *P* containing a Kähler form. Then $\mathbb{P}Pos(M, I)$ is a hyperbolic space, and Mon(M, I) acts on $\mathbb{P}Pos(M, I)$ by hyperbolic isometries.

THEOREM: The positive cone is partitoned onto Kähler chambers. Interiors of different Kähler chambers are disjoint, the closure of their union contains the positive cone.

DEFINITION: Let $H^{1,1}(M,\mathbb{Q})$ be the set of all rational (1,1)-classes on (M, I), and $\operatorname{Kah}_{\mathbb{Q}}(M, I)$ the set of all Kähler classes in $H^{1,1}(M,\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{R}$. Then $\operatorname{Kah}_{\mathbb{O}}(M, I)$ is called **ample cone** of M.

Hyperbolic manifolds associated with a hyperkähler manifold

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite index subgroup in $O(H^2(M, \mathbb{Z}), q)$. Therefore, Mon(M, I) **acts on** $\mathbb{P} Pos_{\mathbb{Q}}(M, I) :=$ $\mathbb{P}(Pos(M, I) \cap H^{1,1}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{R})$ with finite covolume; in other words, Mon(M, I)is Kleinian, and the quotient $\mathbb{P} Pos_{\mathbb{Q}}(M, I) / Mon(M, I)$ is a finite volume hyperbolic orbifold.

REMARK: Notice that Aut(M, I) is a stabilizer of Kah(M) in Mon(M, I).

THEOREM: (cone conjecture)

The quotient $\operatorname{Kah}_{\mathbb{Q}}(M, I) / \operatorname{Aut}(M, I)$ is a finite hyperbolic polyhedron in $\mathbb{P} \operatorname{Pos}_{\mathbb{Q}}(M, I) / \operatorname{Mon}(M, I)$.

REMARK: In other words, the action of Aut(M, I) on $Kah_{\mathbb{Q}}(M, I)$ has a finite polyhedral fundamental domain.

MBM classes (reminder)

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$.

DEFINITION: Let (M, I) be a (non-algebraic) hyperkähler manifold with the Pocard group $H^{1,1}(M,\mathbb{Z})$ generated by a negative class $\eta \in H^2(M,\mathbb{Z})$. The class η is called **MBM** if (M, I) contains a curve C.

The MBM property is in fact deformational invariant:

THEOREM: Let $z \in H^2(M, \mathbb{Z})$ be negative, and I, I' complex structures in the same deformation class, such that η is of type (1,1) with respect to I and I'. Then η is MBM in $(M, I) \Leftrightarrow$ it is MBM in (M, I').

DEFINITION: Let $z \in H^2(M, \mathbb{Z})$ be a negative class on a hyperkähler manifold (M, I). It is called **an MBM class** if for any complex structure I' in the same deformation class satisfying $z \in H^{1,1}(M, I')$, z is an MBM class.

MBM classes and the Kähler cone (reminder)

THEOREM: (Amerik-V.) Let (M, I) be a hyperkähler manifold, and $S
ightharpoondownambda H_{1,1}(M, I)$ the set of all MBM classes in $H_{1,1}(M, I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M, I)$. Then the Kähler cone of (M, I) is a connected component of $Pos(M, I) \setminus \cup S^{\perp}$, where Pos(M, I) is a positive cone of (M, I). Moreover, for any connected component K of $Pos(M, I) \setminus \cup S^{\perp}$, there exists $\gamma \in O(H^2(M))$ in a monodromy group of M, and a hyperkähler manifold (M, I') birationally equivalent to (M, I), such that $\gamma(K)$ is a Kähler cone of (M, I').

REMARK: This implies that **MBM classes correspond to faces of the** Kähler cone.

THEOREM: (Morrison-Kawamata cone conjecture) The group Mon(M, I) acts on the set of faces of the Kähler cone with finitely many orbits.

REMARK: This would follow if we prove that Mon(M, I) **acts on MBM** classes with finitely many orbits.

MBM classes and the Kähler cone: the picture

MBM classes and the cone conjecture

Theorem 1: Let (M, I) be a hyperkähler manifold, and $\{s_i\}$ the set of MBM classes of type (1,1). Then Mon(M, I) acts on $\{s_i\}$ with finitely many orbits.

COROLLARY: (Morrison-Kawamata cone conjecture) The group Aut(M, I) acts on the ample cone with finte polyhedral fundamental domain.

Proof: The quotient Kah(M, I) / Aut(M, I) is a finite polyhedron in Pos(M, I) / Mon(M, I).

REMARK: Theorem 1 is immediately implied by the following result of hyperbolic geometry.

Theorem 2: Let X be a hyperbolic manifold of dimension > 2, and $\{S_i\}$ an infinite set of geodesic hypersurfaces. Then **either this set is finite, or** $\bigcup S_i$ **is dense in** X.

Ratner's orbit closure theorem

DEFINITION: Let G be a Lie group, and $\Gamma \subset G$ a discrete subgroup. We say that Γ has finite covolume if the Haar measure of G/Γ is finite. In this case Γ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup of a reductive group G is a lattice whenever G has no non-trivial characters over \mathbb{Q} . In particular, all arithmetic subgroups of a semi-simple group are lattices.

DEFINITION: Let G be a Lie group, and $g \in G$ any element. We say that g is **unipotent** if $g = e^h$ for a nilpotent element h in its Lie algebra. A group G is **generated by unipotents** if G is multiplicatively generated by unipotent one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then the closure of any *H*-orbit Hx in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap x \Gamma x^{-1} \subset S$ is a lattice in S.

Ratner's measure classification theorem

DEFINITION: Let (M, μ) be a space with a measure, and G a group acting on M preserving μ . This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

REMARK: Ergodic measures are extremal rays in the cone of all *G*-invariant measures.

REMARK: By Choquet's theorem, any *G*-invariant measure on *M* is expressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, Γ a lattice, and G/Γ the quotient space, considered as a space with Haar measure. Consider an orbit $S \cdot x \subset G$ of a closed subgroup $S \subset G$, put the Haar measure on $S \cdot x$, and assume that its image in G/Γ is closed. A measure on G/Γ is called **algebraic** if it is proportional to the pushforward of the Haar measure on $S \cdot x/\Gamma$ to G/Γ .

THEOREM: (Ratner's measure classification theorem)

Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space, considered as a space with Haar measure. Consider a finite measure μ on G/Γ . Assume that μ is invariant and ergodic with respect to an action of a subgroup $H \subset G$ generated by unipotents. Then μ is algebraic.

Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)

A limit μ of a sequence μ_i of algebraic measures is again an algebraic measure. Moreover, if the support of μ has the same dimension as μ_i , this sequence stabilizes.

Proof: Follows from Ratner's measure classification theorem.

DEFINITION: A measure μ on M is called **probabilistic** if $\mu(M) = 1$.

THEOREM: (Dani-Margulis)

Let μ_i be a converging sequence of probabilistic algebraic measures on a Lie group G, associated with subgroups $S_i \subset G$ generated by unipotents, and $C \subset G$ a compact subset such that $\mu_i(C) > \varepsilon$ for some $\varepsilon > 0$. Then μ_i converges to a probabilistic measure on G.

REMARK: The space of measures with $\mu(M) \leq 1$ is compact, but the limit of probabilistic measures is not generally probabilistic.

Geodesic hypersurfaces in hyperbolic manifolds

THEOREM: Let X be a complete Riemannian orbifold of dimension at least 3, constant negative curvature and finite volume, and $\{S_i\}$ a set of infinitely many complete, locally geodesic hypersurfaces. Then the union of S_i is dense in X.

Proof. Step 1: The group SO(1, n-1) is generated by unipotents. Therefore, Ratner's theorem can be applied to S_i which are orbits of SO(1, n-1). Any subgroup of SO(1, n) strictly containing SO(1, n-1) coincides with SO(1, n). By Ratner's theorem, either S_i is closed and has finite volume, or it is dense. Therefore, we may assume that S_i is a closed hyperbolic hypersurface in X.

Step 2: Denote by μ_i the probabilistic algebraic measure supported in S_i . Using the structure theorem for cusps, we obtain that the support of all μ_i intersects a certain compact $K \subset X$. Using Dani-Margulis theorem, we obtain that μ_i has a subsequence converging to an algebraic measure μ . By Moses-Shah, μ is supported in an orbit of a subgroup H_1 strictly containing SO(1, n - 1).

Step 3: By Step 1, $H_1 = SO(1, n) \blacksquare$